summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--Documentation/unaligned-memory-access.txt28
-rw-r--r--include/linux/etherdevice.h51
2 files changed, 37 insertions, 42 deletions
diff --git a/Documentation/unaligned-memory-access.txt b/Documentation/unaligned-memory-access.txt
index f866c72291bf..a445da098bc6 100644
--- a/Documentation/unaligned-memory-access.txt
+++ b/Documentation/unaligned-memory-access.txt
@@ -137,24 +137,34 @@ Code that causes unaligned access
=================================
With the above in mind, let's move onto a real life example of a function
-that can cause an unaligned memory access. The following function adapted
+that can cause an unaligned memory access. The following function taken
from include/linux/etherdevice.h is an optimized routine to compare two
ethernet MAC addresses for equality.
-unsigned int compare_ether_addr(const u8 *addr1, const u8 *addr2)
+bool ether_addr_equal(const u8 *addr1, const u8 *addr2)
{
- const u16 *a = (const u16 *) addr1;
- const u16 *b = (const u16 *) addr2;
+#ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
+ u32 fold = ((*(const u32 *)addr1) ^ (*(const u32 *)addr2)) |
+ ((*(const u16 *)(addr1 + 4)) ^ (*(const u16 *)(addr2 + 4)));
+
+ return fold == 0;
+#else
+ const u16 *a = (const u16 *)addr1;
+ const u16 *b = (const u16 *)addr2;
return ((a[0] ^ b[0]) | (a[1] ^ b[1]) | (a[2] ^ b[2])) != 0;
+#endif
}
-In the above function, the reference to a[0] causes 2 bytes (16 bits) to
-be read from memory starting at address addr1. Think about what would happen
-if addr1 was an odd address such as 0x10003. (Hint: it'd be an unaligned
-access.)
+In the above function, when the hardware has efficient unaligned access
+capability, there is no issue with this code. But when the hardware isn't
+able to access memory on arbitrary boundaries, the reference to a[0] causes
+2 bytes (16 bits) to be read from memory starting at address addr1.
+
+Think about what would happen if addr1 was an odd address such as 0x10003.
+(Hint: it'd be an unaligned access.)
Despite the potential unaligned access problems with the above function, it
-is included in the kernel anyway but is understood to only work on
+is included in the kernel anyway but is understood to only work normally on
16-bit-aligned addresses. It is up to the caller to ensure this alignment or
not use this function at all. This alignment-unsafe function is still useful
as it is a decent optimization for the cases when you can ensure alignment,
diff --git a/include/linux/etherdevice.h b/include/linux/etherdevice.h
index fc4a9aa7dd82..3526e819d7ae 100644
--- a/include/linux/etherdevice.h
+++ b/include/linux/etherdevice.h
@@ -26,6 +26,7 @@
#include <linux/netdevice.h>
#include <linux/random.h>
#include <asm/unaligned.h>
+#include <asm/bitsperlong.h>
#ifdef __KERNEL__
__be16 eth_type_trans(struct sk_buff *skb, struct net_device *dev);
@@ -211,40 +212,26 @@ static inline void eth_hw_addr_inherit(struct net_device *dst,
}
/**
- * compare_ether_addr - Compare two Ethernet addresses
- * @addr1: Pointer to a six-byte array containing the Ethernet address
- * @addr2: Pointer other six-byte array containing the Ethernet address
- *
- * Compare two Ethernet addresses, returns 0 if equal, non-zero otherwise.
- * Unlike memcmp(), it doesn't return a value suitable for sorting.
- */
-static inline unsigned compare_ether_addr(const u8 *addr1, const u8 *addr2)
-{
- const u16 *a = (const u16 *) addr1;
- const u16 *b = (const u16 *) addr2;
-
- BUILD_BUG_ON(ETH_ALEN != 6);
- return ((a[0] ^ b[0]) | (a[1] ^ b[1]) | (a[2] ^ b[2])) != 0;
-}
-
-/**
* ether_addr_equal - Compare two Ethernet addresses
* @addr1: Pointer to a six-byte array containing the Ethernet address
* @addr2: Pointer other six-byte array containing the Ethernet address
*
* Compare two Ethernet addresses, returns true if equal
+ *
+ * Please note: addr1 & addr2 must both be aligned to u16.
*/
static inline bool ether_addr_equal(const u8 *addr1, const u8 *addr2)
{
- return !compare_ether_addr(addr1, addr2);
-}
+#if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
+ u32 fold = ((*(const u32 *)addr1) ^ (*(const u32 *)addr2)) |
+ ((*(const u16 *)(addr1 + 4)) ^ (*(const u16 *)(addr2 + 4)));
-static inline unsigned long zap_last_2bytes(unsigned long value)
-{
-#ifdef __BIG_ENDIAN
- return value >> 16;
+ return fold == 0;
#else
- return value << 16;
+ const u16 *a = (const u16 *)addr1;
+ const u16 *b = (const u16 *)addr2;
+
+ return ((a[0] ^ b[0]) | (a[1] ^ b[1]) | (a[2] ^ b[2])) == 0;
#endif
}
@@ -265,16 +252,14 @@ static inline unsigned long zap_last_2bytes(unsigned long value)
static inline bool ether_addr_equal_64bits(const u8 addr1[6+2],
const u8 addr2[6+2])
{
-#ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
- unsigned long fold = ((*(unsigned long *)addr1) ^
- (*(unsigned long *)addr2));
-
- if (sizeof(fold) == 8)
- return zap_last_2bytes(fold) == 0;
+#if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
+ u64 fold = (*(const u64 *)addr1) ^ (*(const u64 *)addr2);
- fold |= zap_last_2bytes((*(unsigned long *)(addr1 + 4)) ^
- (*(unsigned long *)(addr2 + 4)));
- return fold == 0;
+#ifdef __BIG_ENDIAN
+ return (fold >> 16) == 0;
+#else
+ return (fold << 16) == 0;
+#endif
#else
return ether_addr_equal(addr1, addr2);
#endif