diff options
Diffstat (limited to 'Documentation/admin-guide')
-rw-r--r-- | Documentation/admin-guide/LSM/SafeSetID.rst | 107 | ||||
-rw-r--r-- | Documentation/admin-guide/LSM/index.rst | 14 | ||||
-rw-r--r-- | Documentation/admin-guide/cgroup-v2.rst | 18 | ||||
-rw-r--r-- | Documentation/admin-guide/kernel-parameters.txt | 71 | ||||
-rw-r--r-- | Documentation/admin-guide/mm/pagemap.rst | 9 | ||||
-rw-r--r-- | Documentation/admin-guide/pm/cpuidle.rst | 104 |
6 files changed, 284 insertions, 39 deletions
diff --git a/Documentation/admin-guide/LSM/SafeSetID.rst b/Documentation/admin-guide/LSM/SafeSetID.rst new file mode 100644 index 000000000000..212434ef65ad --- /dev/null +++ b/Documentation/admin-guide/LSM/SafeSetID.rst @@ -0,0 +1,107 @@ +========= +SafeSetID +========= +SafeSetID is an LSM module that gates the setid family of syscalls to restrict +UID/GID transitions from a given UID/GID to only those approved by a +system-wide whitelist. These restrictions also prohibit the given UIDs/GIDs +from obtaining auxiliary privileges associated with CAP_SET{U/G}ID, such as +allowing a user to set up user namespace UID mappings. + + +Background +========== +In absence of file capabilities, processes spawned on a Linux system that need +to switch to a different user must be spawned with CAP_SETUID privileges. +CAP_SETUID is granted to programs running as root or those running as a non-root +user that have been explicitly given the CAP_SETUID runtime capability. It is +often preferable to use Linux runtime capabilities rather than file +capabilities, since using file capabilities to run a program with elevated +privileges opens up possible security holes since any user with access to the +file can exec() that program to gain the elevated privileges. + +While it is possible to implement a tree of processes by giving full +CAP_SET{U/G}ID capabilities, this is often at odds with the goals of running a +tree of processes under non-root user(s) in the first place. Specifically, +since CAP_SETUID allows changing to any user on the system, including the root +user, it is an overpowered capability for what is needed in this scenario, +especially since programs often only call setuid() to drop privileges to a +lesser-privileged user -- not elevate privileges. Unfortunately, there is no +generally feasible way in Linux to restrict the potential UIDs that a user can +switch to through setuid() beyond allowing a switch to any user on the system. +This SafeSetID LSM seeks to provide a solution for restricting setid +capabilities in such a way. + +The main use case for this LSM is to allow a non-root program to transition to +other untrusted uids without full blown CAP_SETUID capabilities. The non-root +program would still need CAP_SETUID to do any kind of transition, but the +additional restrictions imposed by this LSM would mean it is a "safer" version +of CAP_SETUID since the non-root program cannot take advantage of CAP_SETUID to +do any unapproved actions (e.g. setuid to uid 0 or create/enter new user +namespace). The higher level goal is to allow for uid-based sandboxing of system +services without having to give out CAP_SETUID all over the place just so that +non-root programs can drop to even-lesser-privileged uids. This is especially +relevant when one non-root daemon on the system should be allowed to spawn other +processes as different uids, but its undesirable to give the daemon a +basically-root-equivalent CAP_SETUID. + + +Other Approaches Considered +=========================== + +Solve this problem in userspace +------------------------------- +For candidate applications that would like to have restricted setid capabilities +as implemented in this LSM, an alternative option would be to simply take away +setid capabilities from the application completely and refactor the process +spawning semantics in the application (e.g. by using a privileged helper program +to do process spawning and UID/GID transitions). Unfortunately, there are a +number of semantics around process spawning that would be affected by this, such +as fork() calls where the program doesn???t immediately call exec() after the +fork(), parent processes specifying custom environment variables or command line +args for spawned child processes, or inheritance of file handles across a +fork()/exec(). Because of this, as solution that uses a privileged helper in +userspace would likely be less appealing to incorporate into existing projects +that rely on certain process-spawning semantics in Linux. + +Use user namespaces +------------------- +Another possible approach would be to run a given process tree in its own user +namespace and give programs in the tree setid capabilities. In this way, +programs in the tree could change to any desired UID/GID in the context of their +own user namespace, and only approved UIDs/GIDs could be mapped back to the +initial system user namespace, affectively preventing privilege escalation. +Unfortunately, it is not generally feasible to use user namespaces in isolation, +without pairing them with other namespace types, which is not always an option. +Linux checks for capabilities based off of the user namespace that ???owns??? some +entity. For example, Linux has the notion that network namespaces are owned by +the user namespace in which they were created. A consequence of this is that +capability checks for access to a given network namespace are done by checking +whether a task has the given capability in the context of the user namespace +that owns the network namespace -- not necessarily the user namespace under +which the given task runs. Therefore spawning a process in a new user namespace +effectively prevents it from accessing the network namespace owned by the +initial namespace. This is a deal-breaker for any application that expects to +retain the CAP_NET_ADMIN capability for the purpose of adjusting network +configurations. Using user namespaces in isolation causes problems regarding +other system interactions, including use of pid namespaces and device creation. + +Use an existing LSM +------------------- +None of the other in-tree LSMs have the capability to gate setid transitions, or +even employ the security_task_fix_setuid hook at all. SELinux says of that hook: +"Since setuid only affects the current process, and since the SELinux controls +are not based on the Linux identity attributes, SELinux does not need to control +this operation." + + +Directions for use +================== +This LSM hooks the setid syscalls to make sure transitions are allowed if an +applicable restriction policy is in place. Policies are configured through +securityfs by writing to the safesetid/add_whitelist_policy and +safesetid/flush_whitelist_policies files at the location where securityfs is +mounted. The format for adding a policy is '<UID>:<UID>', using literal +numbers, such as '123:456'. To flush the policies, any write to the file is +sufficient. Again, configuring a policy for a UID will prevent that UID from +obtaining auxiliary setid privileges, such as allowing a user to set up user +namespace UID mappings. diff --git a/Documentation/admin-guide/LSM/index.rst b/Documentation/admin-guide/LSM/index.rst index c980dfe9abf1..a6ba95fbaa9f 100644 --- a/Documentation/admin-guide/LSM/index.rst +++ b/Documentation/admin-guide/LSM/index.rst @@ -17,9 +17,8 @@ MAC extensions, other extensions can be built using the LSM to provide specific changes to system operation when these tweaks are not available in the core functionality of Linux itself. -Without a specific LSM built into the kernel, the default LSM will be the -Linux capabilities system. Most LSMs choose to extend the capabilities -system, building their checks on top of the defined capability hooks. +The Linux capabilities modules will always be included. This may be +followed by any number of "minor" modules and at most one "major" module. For more details on capabilities, see ``capabilities(7)`` in the Linux man-pages project. @@ -30,6 +29,14 @@ order in which checks are made. The capability module will always be first, followed by any "minor" modules (e.g. Yama) and then the one "major" module (e.g. SELinux) if there is one configured. +Process attributes associated with "major" security modules should +be accessed and maintained using the special files in ``/proc/.../attr``. +A security module may maintain a module specific subdirectory there, +named after the module. ``/proc/.../attr/smack`` is provided by the Smack +security module and contains all its special files. The files directly +in ``/proc/.../attr`` remain as legacy interfaces for modules that provide +subdirectories. + .. toctree:: :maxdepth: 1 @@ -39,3 +46,4 @@ the one "major" module (e.g. SELinux) if there is one configured. Smack tomoyo Yama + SafeSetID diff --git a/Documentation/admin-guide/cgroup-v2.rst b/Documentation/admin-guide/cgroup-v2.rst index 7bf3f129c68b..20f92c16ffbf 100644 --- a/Documentation/admin-guide/cgroup-v2.rst +++ b/Documentation/admin-guide/cgroup-v2.rst @@ -1189,6 +1189,10 @@ PAGE_SIZE multiple when read back. Amount of cached filesystem data that was modified and is currently being written back to disk + anon_thp + Amount of memory used in anonymous mappings backed by + transparent hugepages + inactive_anon, active_anon, inactive_file, active_file, unevictable Amount of memory, swap-backed and filesystem-backed, on the internal memory management lists used by the @@ -1248,6 +1252,18 @@ PAGE_SIZE multiple when read back. Amount of reclaimed lazyfree pages + thp_fault_alloc + + Number of transparent hugepages which were allocated to satisfy + a page fault, including COW faults. This counter is not present + when CONFIG_TRANSPARENT_HUGEPAGE is not set. + + thp_collapse_alloc + + Number of transparent hugepages which were allocated to allow + collapsing an existing range of pages. This counter is not + present when CONFIG_TRANSPARENT_HUGEPAGE is not set. + memory.swap.current A read-only single value file which exists on non-root cgroups. @@ -1503,7 +1519,7 @@ protected workload. The limits are only applied at the peer level in the hierarchy. This means that in the diagram below, only groups A, B, and C will influence each other, and -groups D and F will influence each other. Group G will influence nobody. +groups D and F will influence each other. Group G will influence nobody:: [root] / | \ diff --git a/Documentation/admin-guide/kernel-parameters.txt b/Documentation/admin-guide/kernel-parameters.txt index b251494d1b66..49f2acc5eece 100644 --- a/Documentation/admin-guide/kernel-parameters.txt +++ b/Documentation/admin-guide/kernel-parameters.txt @@ -461,6 +461,11 @@ possible to determine what the correct size should be. This option provides an override for these situations. + carrier_timeout= + [NET] Specifies amount of time (in seconds) that + the kernel should wait for a network carrier. By default + it waits 120 seconds. + ca_keys= [KEYS] This parameter identifies a specific key(s) on the system trusted keyring to be used for certificate trust validation. @@ -910,6 +915,10 @@ The filter can be disabled or changed to another driver later using sysfs. + driver_async_probe= [KNL] + List of driver names to be probed asynchronously. + Format: <driver_name1>,<driver_name2>... + drm.edid_firmware=[<connector>:]<file>[,[<connector>:]<file>] Broken monitors, graphic adapters, KVMs and EDIDless panels may send no or incorrect EDID data sets. @@ -1073,9 +1082,15 @@ specified address. The serial port must already be setup and configured. Options are not yet supported. + efifb,[options] + Start an early, unaccelerated console on the EFI + memory mapped framebuffer (if available). On cache + coherent non-x86 systems that use system memory for + the framebuffer, pass the 'ram' option so that it is + mapped with the correct attributes. + earlyprintk= [X86,SH,ARM,M68k,S390] earlyprintk=vga - earlyprintk=efi earlyprintk=sclp earlyprintk=xen earlyprintk=serial[,ttySn[,baudrate]] @@ -1697,12 +1712,11 @@ By default, super page will be supported if Intel IOMMU has the capability. With this option, super page will not be supported. - sm_off [Default Off] - By default, scalable mode will be supported if the + sm_on [Default Off] + By default, scalable mode will be disabled even if the hardware advertises that it has support for the scalable mode translation. With this option set, scalable mode - will not be used even on hardware which claims to support - it. + will be used on hardware which claims to support it. tboot_noforce [Default Off] Do not force the Intel IOMMU enabled under tboot. By default, tboot will force Intel IOMMU on, which @@ -2326,6 +2340,10 @@ lsm.debug [SECURITY] Enable LSM initialization debugging output. + lsm=lsm1,...,lsmN + [SECURITY] Choose order of LSM initialization. This + overrides CONFIG_LSM, and the "security=" parameter. + machvec= [IA-64] Force the use of a particular machine-vector (machvec) in a generic kernel. Example: machvec=hpzx1_swiotlb @@ -3661,19 +3679,6 @@ latencies, which will choose a value aligned with the appropriate hardware boundaries. - rcutree.jiffies_till_sched_qs= [KNL] - Set required age in jiffies for a - given grace period before RCU starts - soliciting quiescent-state help from - rcu_note_context_switch(). If not specified, the - kernel will calculate a value based on the most - recent settings of rcutree.jiffies_till_first_fqs - and rcutree.jiffies_till_next_fqs. - This calculated value may be viewed in - rcutree.jiffies_to_sched_qs. Any attempt to - set rcutree.jiffies_to_sched_qs will be - cheerfully overwritten. - rcutree.jiffies_till_first_fqs= [KNL] Set delay from grace-period initialization to first attempt to force quiescent states. @@ -3685,6 +3690,20 @@ quiescent states. Units are jiffies, minimum value is one, and maximum value is HZ. + rcutree.jiffies_till_sched_qs= [KNL] + Set required age in jiffies for a + given grace period before RCU starts + soliciting quiescent-state help from + rcu_note_context_switch() and cond_resched(). + If not specified, the kernel will calculate + a value based on the most recent settings + of rcutree.jiffies_till_first_fqs + and rcutree.jiffies_till_next_fqs. + This calculated value may be viewed in + rcutree.jiffies_to_sched_qs. Any attempt to set + rcutree.jiffies_to_sched_qs will be cheerfully + overwritten. + rcutree.kthread_prio= [KNL,BOOT] Set the SCHED_FIFO priority of the RCU per-CPU kthreads (rcuc/N). This value is also used for @@ -3728,6 +3747,11 @@ This wake_up() will be accompanied by a WARN_ONCE() splat and an ftrace_dump(). + rcutree.sysrq_rcu= [KNL] + Commandeer a sysrq key to dump out Tree RCU's + rcu_node tree with an eye towards determining + why a new grace period has not yet started. + rcuperf.gp_async= [KNL] Measure performance of asynchronous grace-period primitives such as call_rcu(). @@ -4097,11 +4121,9 @@ Note: increases power consumption, thus should only be enabled if running jitter sensitive (HPC/RT) workloads. - security= [SECURITY] Choose a security module to enable at boot. - If this boot parameter is not specified, only the first - security module asking for security registration will be - loaded. An invalid security module name will be treated - as if no module has been chosen. + security= [SECURITY] Choose a legacy "major" security module to + enable at boot. This has been deprecated by the + "lsm=" parameter. selinux= [SELINUX] Disable or enable SELinux at boot time. Format: { "0" | "1" } @@ -4705,7 +4727,8 @@ usbcore.authorized_default= [USB] Default USB device authorization: (default -1 = authorized except for wireless USB, - 0 = not authorized, 1 = authorized) + 0 = not authorized, 1 = authorized, 2 = authorized + if device connected to internal port) usbcore.autosuspend= [USB] The autosuspend time delay (in seconds) used diff --git a/Documentation/admin-guide/mm/pagemap.rst b/Documentation/admin-guide/mm/pagemap.rst index 3f7bade2c231..340a5aee9b80 100644 --- a/Documentation/admin-guide/mm/pagemap.rst +++ b/Documentation/admin-guide/mm/pagemap.rst @@ -75,9 +75,10 @@ number of times a page is mapped. 20. NOPAGE 21. KSM 22. THP - 23. BALLOON + 23. OFFLINE 24. ZERO_PAGE 25. IDLE + 26. PGTABLE * ``/proc/kpagecgroup``. This file contains a 64-bit inode number of the memory cgroup each page is charged to, indexed by PFN. Only available when @@ -118,8 +119,8 @@ Short descriptions to the page flags identical memory pages dynamically shared between one or more processes 22 - THP contiguous pages which construct transparent hugepages -23 - BALLOON - balloon compaction page +23 - OFFLINE + page is logically offline 24 - ZERO_PAGE zero page for pfn_zero or huge_zero page 25 - IDLE @@ -128,6 +129,8 @@ Short descriptions to the page flags Note that this flag may be stale in case the page was accessed via a PTE. To make sure the flag is up-to-date one has to read ``/sys/kernel/mm/page_idle/bitmap`` first. +26 - PGTABLE + page is in use as a page table IO related page flags --------------------- diff --git a/Documentation/admin-guide/pm/cpuidle.rst b/Documentation/admin-guide/pm/cpuidle.rst index 106379e2619f..9c58b35a81cb 100644 --- a/Documentation/admin-guide/pm/cpuidle.rst +++ b/Documentation/admin-guide/pm/cpuidle.rst @@ -155,14 +155,14 @@ governor uses that information depends on what algorithm is implemented by it and that is the primary reason for having more than one governor in the ``CPUIdle`` subsystem. -There are two ``CPUIdle`` governors available, ``menu`` and ``ladder``. Which -of them is used depends on the configuration of the kernel and in particular on -whether or not the scheduler tick can be `stopped by the idle -loop <idle-cpus-and-tick_>`_. It is possible to change the governor at run time -if the ``cpuidle_sysfs_switch`` command line parameter has been passed to the -kernel, but that is not safe in general, so it should not be done on production -systems (that may change in the future, though). The name of the ``CPUIdle`` -governor currently used by the kernel can be read from the +There are three ``CPUIdle`` governors available, ``menu``, `TEO <teo-gov_>`_ +and ``ladder``. Which of them is used by default depends on the configuration +of the kernel and in particular on whether or not the scheduler tick can be +`stopped by the idle loop <idle-cpus-and-tick_>`_. It is possible to change the +governor at run time if the ``cpuidle_sysfs_switch`` command line parameter has +been passed to the kernel, but that is not safe in general, so it should not be +done on production systems (that may change in the future, though). The name of +the ``CPUIdle`` governor currently used by the kernel can be read from the :file:`current_governor_ro` (or :file:`current_governor` if ``cpuidle_sysfs_switch`` is present in the kernel command line) file under :file:`/sys/devices/system/cpu/cpuidle/` in ``sysfs``. @@ -256,6 +256,8 @@ the ``menu`` governor by default and if it is not tickless, the default ``CPUIdle`` governor on it will be ``ladder``. +.. _menu-gov: + The ``menu`` Governor ===================== @@ -333,6 +335,92 @@ that time, the governor may need to select a shallower state with a suitable target residency. +.. _teo-gov: + +The Timer Events Oriented (TEO) Governor +======================================== + +The timer events oriented (TEO) governor is an alternative ``CPUIdle`` governor +for tickless systems. It follows the same basic strategy as the ``menu`` `one +<menu-gov_>`_: it always tries to find the deepest idle state suitable for the +given conditions. However, it applies a different approach to that problem. + +First, it does not use sleep length correction factors, but instead it attempts +to correlate the observed idle duration values with the available idle states +and use that information to pick up the idle state that is most likely to +"match" the upcoming CPU idle interval. Second, it does not take the tasks +that were running on the given CPU in the past and are waiting on some I/O +operations to complete now at all (there is no guarantee that they will run on +the same CPU when they become runnable again) and the pattern detection code in +it avoids taking timer wakeups into account. It also only uses idle duration +values less than the current time till the closest timer (with the scheduler +tick excluded) for that purpose. + +Like in the ``menu`` governor `case <menu-gov_>`_, the first step is to obtain +the *sleep length*, which is the time until the closest timer event with the +assumption that the scheduler tick will be stopped (that also is the upper bound +on the time until the next CPU wakeup). That value is then used to preselect an +idle state on the basis of three metrics maintained for each idle state provided +by the ``CPUIdle`` driver: ``hits``, ``misses`` and ``early_hits``. + +The ``hits`` and ``misses`` metrics measure the likelihood that a given idle +state will "match" the observed (post-wakeup) idle duration if it "matches" the +sleep length. They both are subject to decay (after a CPU wakeup) every time +the target residency of the idle state corresponding to them is less than or +equal to the sleep length and the target residency of the next idle state is +greater than the sleep length (that is, when the idle state corresponding to +them "matches" the sleep length). The ``hits`` metric is increased if the +former condition is satisfied and the target residency of the given idle state +is less than or equal to the observed idle duration and the target residency of +the next idle state is greater than the observed idle duration at the same time +(that is, it is increased when the given idle state "matches" both the sleep +length and the observed idle duration). In turn, the ``misses`` metric is +increased when the given idle state "matches" the sleep length only and the +observed idle duration is too short for its target residency. + +The ``early_hits`` metric measures the likelihood that a given idle state will +"match" the observed (post-wakeup) idle duration if it does not "match" the +sleep length. It is subject to decay on every CPU wakeup and it is increased +when the idle state corresponding to it "matches" the observed (post-wakeup) +idle duration and the target residency of the next idle state is less than or +equal to the sleep length (i.e. the idle state "matching" the sleep length is +deeper than the given one). + +The governor walks the list of idle states provided by the ``CPUIdle`` driver +and finds the last (deepest) one with the target residency less than or equal +to the sleep length. Then, the ``hits`` and ``misses`` metrics of that idle +state are compared with each other and it is preselected if the ``hits`` one is +greater (which means that that idle state is likely to "match" the observed idle +duration after CPU wakeup). If the ``misses`` one is greater, the governor +preselects the shallower idle state with the maximum ``early_hits`` metric +(or if there are multiple shallower idle states with equal ``early_hits`` +metric which also is the maximum, the shallowest of them will be preselected). +[If there is a wakeup latency constraint coming from the `PM QoS framework +<cpu-pm-qos_>`_ which is hit before reaching the deepest idle state with the +target residency within the sleep length, the deepest idle state with the exit +latency within the constraint is preselected without consulting the ``hits``, +``misses`` and ``early_hits`` metrics.] + +Next, the governor takes several idle duration values observed most recently +into consideration and if at least a half of them are greater than or equal to +the target residency of the preselected idle state, that idle state becomes the +final candidate to ask for. Otherwise, the average of the most recent idle +duration values below the target residency of the preselected idle state is +computed and the governor walks the idle states shallower than the preselected +one and finds the deepest of them with the target residency within that average. +That idle state is then taken as the final candidate to ask for. + +Still, at this point the governor may need to refine the idle state selection if +it has not decided to `stop the scheduler tick <idle-cpus-and-tick_>`_. That +generally happens if the target residency of the idle state selected so far is +less than the tick period and the tick has not been stopped already (in a +previous iteration of the idle loop). Then, like in the ``menu`` governor +`case <menu-gov_>`_, the sleep length used in the previous computations may not +reflect the real time until the closest timer event and if it really is greater +than that time, a shallower state with a suitable target residency may need to +be selected. + + .. _idle-states-representation: Representation of Idle States |