diff options
Diffstat (limited to 'Documentation/block')
-rw-r--r-- | Documentation/block/bfq-iosched.rst | 9 | ||||
-rw-r--r-- | Documentation/block/biodoc.rst | 4 | ||||
-rw-r--r-- | Documentation/block/blk-mq.rst | 153 | ||||
-rw-r--r-- | Documentation/block/index.rst | 1 | ||||
-rw-r--r-- | Documentation/block/pr.rst | 2 | ||||
-rw-r--r-- | Documentation/block/queue-sysfs.rst | 14 | ||||
-rw-r--r-- | Documentation/block/writeback_cache_control.rst | 2 |
7 files changed, 173 insertions, 12 deletions
diff --git a/Documentation/block/bfq-iosched.rst b/Documentation/block/bfq-iosched.rst index 0d237d402860..19d4d1570cee 100644 --- a/Documentation/block/bfq-iosched.rst +++ b/Documentation/block/bfq-iosched.rst @@ -492,13 +492,6 @@ set max_budget to higher values than those to which BFQ would have set it with auto-tuning. An alternative way to achieve this goal is to just increase the value of timeout_sync, leaving max_budget equal to 0. -weights -------- - -Read-only parameter, used to show the weights of the currently active -BFQ queues. - - 4. Group scheduling with BFQ ============================ @@ -566,7 +559,7 @@ Parameters to set For each group, there is only the following parameter to set. weight (namely blkio.bfq.weight or io.bfq-weight): the weight of the -group inside its parent. Available values: 1..10000 (default 100). The +group inside its parent. Available values: 1..1000 (default 100). The linear mapping between ioprio and weights, described at the beginning of the tunable section, is still valid, but all weights higher than IOPRIO_BE_NR*10 are mapped to ioprio 0. diff --git a/Documentation/block/biodoc.rst b/Documentation/block/biodoc.rst index b964796ec9c7..1d4d71e391af 100644 --- a/Documentation/block/biodoc.rst +++ b/Documentation/block/biodoc.rst @@ -196,7 +196,7 @@ a virtual address mapping (unlike the earlier scheme of virtual address do not have a corresponding kernel virtual address space mapping) and low-memory pages. -Note: Please refer to Documentation/DMA-API-HOWTO.txt for a discussion +Note: Please refer to :doc:`/core-api/dma-api-howto` for a discussion on PCI high mem DMA aspects and mapping of scatter gather lists, and support for 64 bit PCI. @@ -1036,7 +1036,7 @@ Now the generic block layer performs partition-remapping early and thus provides drivers with a sector number relative to whole device, rather than having to take partition number into account in order to arrive at the true sector number. The routine blk_partition_remap() is invoked by -generic_make_request even before invoking the queue specific make_request_fn, +submit_bio_noacct even before invoking the queue specific ->submit_bio, so the i/o scheduler also gets to operate on whole disk sector numbers. This should typically not require changes to block drivers, it just never gets to invoke its own partition sector offset calculations since all bios diff --git a/Documentation/block/blk-mq.rst b/Documentation/block/blk-mq.rst new file mode 100644 index 000000000000..88c56afcb070 --- /dev/null +++ b/Documentation/block/blk-mq.rst @@ -0,0 +1,153 @@ +.. SPDX-License-Identifier: GPL-2.0 + +================================================ +Multi-Queue Block IO Queueing Mechanism (blk-mq) +================================================ + +The Multi-Queue Block IO Queueing Mechanism is an API to enable fast storage +devices to achieve a huge number of input/output operations per second (IOPS) +through queueing and submitting IO requests to block devices simultaneously, +benefiting from the parallelism offered by modern storage devices. + +Introduction +============ + +Background +---------- + +Magnetic hard disks have been the de facto standard from the beginning of the +development of the kernel. The Block IO subsystem aimed to achieve the best +performance possible for those devices with a high penalty when doing random +access, and the bottleneck was the mechanical moving parts, a lot slower than +any layer on the storage stack. One example of such optimization technique +involves ordering read/write requests according to the current position of the +hard disk head. + +However, with the development of Solid State Drives and Non-Volatile Memories +without mechanical parts nor random access penalty and capable of performing +high parallel access, the bottleneck of the stack had moved from the storage +device to the operating system. In order to take advantage of the parallelism +in those devices' design, the multi-queue mechanism was introduced. + +The former design had a single queue to store block IO requests with a single +lock. That did not scale well in SMP systems due to dirty data in cache and the +bottleneck of having a single lock for multiple processors. This setup also +suffered with congestion when different processes (or the same process, moving +to different CPUs) wanted to perform block IO. Instead of this, the blk-mq API +spawns multiple queues with individual entry points local to the CPU, removing +the need for a lock. A deeper explanation on how this works is covered in the +following section (`Operation`_). + +Operation +--------- + +When the userspace performs IO to a block device (reading or writing a file, +for instance), blk-mq takes action: it will store and manage IO requests to +the block device, acting as middleware between the userspace (and a file +system, if present) and the block device driver. + +blk-mq has two group of queues: software staging queues and hardware dispatch +queues. When the request arrives at the block layer, it will try the shortest +path possible: send it directly to the hardware queue. However, there are two +cases that it might not do that: if there's an IO scheduler attached at the +layer or if we want to try to merge requests. In both cases, requests will be +sent to the software queue. + +Then, after the requests are processed by software queues, they will be placed +at the hardware queue, a second stage queue were the hardware has direct access +to process those requests. However, if the hardware does not have enough +resources to accept more requests, blk-mq will places requests on a temporary +queue, to be sent in the future, when the hardware is able. + +Software staging queues +~~~~~~~~~~~~~~~~~~~~~~~ + +The block IO subsystem adds requests in the software staging queues +(represented by struct :c:type:`blk_mq_ctx`) in case that they weren't sent +directly to the driver. A request is one or more BIOs. They arrived at the +block layer through the data structure struct :c:type:`bio`. The block layer +will then build a new structure from it, the struct :c:type:`request` that will +be used to communicate with the device driver. Each queue has its own lock and +the number of queues is defined by a per-CPU or per-node basis. + +The staging queue can be used to merge requests for adjacent sectors. For +instance, requests for sector 3-6, 6-7, 7-9 can become one request for 3-9. +Even if random access to SSDs and NVMs have the same time of response compared +to sequential access, grouped requests for sequential access decreases the +number of individual requests. This technique of merging requests is called +plugging. + +Along with that, the requests can be reordered to ensure fairness of system +resources (e.g. to ensure that no application suffers from starvation) and/or to +improve IO performance, by an IO scheduler. + +IO Schedulers +^^^^^^^^^^^^^ + +There are several schedulers implemented by the block layer, each one following +a heuristic to improve the IO performance. They are "pluggable" (as in plug +and play), in the sense of they can be selected at run time using sysfs. You +can read more about Linux's IO schedulers `here +<https://www.kernel.org/doc/html/latest/block/index.html>`_. The scheduling +happens only between requests in the same queue, so it is not possible to merge +requests from different queues, otherwise there would be cache trashing and a +need to have a lock for each queue. After the scheduling, the requests are +eligible to be sent to the hardware. One of the possible schedulers to be +selected is the NONE scheduler, the most straightforward one. It will just +place requests on whatever software queue the process is running on, without +any reordering. When the device starts processing requests in the hardware +queue (a.k.a. run the hardware queue), the software queues mapped to that +hardware queue will be drained in sequence according to their mapping. + +Hardware dispatch queues +~~~~~~~~~~~~~~~~~~~~~~~~ + +The hardware queue (represented by struct :c:type:`blk_mq_hw_ctx`) is a struct +used by device drivers to map the device submission queues (or device DMA ring +buffer), and are the last step of the block layer submission code before the +low level device driver taking ownership of the request. To run this queue, the +block layer removes requests from the associated software queues and tries to +dispatch to the hardware. + +If it's not possible to send the requests directly to hardware, they will be +added to a linked list (:c:type:`hctx->dispatch`) of requests. Then, +next time the block layer runs a queue, it will send the requests laying at the +:c:type:`dispatch` list first, to ensure a fairness dispatch with those +requests that were ready to be sent first. The number of hardware queues +depends on the number of hardware contexts supported by the hardware and its +device driver, but it will not be more than the number of cores of the system. +There is no reordering at this stage, and each software queue has a set of +hardware queues to send requests for. + +.. note:: + + Neither the block layer nor the device protocols guarantee + the order of completion of requests. This must be handled by + higher layers, like the filesystem. + +Tag-based completion +~~~~~~~~~~~~~~~~~~~~ + +In order to indicate which request has been completed, every request is +identified by an integer, ranging from 0 to the dispatch queue size. This tag +is generated by the block layer and later reused by the device driver, removing +the need to create a redundant identifier. When a request is completed in the +drive, the tag is sent back to the block layer to notify it of the finalization. +This removes the need to do a linear search to find out which IO has been +completed. + +Further reading +--------------- + +- `Linux Block IO: Introducing Multi-queue SSD Access on Multi-core Systems <http://kernel.dk/blk-mq.pdf>`_ + +- `NOOP scheduler <https://en.wikipedia.org/wiki/Noop_scheduler>`_ + +- `Null block device driver <https://www.kernel.org/doc/html/latest/block/null_blk.html>`_ + +Source code documentation +========================= + +.. kernel-doc:: include/linux/blk-mq.h + +.. kernel-doc:: block/blk-mq.c diff --git a/Documentation/block/index.rst b/Documentation/block/index.rst index 026addfc69bc..86dcf7159f99 100644 --- a/Documentation/block/index.rst +++ b/Documentation/block/index.rst @@ -10,6 +10,7 @@ Block bfq-iosched biodoc biovecs + blk-mq capability cmdline-partition data-integrity diff --git a/Documentation/block/pr.rst b/Documentation/block/pr.rst index 30ea1c2e39eb..c893d6da8e04 100644 --- a/Documentation/block/pr.rst +++ b/Documentation/block/pr.rst @@ -9,7 +9,7 @@ access to block devices to specific initiators in a shared storage setup. This document gives a general overview of the support ioctl commands. -For a more detailed reference please refer the the SCSI Primary +For a more detailed reference please refer to the SCSI Primary Commands standard, specifically the section on Reservations and the "PERSISTENT RESERVE IN" and "PERSISTENT RESERVE OUT" commands. diff --git a/Documentation/block/queue-sysfs.rst b/Documentation/block/queue-sysfs.rst index 6a8513af9201..f261a5c84170 100644 --- a/Documentation/block/queue-sysfs.rst +++ b/Documentation/block/queue-sysfs.rst @@ -117,6 +117,20 @@ Maximum number of elements in a DMA scatter/gather list with integrity data that will be submitted by the block layer core to the associated block driver. +max_active_zones (RO) +--------------------- +For zoned block devices (zoned attribute indicating "host-managed" or +"host-aware"), the sum of zones belonging to any of the zone states: +EXPLICIT OPEN, IMPLICIT OPEN or CLOSED, is limited by this value. +If this value is 0, there is no limit. + +max_open_zones (RO) +------------------- +For zoned block devices (zoned attribute indicating "host-managed" or +"host-aware"), the sum of zones belonging to any of the zone states: +EXPLICIT OPEN or IMPLICIT OPEN, is limited by this value. +If this value is 0, there is no limit. + max_sectors_kb (RW) ------------------- This is the maximum number of kilobytes that the block layer will allow diff --git a/Documentation/block/writeback_cache_control.rst b/Documentation/block/writeback_cache_control.rst index 2c752c57c14c..b208488d0aae 100644 --- a/Documentation/block/writeback_cache_control.rst +++ b/Documentation/block/writeback_cache_control.rst @@ -47,7 +47,7 @@ the Forced Unit Access is implemented. The REQ_PREFLUSH and REQ_FUA flags may both be set on a single bio. -Implementation details for make_request_fn based block drivers +Implementation details for bio based block drivers -------------------------------------------------------------- These drivers will always see the REQ_PREFLUSH and REQ_FUA bits as they sit |