summaryrefslogtreecommitdiff
path: root/Documentation/cgroup-v2.txt
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/cgroup-v2.txt')
-rw-r--r--Documentation/cgroup-v2.txt33
1 files changed, 32 insertions, 1 deletions
diff --git a/Documentation/cgroup-v2.txt b/Documentation/cgroup-v2.txt
index ff49cf901148..bdc6773277be 100644
--- a/Documentation/cgroup-v2.txt
+++ b/Documentation/cgroup-v2.txt
@@ -132,6 +132,12 @@ strongly discouraged for production use. It is recommended to decide
the hierarchies and controller associations before starting using the
controllers after system boot.
+During transition to v2, system management software might still
+automount the v1 cgroup filesystem and so hijack all controllers
+during boot, before manual intervention is possible. To make testing
+and experimenting easier, the kernel parameter cgroup_no_v1= allows
+disabling controllers in v1 and make them always available in v2.
+
2-2. Organizing Processes
@@ -843,6 +849,15 @@ PAGE_SIZE multiple when read back.
Amount of memory used to cache filesystem data,
including tmpfs and shared memory.
+ kernel_stack
+
+ Amount of memory allocated to kernel stacks.
+
+ slab
+
+ Amount of memory used for storing in-kernel data
+ structures.
+
sock
Amount of memory used in network transmission buffers
@@ -871,6 +886,16 @@ PAGE_SIZE multiple when read back.
on the internal memory management lists used by the
page reclaim algorithm
+ slab_reclaimable
+
+ Part of "slab" that might be reclaimed, such as
+ dentries and inodes.
+
+ slab_unreclaimable
+
+ Part of "slab" that cannot be reclaimed on memory
+ pressure.
+
pgfault
Total number of page faults incurred
@@ -896,7 +921,7 @@ PAGE_SIZE multiple when read back.
limit, anonymous meomry of the cgroup will not be swapped out.
-5-2-2. General Usage
+5-2-2. Usage Guidelines
"memory.high" is the main mechanism to control memory usage.
Over-committing on high limit (sum of high limits > available memory)
@@ -1368,6 +1393,12 @@ system than killing the group. Otherwise, memory.max is there to
limit this type of spillover and ultimately contain buggy or even
malicious applications.
+Setting the original memory.limit_in_bytes below the current usage was
+subject to a race condition, where concurrent charges could cause the
+limit setting to fail. memory.max on the other hand will first set the
+limit to prevent new charges, and then reclaim and OOM kill until the
+new limit is met - or the task writing to memory.max is killed.
+
The combined memory+swap accounting and limiting is replaced by real
control over swap space.