summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--Documentation/networking/tls.txt66
1 files changed, 64 insertions, 2 deletions
diff --git a/Documentation/networking/tls.txt b/Documentation/networking/tls.txt
index 77ed00631c12..58b5ef75f1b7 100644
--- a/Documentation/networking/tls.txt
+++ b/Documentation/networking/tls.txt
@@ -48,6 +48,9 @@ the transmit and the receive into the kernel.
setsockopt(sock, SOL_TLS, TLS_TX, &crypto_info, sizeof(crypto_info));
+Transmit and receive are set separately, but the setup is the same, using either
+TLS_TX or TLS_RX.
+
Sending TLS application data
----------------------------
@@ -79,6 +82,28 @@ for memory), or the encryption will always succeed. If send() returns
-ENOMEM and some data was left on the socket buffer from a previous
call using MSG_MORE, the MSG_MORE data is left on the socket buffer.
+Receiving TLS application data
+------------------------------
+
+After setting the TLS_RX socket option, all recv family socket calls
+are decrypted using TLS parameters provided. A full TLS record must
+be received before decryption can happen.
+
+ char buffer[16384];
+ recv(sock, buffer, 16384);
+
+Received data is decrypted directly in to the user buffer if it is
+large enough, and no additional allocations occur. If the userspace
+buffer is too small, data is decrypted in the kernel and copied to
+userspace.
+
+EINVAL is returned if the TLS version in the received message does not
+match the version passed in setsockopt.
+
+EMSGSIZE is returned if the received message is too big.
+
+EBADMSG is returned if decryption failed for any other reason.
+
Send TLS control messages
-------------------------
@@ -118,6 +143,43 @@ using a record of type @record_type.
Control message data should be provided unencrypted, and will be
encrypted by the kernel.
+Receiving TLS control messages
+------------------------------
+
+TLS control messages are passed in the userspace buffer, with message
+type passed via cmsg. If no cmsg buffer is provided, an error is
+returned if a control message is received. Data messages may be
+received without a cmsg buffer set.
+
+ char buffer[16384];
+ char cmsg[CMSG_SPACE(sizeof(unsigned char))];
+ struct msghdr msg = {0};
+ msg.msg_control = cmsg;
+ msg.msg_controllen = sizeof(cmsg);
+
+ struct iovec msg_iov;
+ msg_iov.iov_base = buffer;
+ msg_iov.iov_len = 16384;
+
+ msg.msg_iov = &msg_iov;
+ msg.msg_iovlen = 1;
+
+ int ret = recvmsg(sock, &msg, 0 /* flags */);
+
+ struct cmsghdr *cmsg = CMSG_FIRSTHDR(&msg);
+ if (cmsg->cmsg_level == SOL_TLS &&
+ cmsg->cmsg_type == TLS_GET_RECORD_TYPE) {
+ int record_type = *((unsigned char *)CMSG_DATA(cmsg));
+ // Do something with record_type, and control message data in
+ // buffer.
+ //
+ // Note that record_type may be == to application data (23).
+ } else {
+ // Buffer contains application data.
+ }
+
+recv will never return data from mixed types of TLS records.
+
Integrating in to userspace TLS library
---------------------------------------
@@ -126,10 +188,10 @@ layer of a userspace TLS library.
A patchset to OpenSSL to use ktls as the record layer is here:
-https://github.com/Mellanox/tls-openssl
+https://github.com/Mellanox/openssl/commits/tls_rx2
An example of calling send directly after a handshake using
gnutls. Since it doesn't implement a full record layer, control
messages are not supported:
-https://github.com/Mellanox/tls-af_ktls_tool
+https://github.com/ktls/af_ktls-tool/commits/RX