summaryrefslogtreecommitdiff
path: root/Documentation/arch
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/arch')
-rw-r--r--Documentation/arch/arm64/booting.rst22
-rw-r--r--Documentation/arch/x86/mds.rst8
2 files changed, 26 insertions, 4 deletions
diff --git a/Documentation/arch/arm64/booting.rst b/Documentation/arch/arm64/booting.rst
index b57776a68f15..15bcd1b4003a 100644
--- a/Documentation/arch/arm64/booting.rst
+++ b/Documentation/arch/arm64/booting.rst
@@ -285,6 +285,12 @@ Before jumping into the kernel, the following conditions must be met:
- SCR_EL3.FGTEn (bit 27) must be initialised to 0b1.
+ For CPUs with the Fine Grained Traps 2 (FEAT_FGT2) extension present:
+
+ - If EL3 is present and the kernel is entered at EL2:
+
+ - SCR_EL3.FGTEn2 (bit 59) must be initialised to 0b1.
+
For CPUs with support for HCRX_EL2 (FEAT_HCX) present:
- If EL3 is present and the kernel is entered at EL2:
@@ -379,6 +385,22 @@ Before jumping into the kernel, the following conditions must be met:
- SMCR_EL2.EZT0 (bit 30) must be initialised to 0b1.
+ For CPUs with the Performance Monitors Extension (FEAT_PMUv3p9):
+
+ - If EL3 is present:
+
+ - MDCR_EL3.EnPM2 (bit 7) must be initialised to 0b1.
+
+ - If the kernel is entered at EL1 and EL2 is present:
+
+ - HDFGRTR2_EL2.nPMICNTR_EL0 (bit 2) must be initialised to 0b1.
+ - HDFGRTR2_EL2.nPMICFILTR_EL0 (bit 3) must be initialised to 0b1.
+ - HDFGRTR2_EL2.nPMUACR_EL1 (bit 4) must be initialised to 0b1.
+
+ - HDFGWTR2_EL2.nPMICNTR_EL0 (bit 2) must be initialised to 0b1.
+ - HDFGWTR2_EL2.nPMICFILTR_EL0 (bit 3) must be initialised to 0b1.
+ - HDFGWTR2_EL2.nPMUACR_EL1 (bit 4) must be initialised to 0b1.
+
For CPUs with Memory Copy and Memory Set instructions (FEAT_MOPS):
- If the kernel is entered at EL1 and EL2 is present:
diff --git a/Documentation/arch/x86/mds.rst b/Documentation/arch/x86/mds.rst
index 5a2e6c0ef04a..3518671e1a85 100644
--- a/Documentation/arch/x86/mds.rst
+++ b/Documentation/arch/x86/mds.rst
@@ -93,7 +93,7 @@ enters a C-state.
The kernel provides a function to invoke the buffer clearing:
- mds_clear_cpu_buffers()
+ x86_clear_cpu_buffers()
Also macro CLEAR_CPU_BUFFERS can be used in ASM late in exit-to-user path.
Other than CFLAGS.ZF, this macro doesn't clobber any registers.
@@ -185,9 +185,9 @@ Mitigation points
idle clearing would be a window dressing exercise and is therefore not
activated.
- The invocation is controlled by the static key mds_idle_clear which is
- switched depending on the chosen mitigation mode and the SMT state of
- the system.
+ The invocation is controlled by the static key cpu_buf_idle_clear which is
+ switched depending on the chosen mitigation mode and the SMT state of the
+ system.
The buffer clear is only invoked before entering the C-State to prevent
that stale data from the idling CPU from spilling to the Hyper-Thread