diff options
Diffstat (limited to 'Documentation/admin-guide/pm')
-rw-r--r-- | Documentation/admin-guide/pm/cpuidle.rst | 104 |
1 files changed, 96 insertions, 8 deletions
diff --git a/Documentation/admin-guide/pm/cpuidle.rst b/Documentation/admin-guide/pm/cpuidle.rst index 106379e2619f..9c58b35a81cb 100644 --- a/Documentation/admin-guide/pm/cpuidle.rst +++ b/Documentation/admin-guide/pm/cpuidle.rst @@ -155,14 +155,14 @@ governor uses that information depends on what algorithm is implemented by it and that is the primary reason for having more than one governor in the ``CPUIdle`` subsystem. -There are two ``CPUIdle`` governors available, ``menu`` and ``ladder``. Which -of them is used depends on the configuration of the kernel and in particular on -whether or not the scheduler tick can be `stopped by the idle -loop <idle-cpus-and-tick_>`_. It is possible to change the governor at run time -if the ``cpuidle_sysfs_switch`` command line parameter has been passed to the -kernel, but that is not safe in general, so it should not be done on production -systems (that may change in the future, though). The name of the ``CPUIdle`` -governor currently used by the kernel can be read from the +There are three ``CPUIdle`` governors available, ``menu``, `TEO <teo-gov_>`_ +and ``ladder``. Which of them is used by default depends on the configuration +of the kernel and in particular on whether or not the scheduler tick can be +`stopped by the idle loop <idle-cpus-and-tick_>`_. It is possible to change the +governor at run time if the ``cpuidle_sysfs_switch`` command line parameter has +been passed to the kernel, but that is not safe in general, so it should not be +done on production systems (that may change in the future, though). The name of +the ``CPUIdle`` governor currently used by the kernel can be read from the :file:`current_governor_ro` (or :file:`current_governor` if ``cpuidle_sysfs_switch`` is present in the kernel command line) file under :file:`/sys/devices/system/cpu/cpuidle/` in ``sysfs``. @@ -256,6 +256,8 @@ the ``menu`` governor by default and if it is not tickless, the default ``CPUIdle`` governor on it will be ``ladder``. +.. _menu-gov: + The ``menu`` Governor ===================== @@ -333,6 +335,92 @@ that time, the governor may need to select a shallower state with a suitable target residency. +.. _teo-gov: + +The Timer Events Oriented (TEO) Governor +======================================== + +The timer events oriented (TEO) governor is an alternative ``CPUIdle`` governor +for tickless systems. It follows the same basic strategy as the ``menu`` `one +<menu-gov_>`_: it always tries to find the deepest idle state suitable for the +given conditions. However, it applies a different approach to that problem. + +First, it does not use sleep length correction factors, but instead it attempts +to correlate the observed idle duration values with the available idle states +and use that information to pick up the idle state that is most likely to +"match" the upcoming CPU idle interval. Second, it does not take the tasks +that were running on the given CPU in the past and are waiting on some I/O +operations to complete now at all (there is no guarantee that they will run on +the same CPU when they become runnable again) and the pattern detection code in +it avoids taking timer wakeups into account. It also only uses idle duration +values less than the current time till the closest timer (with the scheduler +tick excluded) for that purpose. + +Like in the ``menu`` governor `case <menu-gov_>`_, the first step is to obtain +the *sleep length*, which is the time until the closest timer event with the +assumption that the scheduler tick will be stopped (that also is the upper bound +on the time until the next CPU wakeup). That value is then used to preselect an +idle state on the basis of three metrics maintained for each idle state provided +by the ``CPUIdle`` driver: ``hits``, ``misses`` and ``early_hits``. + +The ``hits`` and ``misses`` metrics measure the likelihood that a given idle +state will "match" the observed (post-wakeup) idle duration if it "matches" the +sleep length. They both are subject to decay (after a CPU wakeup) every time +the target residency of the idle state corresponding to them is less than or +equal to the sleep length and the target residency of the next idle state is +greater than the sleep length (that is, when the idle state corresponding to +them "matches" the sleep length). The ``hits`` metric is increased if the +former condition is satisfied and the target residency of the given idle state +is less than or equal to the observed idle duration and the target residency of +the next idle state is greater than the observed idle duration at the same time +(that is, it is increased when the given idle state "matches" both the sleep +length and the observed idle duration). In turn, the ``misses`` metric is +increased when the given idle state "matches" the sleep length only and the +observed idle duration is too short for its target residency. + +The ``early_hits`` metric measures the likelihood that a given idle state will +"match" the observed (post-wakeup) idle duration if it does not "match" the +sleep length. It is subject to decay on every CPU wakeup and it is increased +when the idle state corresponding to it "matches" the observed (post-wakeup) +idle duration and the target residency of the next idle state is less than or +equal to the sleep length (i.e. the idle state "matching" the sleep length is +deeper than the given one). + +The governor walks the list of idle states provided by the ``CPUIdle`` driver +and finds the last (deepest) one with the target residency less than or equal +to the sleep length. Then, the ``hits`` and ``misses`` metrics of that idle +state are compared with each other and it is preselected if the ``hits`` one is +greater (which means that that idle state is likely to "match" the observed idle +duration after CPU wakeup). If the ``misses`` one is greater, the governor +preselects the shallower idle state with the maximum ``early_hits`` metric +(or if there are multiple shallower idle states with equal ``early_hits`` +metric which also is the maximum, the shallowest of them will be preselected). +[If there is a wakeup latency constraint coming from the `PM QoS framework +<cpu-pm-qos_>`_ which is hit before reaching the deepest idle state with the +target residency within the sleep length, the deepest idle state with the exit +latency within the constraint is preselected without consulting the ``hits``, +``misses`` and ``early_hits`` metrics.] + +Next, the governor takes several idle duration values observed most recently +into consideration and if at least a half of them are greater than or equal to +the target residency of the preselected idle state, that idle state becomes the +final candidate to ask for. Otherwise, the average of the most recent idle +duration values below the target residency of the preselected idle state is +computed and the governor walks the idle states shallower than the preselected +one and finds the deepest of them with the target residency within that average. +That idle state is then taken as the final candidate to ask for. + +Still, at this point the governor may need to refine the idle state selection if +it has not decided to `stop the scheduler tick <idle-cpus-and-tick_>`_. That +generally happens if the target residency of the idle state selected so far is +less than the tick period and the tick has not been stopped already (in a +previous iteration of the idle loop). Then, like in the ``menu`` governor +`case <menu-gov_>`_, the sleep length used in the previous computations may not +reflect the real time until the closest timer event and if it really is greater +than that time, a shallower state with a suitable target residency may need to +be selected. + + .. _idle-states-representation: Representation of Idle States |