summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--Documentation/admin-guide/kernel-parameters.rst1
-rw-r--r--Documentation/admin-guide/kernel-parameters.txt6
-rw-r--r--Documentation/x86/intel_rdt_ui.txt323
-rw-r--r--MAINTAINERS2
-rw-r--r--arch/x86/Kconfig12
-rw-r--r--arch/x86/events/intel/Makefile2
-rw-r--r--arch/x86/events/intel/cqm.c1766
-rw-r--r--arch/x86/include/asm/intel_rdt.h286
-rw-r--r--arch/x86/include/asm/intel_rdt_common.h27
-rw-r--r--arch/x86/include/asm/intel_rdt_sched.h92
-rw-r--r--arch/x86/kernel/cpu/Makefile2
-rw-r--r--arch/x86/kernel/cpu/intel_rdt.c375
-rw-r--r--arch/x86/kernel/cpu/intel_rdt.h440
-rw-r--r--arch/x86/kernel/cpu/intel_rdt_ctrlmondata.c (renamed from arch/x86/kernel/cpu/intel_rdt_schemata.c)67
-rw-r--r--arch/x86/kernel/cpu/intel_rdt_monitor.c499
-rw-r--r--arch/x86/kernel/cpu/intel_rdt_rdtgroup.c1117
-rw-r--r--arch/x86/kernel/process_32.c2
-rw-r--r--arch/x86/kernel/process_64.c2
-rw-r--r--include/linux/perf_event.h18
-rw-r--r--include/linux/sched.h5
-rw-r--r--kernel/events/core.c14
21 files changed, 2631 insertions, 2427 deletions
diff --git a/Documentation/admin-guide/kernel-parameters.rst b/Documentation/admin-guide/kernel-parameters.rst
index d76ab3907e2b..b2598cc9834c 100644
--- a/Documentation/admin-guide/kernel-parameters.rst
+++ b/Documentation/admin-guide/kernel-parameters.rst
@@ -138,6 +138,7 @@ parameter is applicable::
PPT Parallel port support is enabled.
PS2 Appropriate PS/2 support is enabled.
RAM RAM disk support is enabled.
+ RDT Intel Resource Director Technology.
S390 S390 architecture is enabled.
SCSI Appropriate SCSI support is enabled.
A lot of drivers have their options described inside
diff --git a/Documentation/admin-guide/kernel-parameters.txt b/Documentation/admin-guide/kernel-parameters.txt
index dad6fa01af95..591d48f3a7de 100644
--- a/Documentation/admin-guide/kernel-parameters.txt
+++ b/Documentation/admin-guide/kernel-parameters.txt
@@ -3612,6 +3612,12 @@
Run specified binary instead of /init from the ramdisk,
used for early userspace startup. See initrd.
+ rdt= [HW,X86,RDT]
+ Turn on/off individual RDT features. List is:
+ cmt, mbmtotal, mbmlocal, l3cat, l3cdp, l2cat, mba.
+ E.g. to turn on cmt and turn off mba use:
+ rdt=cmt,!mba
+
reboot= [KNL]
Format (x86 or x86_64):
[w[arm] | c[old] | h[ard] | s[oft] | g[pio]] \
diff --git a/Documentation/x86/intel_rdt_ui.txt b/Documentation/x86/intel_rdt_ui.txt
index c491a1b82de2..4d8848e4e224 100644
--- a/Documentation/x86/intel_rdt_ui.txt
+++ b/Documentation/x86/intel_rdt_ui.txt
@@ -6,8 +6,8 @@ Fenghua Yu <fenghua.yu@intel.com>
Tony Luck <tony.luck@intel.com>
Vikas Shivappa <vikas.shivappa@intel.com>
-This feature is enabled by the CONFIG_INTEL_RDT_A Kconfig and the
-X86 /proc/cpuinfo flag bits "rdt", "cat_l3" and "cdp_l3".
+This feature is enabled by the CONFIG_INTEL_RDT Kconfig and the
+X86 /proc/cpuinfo flag bits "rdt", "cqm", "cat_l3" and "cdp_l3".
To use the feature mount the file system:
@@ -17,6 +17,13 @@ mount options are:
"cdp": Enable code/data prioritization in L3 cache allocations.
+RDT features are orthogonal. A particular system may support only
+monitoring, only control, or both monitoring and control.
+
+The mount succeeds if either of allocation or monitoring is present, but
+only those files and directories supported by the system will be created.
+For more details on the behavior of the interface during monitoring
+and allocation, see the "Resource alloc and monitor groups" section.
Info directory
--------------
@@ -24,7 +31,12 @@ Info directory
The 'info' directory contains information about the enabled
resources. Each resource has its own subdirectory. The subdirectory
names reflect the resource names.
-Cache resource(L3/L2) subdirectory contains the following files:
+
+Each subdirectory contains the following files with respect to
+allocation:
+
+Cache resource(L3/L2) subdirectory contains the following files
+related to allocation:
"num_closids": The number of CLOSIDs which are valid for this
resource. The kernel uses the smallest number of
@@ -36,7 +48,15 @@ Cache resource(L3/L2) subdirectory contains the following files:
"min_cbm_bits": The minimum number of consecutive bits which
must be set when writing a mask.
-Memory bandwitdh(MB) subdirectory contains the following files:
+"shareable_bits": Bitmask of shareable resource with other executing
+ entities (e.g. I/O). User can use this when
+ setting up exclusive cache partitions. Note that
+ some platforms support devices that have their
+ own settings for cache use which can over-ride
+ these bits.
+
+Memory bandwitdh(MB) subdirectory contains the following files
+with respect to allocation:
"min_bandwidth": The minimum memory bandwidth percentage which
user can request.
@@ -52,48 +72,152 @@ Memory bandwitdh(MB) subdirectory contains the following files:
non-linear. This field is purely informational
only.
-Resource groups
----------------
+If RDT monitoring is available there will be an "L3_MON" directory
+with the following files:
+
+"num_rmids": The number of RMIDs available. This is the
+ upper bound for how many "CTRL_MON" + "MON"
+ groups can be created.
+
+"mon_features": Lists the monitoring events if
+ monitoring is enabled for the resource.
+
+"max_threshold_occupancy":
+ Read/write file provides the largest value (in
+ bytes) at which a previously used LLC_occupancy
+ counter can be considered for re-use.
+
+
+Resource alloc and monitor groups
+---------------------------------
+
Resource groups are represented as directories in the resctrl file
-system. The default group is the root directory. Other groups may be
-created as desired by the system administrator using the "mkdir(1)"
-command, and removed using "rmdir(1)".
+system. The default group is the root directory which, immediately
+after mounting, owns all the tasks and cpus in the system and can make
+full use of all resources.
+
+On a system with RDT control features additional directories can be
+created in the root directory that specify different amounts of each
+resource (see "schemata" below). The root and these additional top level
+directories are referred to as "CTRL_MON" groups below.
+
+On a system with RDT monitoring the root directory and other top level
+directories contain a directory named "mon_groups" in which additional
+directories can be created to monitor subsets of tasks in the CTRL_MON
+group that is their ancestor. These are called "MON" groups in the rest
+of this document.
+
+Removing a directory will move all tasks and cpus owned by the group it
+represents to the parent. Removing one of the created CTRL_MON groups
+will automatically remove all MON groups below it.
+
+All groups contain the following files:
+
+"tasks":
+ Reading this file shows the list of all tasks that belong to
+ this group. Writing a task id to the file will add a task to the
+ group. If the group is a CTRL_MON group the task is removed from
+ whichever previous CTRL_MON group owned the task and also from
+ any MON group that owned the task. If the group is a MON group,
+ then the task must already belong to the CTRL_MON parent of this
+ group. The task is removed from any previous MON group.
+
+
+"cpus":
+ Reading this file shows a bitmask of the logical CPUs owned by
+ this group. Writing a mask to this file will add and remove
+ CPUs to/from this group. As with the tasks file a hierarchy is
+ maintained where MON groups may only include CPUs owned by the
+ parent CTRL_MON group.
+
-There are three files associated with each group:
+"cpus_list":
+ Just like "cpus", only using ranges of CPUs instead of bitmasks.
-"tasks": A list of tasks that belongs to this group. Tasks can be
- added to a group by writing the task ID to the "tasks" file
- (which will automatically remove them from the previous
- group to which they belonged). New tasks created by fork(2)
- and clone(2) are added to the same group as their parent.
- If a pid is not in any sub partition, it is in root partition
- (i.e. default partition).
-"cpus": A bitmask of logical CPUs assigned to this group. Writing
- a new mask can add/remove CPUs from this group. Added CPUs
- are removed from their previous group. Removed ones are
- given to the default (root) group. You cannot remove CPUs
- from the default group.
+When control is enabled all CTRL_MON groups will also contain:
-"cpus_list": One or more CPU ranges of logical CPUs assigned to this
- group. Same rules apply like for the "cpus" file.
+"schemata":
+ A list of all the resources available to this group.
+ Each resource has its own line and format - see below for details.
-"schemata": A list of all the resources available to this group.
- Each resource has its own line and format - see below for
- details.
+When monitoring is enabled all MON groups will also contain:
-When a task is running the following rules define which resources
-are available to it:
+"mon_data":
+ This contains a set of files organized by L3 domain and by
+ RDT event. E.g. on a system with two L3 domains there will
+ be subdirectories "mon_L3_00" and "mon_L3_01". Each of these
+ directories have one file per event (e.g. "llc_occupancy",
+ "mbm_total_bytes", and "mbm_local_bytes"). In a MON group these
+ files provide a read out of the current value of the event for
+ all tasks in the group. In CTRL_MON groups these files provide
+ the sum for all tasks in the CTRL_MON group and all tasks in
+ MON groups. Please see example section for more details on usage.
+
+Resource allocation rules
+-------------------------
+When a task is running the following rules define which resources are
+available to it:
1) If the task is a member of a non-default group, then the schemata
-for that group is used.
+ for that group is used.
2) Else if the task belongs to the default group, but is running on a
-CPU that is assigned to some specific group, then the schemata for
-the CPU's group is used.
+ CPU that is assigned to some specific group, then the schemata for the
+ CPU's group is used.
3) Otherwise the schemata for the default group is used.
+Resource monitoring rules
+-------------------------
+1) If a task is a member of a MON group, or non-default CTRL_MON group
+ then RDT events for the task will be reported in that group.
+
+2) If a task is a member of the default CTRL_MON group, but is running
+ on a CPU that is assigned to some specific group, then the RDT events
+ for the task will be reported in that group.
+
+3) Otherwise RDT events for the task will be reported in the root level
+ "mon_data" group.
+
+
+Notes on cache occupancy monitoring and control
+-----------------------------------------------
+When moving a task from one group to another you should remember that
+this only affects *new* cache allocations by the task. E.g. you may have
+a task in a monitor group showing 3 MB of cache occupancy. If you move
+to a new group and immediately check the occupancy of the old and new
+groups you will likely see that the old group is still showing 3 MB and
+the new group zero. When the task accesses locations still in cache from
+before the move, the h/w does not update any counters. On a busy system
+you will likely see the occupancy in the old group go down as cache lines
+are evicted and re-used while the occupancy in the new group rises as
+the task accesses memory and loads into the cache are counted based on
+membership in the new group.
+
+The same applies to cache allocation control. Moving a task to a group
+with a smaller cache partition will not evict any cache lines. The
+process may continue to use them from the old partition.
+
+Hardware uses CLOSid(Class of service ID) and an RMID(Resource monitoring ID)
+to identify a control group and a monitoring group respectively. Each of
+the resource groups are mapped to these IDs based on the kind of group. The
+number of CLOSid and RMID are limited by the hardware and hence the creation of
+a "CTRL_MON" directory may fail if we run out of either CLOSID or RMID
+and creation of "MON" group may fail if we run out of RMIDs.
+
+max_threshold_occupancy - generic concepts
+------------------------------------------
+
+Note that an RMID once freed may not be immediately available for use as
+the RMID is still tagged the cache lines of the previous user of RMID.
+Hence such RMIDs are placed on limbo list and checked back if the cache
+occupancy has gone down. If there is a time when system has a lot of
+limbo RMIDs but which are not ready to be used, user may see an -EBUSY
+during mkdir.
+
+max_threshold_occupancy is a user configurable value to determine the
+occupancy at which an RMID can be freed.
Schemata files - general concepts
---------------------------------
@@ -143,22 +267,22 @@ SKUs. Using a high bandwidth and a low bandwidth setting on two threads
sharing a core will result in both threads being throttled to use the
low bandwidth.
-L3 details (code and data prioritization disabled)
---------------------------------------------------
+L3 schemata file details (code and data prioritization disabled)
+----------------------------------------------------------------
With CDP disabled the L3 schemata format is:
L3:<cache_id0>=<cbm>;<cache_id1>=<cbm>;...
-L3 details (CDP enabled via mount option to resctrl)
-----------------------------------------------------
+L3 schemata file details (CDP enabled via mount option to resctrl)
+------------------------------------------------------------------
When CDP is enabled L3 control is split into two separate resources
so you can specify independent masks for code and data like this:
L3data:<cache_id0>=<cbm>;<cache_id1>=<cbm>;...
L3code:<cache_id0>=<cbm>;<cache_id1>=<cbm>;...
-L2 details
-----------
+L2 schemata file details
+------------------------
L2 cache does not support code and data prioritization, so the
schemata format is always:
@@ -185,6 +309,8 @@ L3CODE:0=fffff;1=fffff;2=fffff;3=fffff
L3DATA:0=fffff;1=fffff;2=3c0;3=fffff
L3CODE:0=fffff;1=fffff;2=fffff;3=fffff
+Examples for RDT allocation usage:
+
Example 1
---------
On a two socket machine (one L3 cache per socket) with just four bits
@@ -410,3 +536,124 @@ void main(void)
/* code to read and write directory contents */
resctrl_release_lock(fd);
}
+
+Examples for RDT Monitoring along with allocation usage:
+
+Reading monitored data
+----------------------
+Reading an event file (for ex: mon_data/mon_L3_00/llc_occupancy) would
+show the current snapshot of LLC occupancy of the corresponding MON
+group or CTRL_MON group.
+
+
+Example 1 (Monitor CTRL_MON group and subset of tasks in CTRL_MON group)
+---------
+On a two socket machine (one L3 cache per socket) with just four bits
+for cache bit masks
+
+# mount -t resctrl resctrl /sys/fs/resctrl
+# cd /sys/fs/resctrl
+# mkdir p0 p1
+# echo "L3:0=3;1=c" > /sys/fs/resctrl/p0/schemata
+# echo "L3:0=3;1=3" > /sys/fs/resctrl/p1/schemata
+# echo 5678 > p1/tasks
+# echo 5679 > p1/tasks
+
+The default resource group is unmodified, so we have access to all parts
+of all caches (its schemata file reads "L3:0=f;1=f").
+
+Tasks that are under the control of group "p0" may only allocate from the
+"lower" 50% on cache ID 0, and the "upper" 50% of cache ID 1.
+Tasks in group "p1" use the "lower" 50% of cache on both sockets.
+
+Create monitor groups and assign a subset of tasks to each monitor group.
+
+# cd /sys/fs/resctrl/p1/mon_groups
+# mkdir m11 m12
+# echo 5678 > m11/tasks
+# echo 5679 > m12/tasks
+
+fetch data (data shown in bytes)
+
+# cat m11/mon_data/mon_L3_00/llc_occupancy
+16234000
+# cat m11/mon_data/mon_L3_01/llc_occupancy
+14789000
+# cat m12/mon_data/mon_L3_00/llc_occupancy
+16789000
+
+The parent ctrl_mon group shows the aggregated data.
+
+# cat /sys/fs/resctrl/p1/mon_data/mon_l3_00/llc_occupancy
+31234000
+
+Example 2 (Monitor a task from its creation)
+---------
+On a two socket machine (one L3 cache per socket)
+
+# mount -t resctrl resctrl /sys/fs/resctrl
+# cd /sys/fs/resctrl
+# mkdir p0 p1
+
+An RMID is allocated to the group once its created and hence the <cmd>
+below is monitored from its creation.
+
+# echo $$ > /sys/fs/resctrl/p1/tasks
+# <cmd>
+
+Fetch the data
+
+# cat /sys/fs/resctrl/p1/mon_data/mon_l3_00/llc_occupancy
+31789000
+
+Example 3 (Monitor without CAT support or before creating CAT groups)
+---------
+
+Assume a system like HSW has only CQM and no CAT support. In this case
+the resctrl will still mount but cannot create CTRL_MON directories.
+But user can create different MON groups within the root group thereby
+able to monitor all tasks including kernel threads.
+
+This can also be used to profile jobs cache size footprint before being
+able to allocate them to different allocation groups.
+
+# mount -t resctrl resctrl /sys/fs/resctrl
+# cd /sys/fs/resctrl
+# mkdir mon_groups/m01
+# mkdir mon_groups/m02
+
+# echo 3478 > /sys/fs/resctrl/mon_groups/m01/tasks
+# echo 2467 > /sys/fs/resctrl/mon_groups/m02/tasks
+
+Monitor the groups separately and also get per domain data. From the
+below its apparent that the tasks are mostly doing work on
+domain(socket) 0.
+
+# cat /sys/fs/resctrl/mon_groups/m01/mon_L3_00/llc_occupancy
+31234000
+# cat /sys/fs/resctrl/mon_groups/m01/mon_L3_01/llc_occupancy
+34555
+# cat /sys/fs/resctrl/mon_groups/m02/mon_L3_00/llc_occupancy
+31234000
+# cat /sys/fs/resctrl/mon_groups/m02/mon_L3_01/llc_occupancy
+32789
+
+
+Example 4 (Monitor real time tasks)
+-----------------------------------
+
+A single socket system which has real time tasks running on cores 4-7
+and non real time tasks on other cpus. We want to monitor the cache
+occupancy of the real time threads on these cores.
+
+# mount -t resctrl resctrl /sys/fs/resctrl
+# cd /sys/fs/resctrl
+# mkdir p1
+
+Move the cpus 4-7 over to p1
+# echo f0 > p0/cpus
+
+View the llc occupancy snapshot
+
+# cat /sys/fs/resctrl/p1/mon_data/mon_L3_00/llc_occupancy
+11234000
diff --git a/MAINTAINERS b/MAINTAINERS
index b81e93b71c4b..8ef4694af6e8 100644
--- a/MAINTAINERS
+++ b/MAINTAINERS
@@ -11121,7 +11121,7 @@ M: Fenghua Yu <fenghua.yu@intel.com>
L: linux-kernel@vger.kernel.org
S: Supported
F: arch/x86/kernel/cpu/intel_rdt*
-F: arch/x86/include/asm/intel_rdt*
+F: arch/x86/include/asm/intel_rdt_sched.h
F: Documentation/x86/intel_rdt*
READ-COPY UPDATE (RCU)
diff --git a/arch/x86/Kconfig b/arch/x86/Kconfig
index b4b27ab016f6..acb366bf6bc1 100644
--- a/arch/x86/Kconfig
+++ b/arch/x86/Kconfig
@@ -429,16 +429,16 @@ config GOLDFISH
def_bool y
depends on X86_GOLDFISH
-config INTEL_RDT_A
- bool "Intel Resource Director Technology Allocation support"
+config INTEL_RDT
+ bool "Intel Resource Director Technology support"
default n
depends on X86 && CPU_SUP_INTEL
select KERNFS
help
- Select to enable resource allocation which is a sub-feature of
- Intel Resource Director Technology(RDT). More information about
- RDT can be found in the Intel x86 Architecture Software
- Developer Manual.
+ Select to enable resource allocation and monitoring which are
+ sub-features of Intel Resource Director Technology(RDT). More
+ information about RDT can be found in the Intel x86
+ Architecture Software Developer Manual.
Say N if unsure.
diff --git a/arch/x86/events/intel/Makefile b/arch/x86/events/intel/Makefile
index 06c2baa51814..e9d8520a801a 100644
--- a/arch/x86/events/intel/Makefile
+++ b/arch/x86/events/intel/Makefile
@@ -1,4 +1,4 @@
-obj-$(CONFIG_CPU_SUP_INTEL) += core.o bts.o cqm.o
+obj-$(CONFIG_CPU_SUP_INTEL) += core.o bts.o
obj-$(CONFIG_CPU_SUP_INTEL) += ds.o knc.o
obj-$(CONFIG_CPU_SUP_INTEL) += lbr.o p4.o p6.o pt.o
obj-$(CONFIG_PERF_EVENTS_INTEL_RAPL) += intel-rapl-perf.o
diff --git a/arch/x86/events/intel/cqm.c b/arch/x86/events/intel/cqm.c
deleted file mode 100644
index 2521f771f2f5..000000000000
--- a/arch/x86/events/intel/cqm.c
+++ /dev/null
@@ -1,1766 +0,0 @@
-/*
- * Intel Cache Quality-of-Service Monitoring (CQM) support.
- *
- * Based very, very heavily on work by Peter Zijlstra.
- */
-
-#include <linux/perf_event.h>
-#include <linux/slab.h>
-#include <asm/cpu_device_id.h>
-#include <asm/intel_rdt_common.h>
-#include "../perf_event.h"
-
-#define MSR_IA32_QM_CTR 0x0c8e
-#define MSR_IA32_QM_EVTSEL 0x0c8d
-
-#define MBM_CNTR_WIDTH 24
-/*
- * Guaranteed time in ms as per SDM where MBM counters will not overflow.
- */
-#define MBM_CTR_OVERFLOW_TIME 1000
-
-static u32 cqm_max_rmid = -1;
-static unsigned int cqm_l3_scale; /* supposedly cacheline size */
-static bool cqm_enabled, mbm_enabled;
-unsigned int mbm_socket_max;
-
-/*
- * The cached intel_pqr_state is strictly per CPU and can never be
- * updated from a remote CPU. Both functions which modify the state
- * (intel_cqm_event_start and intel_cqm_event_stop) are called with
- * interrupts disabled, which is sufficient for the protection.
- */
-DEFINE_PER_CPU(struct intel_pqr_state, pqr_state);
-static struct hrtimer *mbm_timers;
-/**
- * struct sample - mbm event's (local or total) data
- * @total_bytes #bytes since we began monitoring
- * @prev_msr previous value of MSR
- */
-struct sample {
- u64 total_bytes;
- u64 prev_msr;
-};
-
-/*
- * samples profiled for total memory bandwidth type events
- */
-static struct sample *mbm_total;
-/*
- * samples profiled for local memory bandwidth type events
- */
-static struct sample *mbm_local;
-
-#define pkg_id topology_physical_package_id(smp_processor_id())
-/*
- * rmid_2_index returns the index for the rmid in mbm_local/mbm_total array.
- * mbm_total[] and mbm_local[] are linearly indexed by socket# * max number of
- * rmids per socket, an example is given below
- * RMID1 of Socket0: vrmid = 1
- * RMID1 of Socket1: vrmid = 1 * (cqm_max_rmid + 1) + 1
- * RMID1 of Socket2: vrmid = 2 * (cqm_max_rmid + 1) + 1
- */
-#define rmid_2_index(rmid) ((pkg_id * (cqm_max_rmid + 1)) + rmid)
-/*
- * Protects cache_cgroups and cqm_rmid_free_lru and cqm_rmid_limbo_lru.
- * Also protects event->hw.cqm_rmid
- *
- * Hold either for stability, both for modification of ->hw.cqm_rmid.
- */
-static DEFINE_MUTEX(cache_mutex);
-static DEFINE_RAW_SPINLOCK(cache_lock);
-
-/*
- * Groups of events that have the same target(s), one RMID per group.
- */
-static LIST_HEAD(cache_groups);
-
-/*
- * Mask of CPUs for reading CQM values. We only need one per-socket.
- */
-static cpumask_t cqm_cpumask;
-
-#define RMID_VAL_ERROR (1ULL << 63)
-#define RMID_VAL_UNAVAIL (1ULL << 62)
-
-/*
- * Event IDs are used to program IA32_QM_EVTSEL before reading event
- * counter from IA32_QM_CTR
- */
-#define QOS_L3_OCCUP_EVENT_ID 0x01
-#define QOS_MBM_TOTAL_EVENT_ID 0x02
-#define QOS_MBM_LOCAL_EVENT_ID 0x03
-
-/*
- * This is central to the rotation algorithm in __intel_cqm_rmid_rotate().
- *
- * This rmid is always free and is guaranteed to have an associated
- * near-zero occupancy value, i.e. no cachelines are tagged with this
- * RMID, once __intel_cqm_rmid_rotate() returns.
- */
-static u32 intel_cqm_rotation_rmid;
-
-#define INVALID_RMID (-1)
-
-/*
- * Is @rmid valid for programming the hardware?
- *
- * rmid 0 is reserved by the hardware for all non-monitored tasks, which
- * means that we should never come across an rmid with that value.
- * Likewise, an rmid value of -1 is used to indicate "no rmid currently
- * assigned" and is used as part of the rotation code.
- */
-static inline bool __rmid_valid(u32 rmid)
-{
- if (!rmid || rmid == INVALID_RMID)
- return false;
-
- return true;
-}
-
-static u64 __rmid_read(u32 rmid)
-{
- u64 val;
-
- /*
- * Ignore the SDM, this thing is _NOTHING_ like a regular perfcnt,
- * it just says that to increase confusion.
- */
- wrmsr(MSR_IA32_QM_EVTSEL, QOS_L3_OCCUP_EVENT_ID, rmid);
- rdmsrl(MSR_IA32_QM_CTR, val);
-
- /*
- * Aside from the ERROR and UNAVAIL bits, assume this thing returns
- * the number of cachelines tagged with @rmid.
- */
- return val;
-}
-
-enum rmid_recycle_state {
- RMID_YOUNG = 0,
- RMID_AVAILABLE,
- RMID_DIRTY,
-};
-
-struct cqm_rmid_entry {
- u32 rmid;
- enum rmid_recycle_state state;
- struct list_head list;
- unsigned long queue_time;
-};
-
-/*
- * cqm_rmid_free_lru - A least recently used list of RMIDs.
- *
- * Oldest entry at the head, newest (most recently used) entry at the
- * tail. This list is never traversed, it's only used to keep track of
- * the lru order. That is, we only pick entries of the head or insert
- * them on the tail.
- *
- * All entries on the list are 'free', and their RMIDs are not currently
- * in use. To mark an RMID as in use, remove its entry from the lru
- * list.
- *
- *
- * cqm_rmid_limbo_lru - list of currently unused but (potentially) dirty RMIDs.
- *
- * This list is contains RMIDs that no one is currently using but that
- * may have a non-zero occupancy value associated with them. The
- * rotation worker moves RMIDs from the limbo list to the free list once
- * the occupancy value drops below __intel_cqm_threshold.
- *
- * Both lists are protected by cache_mutex.
- */
-static LIST_HEAD(cqm_rmid_free_lru);
-static LIST_HEAD(cqm_rmid_limbo_lru);
-
-/*
- * We use a simple array of pointers so that we can lookup a struct
- * cqm_rmid_entry in O(1). This alleviates the callers of __get_rmid()
- * and __put_rmid() from having to worry about dealing with struct
- * cqm_rmid_entry - they just deal with rmids, i.e. integers.
- *
- * Once this array is initialized it is read-only. No locks are required
- * to access it.
- *
- * All entries for all RMIDs can be looked up in the this array at all
- * times.
- */
-static struct cqm_rmid_entry **cqm_rmid_ptrs;
-
-static inline struct cqm_rmid_entry *__rmid_entry(u32 rmid)
-{
- struct cqm_rmid_entry *entry;
-
- entry = cqm_rmid_ptrs[rmid];
- WARN_ON(entry->rmid != rmid);
-
- return entry;
-}
-
-/*
- * Returns < 0 on fail.
- *
- * We expect to be called with cache_mutex held.
- */
-static u32 __get_rmid(void)
-{
- struct cqm_rmid_entry *entry;
-
- lockdep_assert_held(&cache_mutex);
-
- if (list_empty(&cqm_rmid_free_lru))
- return INVALID_RMID;
-
- entry = list_first_entry(&cqm_rmid_free_lru, struct cqm_rmid_entry, list);
- list_del(&entry->list);
-
- return entry->rmid;
-}
-
-static void __put_rmid(u32 rmid)
-{
- struct cqm_rmid_entry *entry;
-
- lockdep_assert_held(&cache_mutex);
-
- WARN_ON(!__rmid_valid(rmid));
- entry = __rmid_entry(rmid);
-
- entry->queue_time = jiffies;
- entry->state = RMID_YOUNG;
-
- list_add_tail(&entry->list, &cqm_rmid_limbo_lru);
-}
-
-static void cqm_cleanup(void)
-{
- int i;
-
- if (!cqm_rmid_ptrs)
- return;
-
- for (i = 0; i < cqm_max_rmid; i++)
- kfree(cqm_rmid_ptrs[i]);
-
- kfree(cqm_rmid_ptrs);
- cqm_rmid_ptrs = NULL;
- cqm_enabled = false;
-}
-
-static int intel_cqm_setup_rmid_cache(void)
-{
- struct cqm_rmid_entry *entry;
- unsigned int nr_rmids;
- int r = 0;
-
- nr_rmids = cqm_max_rmid + 1;
- cqm_rmid_ptrs = kzalloc(sizeof(struct cqm_rmid_entry *) *
- nr_rmids, GFP_KERNEL);
- if (!cqm_rmid_ptrs)
- return -ENOMEM;
-
- for (; r <= cqm_max_rmid; r++) {
- struct cqm_rmid_entry *entry;
-
- entry = kmalloc(sizeof(*entry), GFP_KERNEL);
- if (!entry)
- goto fail;
-
- INIT_LIST_HEAD(&entry->list);
- entry->rmid = r;
- cqm_rmid_ptrs[r] = entry;
-
- list_add_tail(&entry->list, &cqm_rmid_free_lru);
- }
-
- /*
- * RMID 0 is special and is always allocated. It's used for all
- * tasks that are not monitored.
- */
- entry = __rmid_entry(0);
- list_del(&entry->list);
-
- mutex_lock(&cache_mutex);
- intel_cqm_rotation_rmid = __get_rmid();
- mutex_unlock(&cache_mutex);
-
- return 0;
-
-fail:
- cqm_cleanup();
- return -ENOMEM;
-}
-
-/*
- * Determine if @a and @b measure the same set of tasks.
- *
- * If @a and @b measure the same set of tasks then we want to share a
- * single RMID.
- */
-static bool __match_event(struct perf_event *a, struct perf_event *b)
-{
- /* Per-cpu and task events don't mix */
- if ((a->attach_state & PERF_ATTACH_TASK) !=
- (b->attach_state & PERF_ATTACH_TASK))
- return false;
-
-#ifdef CONFIG_CGROUP_PERF
- if (a->cgrp != b->cgrp)
- return false;
-#endif
-
- /* If not task event, we're machine wide */
- if (!(b->attach_state & PERF_ATTACH_TASK))
- return true;
-
- /*
- * Events that target same task are placed into the same cache group.
- * Mark it as a multi event group, so that we update ->count
- * for every event rather than just the group leader later.
- */
- if (a->hw.target == b->hw.target) {
- b->hw.is_group_event = true;
- return true;
- }
-
- /*
- * Are we an inherited event?
- */
- if (b->parent == a)
- return true;
-
- return false;
-}
-
-#ifdef CONFIG_CGROUP_PERF
-static inline struct perf_cgroup *event_to_cgroup(struct perf_event *event)
-{
- if (event->attach_state & PERF_ATTACH_TASK)
- return perf_cgroup_from_task(event->hw.target, event->ctx);
-
- return event->cgrp;
-}
-#endif
-
-/*
- * Determine if @a's tasks intersect with @b's tasks
- *
- * There are combinations of events that we explicitly prohibit,
- *
- * PROHIBITS
- * system-wide -> cgroup and task
- * cgroup -> system-wide
- * -> task in cgroup
- * task -> system-wide
- * -> task in cgroup
- *
- * Call this function before allocating an RMID.
- */
-static bool __conflict_event(struct perf_event *a, struct perf_event *b)
-{
-#ifdef CONFIG_CGROUP_PERF
- /*
- * We can have any number of cgroups but only one system-wide
- * event at a time.
- */
- if (a->cgrp && b->cgrp) {
- struct perf_cgroup *ac = a->cgrp;
- struct perf_cgroup *bc = b->cgrp;
-
- /*
- * This condition should have been caught in
- * __match_event() and we should be sharing an RMID.
- */
- WARN_ON_ONCE(ac == bc);
-
- if (cgroup_is_descendant(ac->css.cgroup, bc->css.cgroup) ||
- cgroup_is_descendant(bc->css.cgroup, ac->css.cgroup))
- return true;
-
- return false;
- }
-
- if (a->cgrp || b->cgrp) {
- struct perf_cgroup *ac, *bc;
-
- /*
- * cgroup and system-wide events are mutually exclusive
- */
- if ((a->cgrp && !(b->attach_state & PERF_ATTACH_TASK)) ||
- (b->cgrp && !(a->attach_state & PERF_ATTACH_TASK)))
- return true;
-
- /*
- * Ensure neither event is part of the other's cgroup
- */
- ac = event_to_cgroup(a);
- bc = event_to_cgroup(b);
- if (ac == bc)
- return true;
-
- /*
- * Must have cgroup and non-intersecting task events.
- */
- if (!ac || !bc)
- return false;
-
- /*
- * We have cgroup and task events, and the task belongs
- * to a cgroup. Check for for overlap.
- */
- if (cgroup_is_descendant(ac->css.cgroup, bc->css.cgroup) ||
- cgroup_is_descendant(bc->css.cgroup, ac->css.cgroup))
- return true;
-
- return false;
- }
-#endif
- /*
- * If one of them is not a task, same story as above with cgroups.
- */
- if (!(a->attach_state & PERF_ATTACH_TASK) ||
- !(b->attach_state & PERF_ATTACH_TASK))
- return true;
-
- /*
- * Must be non-overlapping.
- */
- return false;
-}
-
-struct rmid_read {
- u32 rmid;
- u32 evt_type;
- atomic64_t value;
-};
-
-static void __intel_cqm_event_count(void *info);
-static void init_mbm_sample(u32 rmid, u32 evt_type);
-static void __intel_mbm_event_count(void *info);
-
-static bool is_cqm_event(int e)
-{
- return (e == QOS_L3_OCCUP_EVENT_ID);
-}
-
-static bool is_mbm_event(int e)
-{
- return (e >= QOS_MBM_TOTAL_EVENT_ID && e <= QOS_MBM_LOCAL_EVENT_ID);
-}
-
-static void cqm_mask_call(struct rmid_read *rr)
-{
- if (is_mbm_event(rr->evt_type))
- on_each_cpu_mask(&cqm_cpumask, __intel_mbm_event_count, rr, 1);
- else
- on_each_cpu_mask(&cqm_cpumask, __intel_cqm_event_count, rr, 1);
-}
-
-/*
- * Exchange the RMID of a group of events.
- */
-static u32 intel_cqm_xchg_rmid(struct perf_event *group, u32 rmid)
-{
- struct perf_event *event;
- struct list_head *head = &group->hw.cqm_group_entry;
- u32 old_rmid = group->hw.cqm_rmid;
-
- lockdep_assert_held(&cache_mutex);
-
- /*
- * If our RMID is being deallocated, perform a read now.
- */
- if (__rmid_valid(old_rmid) && !__rmid_valid(rmid)) {
- struct rmid_read rr = {
- .rmid = old_rmid,
- .evt_type = group->attr.config,
- .value = ATOMIC64_INIT(0),
- };
-
- cqm_mask_call(&rr);
- local64_set(&group->count, atomic64_read(&rr.value));
- }
-
- raw_spin_lock_irq(&cache_lock);
-
- group->hw.cqm_rmid = rmid;
- list_for_each_entry(event, head, hw.cqm_group_entry)
- event->hw.cqm_rmid = rmid;
-
- raw_spin_unlock_irq(&cache_lock);
-
- /*
- * If the allocation is for mbm, init the mbm stats.
- * Need to check if each event in the group is mbm event
- * because there could be multiple type of events in the same group.
- */
- if (__rmid_valid(rmid)) {
- event = group;
- if (is_mbm_event(event->attr.config))
- init_mbm_sample(rmid, event->attr.config);
-
- list_for_each_entry(event, head, hw.cqm_group_entry) {
- if (is_mbm_event(event->attr.config))
- init_mbm_sample(rmid, event->attr.config);
- }
- }
-
- return old_rmid;
-}
-
-/*
- * If we fail to assign a new RMID for intel_cqm_rotation_rmid because
- * cachelines are still tagged with RMIDs in limbo, we progressively
- * increment the threshold until we find an RMID in limbo with <=
- * __intel_cqm_threshold lines tagged. This is designed to mitigate the
- * problem where cachelines tagged with an RMID are not steadily being
- * evicted.
- *
- * On successful rotations we decrease the threshold back towards zero.
- *
- * __intel_cqm_max_threshold provides an upper bound on the threshold,
- * and is measured in bytes because it's exposed to userland.
- */
-static unsigned int __intel_cqm_threshold;
-static unsigned int __intel_cqm_max_threshold;
-
-/*
- * Test whether an RMID has a zero occupancy value on this cpu.
- */
-static void intel_cqm_stable(void *arg)
-{
- struct cqm_rmid_entry *entry;
-
- list_for_each_entry(entry, &cqm_rmid_limbo_lru, list) {
- if (entry->state != RMID_AVAILABLE)
- break;
-
- if (__rmid_read(entry->rmid) > __intel_cqm_threshold)
- entry->state = RMID_DIRTY;
- }
-}
-
-/*
- * If we have group events waiting for an RMID that don't conflict with
- * events already running, assign @rmid.
- */
-static bool intel_cqm_sched_in_event(u32 rmid)
-{
- struct perf_event *leader, *event;
-
- lockdep_assert_held(&cache_mutex);
-
- leader = list_first_entry(&cache_groups, struct perf_event,
- hw.cqm_groups_entry);
- event = leader;
-
- list_for_each_entry_continue(event, &cache_groups,
- hw.cqm_groups_entry) {
- if (__rmid_valid(event->hw.cqm_rmid))
- continue;
-
- if (__conflict_event(event, leader))
- continue;
-
- intel_cqm_xchg_rmid(event, rmid);
- return true;
- }
-
- return false;
-}
-
-/*
- * Initially use this constant for both the limbo queue time and the
- * rotation timer interval, pmu::hrtimer_interval_ms.
- *
- * They don't need to be the same, but the two are related since if you
- * rotate faster than you recycle RMIDs, you may run out of available
- * RMIDs.
- */
-#define RMID_DEFAULT_QUEUE_TIME 250 /* ms */
-
-static unsigned int __rmid_queue_time_ms = RMID_DEFAULT_QUEUE_TIME;
-
-/*
- * intel_cqm_rmid_stabilize - move RMIDs from limbo to free list
- * @nr_available: number of freeable RMIDs on the limbo list
- *
- * Quiescent state; wait for all 'freed' RMIDs to become unused, i.e. no
- * cachelines are tagged with those RMIDs. After this we can reuse them
- * and know that the current set of active RMIDs is stable.
- *
- * Return %true or %false depending on whether stabilization needs to be
- * reattempted.
- *
- * If we return %true then @nr_available is updated to indicate the
- * number of RMIDs on the limbo list that have been queued for the
- * minimum queue time (RMID_AVAILABLE), but whose data occupancy values
- * are above __intel_cqm_threshold.
- */
-static bool intel_cqm_rmid_stabilize(unsigned int *available)
-{
- struct cqm_rmid_entry *entry, *tmp;
-
- lockdep_assert_held(&cache_mutex);
-
- *available = 0;
- list_for_each_entry(entry, &cqm_rmid_limbo_lru, list) {
- unsigned long min_queue_time;
- unsigned long now = jiffies;
-
- /*
- * We hold RMIDs placed into limbo for a minimum queue
- * time. Before the minimum queue time has elapsed we do
- * not recycle RMIDs.
- *
- * The reasoning is that until a sufficient time has
- * passed since we stopped using an RMID, any RMID
- * placed onto the limbo list will likely still have
- * data tagged in the cache, which means we'll probably
- * fail to recycle it anyway.
- *
- * We can save ourselves an expensive IPI by skipping
- * any RMIDs that have not been queued for the minimum
- * time.
- */
- min_queue_time = entry->queue_time +
- msecs_to_jiffies(__rmid_queue_time_ms);
-
- if (time_after(min_queue_time, now))
- break;
-
- entry->state = RMID_AVAILABLE;
- (*available)++;
- }
-
- /*
- * Fast return if none of the RMIDs on the limbo list have been
- * sitting on the queue for the minimum queue time.
- */
- if (!*available)
- return false;
-
- /*
- * Test whether an RMID is free for each package.
- */
- on_each_cpu_mask(&cqm_cpumask, intel_cqm_stable, NULL, true);
-
- list_for_each_entry_safe(entry, tmp, &cqm_rmid_limbo_lru, list) {
- /*
- * Exhausted all RMIDs that have waited min queue time.
- */
- if (entry->state == RMID_YOUNG)
- break;
-
- if (entry->state == RMID_DIRTY)
- continue;
-
- list_del(&entry->list); /* remove from limbo */
-
- /*
- * The rotation RMID gets priority if it's
- * currently invalid. In which case, skip adding
- * the RMID to the the free lru.
- */
- if (!__rmid_valid(intel_cqm_rotation_rmid)) {
- intel_cqm_rotation_rmid = entry->rmid;
- continue;
- }
-
- /*
- * If we have groups waiting for RMIDs, hand
- * them one now provided they don't conflict.
- */
- if (intel_cqm_sched_in_event(entry->rmid))
- continue;
-
- /*
- * Otherwise place it onto the free list.
- */
- list_add_tail(&entry->list, &cqm_rmid_free_lru);
- }
-
-
- return __rmid_valid(intel_cqm_rotation_rmid);
-}
-
-/*
- * Pick a victim group and move it to the tail of the group list.
- * @next: The first group without an RMID
- */
-static void __intel_cqm_pick_and_rotate(struct perf_event *next)
-{
- struct perf_event *rotor;
- u32 rmid;
-
- lockdep_assert_held(&cache_mutex);
-
- rotor = list_first_entry(&cache_groups, struct perf_event,
- hw.cqm_groups_entry);
-
- /*
- * The group at the front of the list should always have a valid
- * RMID. If it doesn't then no groups have RMIDs assigned and we
- * don't need to rotate the list.
- */
- if (next == rotor)
- return;
-
- rmid = intel_cqm_xchg_rmid(rotor, INVALID_RMID);
- __put_rmid(rmid);
-
- list_rotate_left(&cache_groups);
-}
-
-/*
- * Deallocate the RMIDs from any events that conflict with @event, and
- * place them on the back of the group list.
- */
-static void intel_cqm_sched_out_conflicting_events(struct perf_event *event)
-{
- struct perf_event *group, *g;
- u32 rmid;
-
- lockdep_assert_held(&cache_mutex);
-
- list_for_each_entry_safe(group, g, &cache_groups, hw.cqm_groups_entry) {
- if (group == event)
- continue;
-
- rmid = group->hw.cqm_rmid;
-
- /*
- * Skip events that don't have a valid RMID.
- */
- if (!__rmid_valid(rmid))
- continue;
-
- /*
- * No conflict? No problem! Leave the event alone.
- */
- if (!__conflict_event(group, event))
- continue;
-
- intel_cqm_xchg_rmid(group, INVALID_RMID);
- __put_rmid(rmid);
- }
-}
-
-/*
- * Attempt to rotate the groups and assign new RMIDs.
- *
- * We rotate for two reasons,
- * 1. To handle the scheduling of conflicting events
- * 2. To recycle RMIDs
- *
- * Rotating RMIDs is complicated because the hardware doesn't give us
- * any clues.
- *
- * There's problems with the hardware interface; when you change the
- * task:RMID map cachelines retain their 'old' tags, giving a skewed
- * picture. In order to work around this, we must always keep one free
- * RMID - intel_cqm_rotation_rmid.
- *
- * Rotation works by taking away an RMID from a group (the old RMID),
- * and assigning the free RMID to another group (the new RMID). We must
- * then wait for the old RMID to not be used (no cachelines tagged).
- * This ensure that all cachelines are tagged with 'active' RMIDs. At
- * this point we can start reading values for the new RMID and treat the
- * old RMID as the free RMID for the next rotation.
- *
- * Return %true or %false depending on whether we did any rotating.
- */
-static bool __intel_cqm_rmid_rotate(void)
-{
- struct perf_event *group, *start = NULL;
- unsigned int threshold_limit;
- unsigned int nr_needed = 0;
- unsigned int nr_available;
- bool rotated = false;
-
- mutex_lock(&cache_mutex);
-
-again:
- /*
- * Fast path through this function if there are no groups and no
- * RMIDs that need cleaning.
- */
- if (list_empty(&cache_groups) && list_empty(&cqm_rmid_limbo_lru))
- goto out;
-
- list_for_each_entry(group, &cache_groups, hw.cqm_groups_entry) {
- if (!__rmid_valid(group->hw.cqm_rmid)) {
- if (!start)
- start = group;
- nr_needed++;
- }
- }
-
- /*
- * We have some event groups, but they all have RMIDs assigned
- * and no RMIDs need cleaning.
- */
- if (!nr_needed && list_empty(&cqm_rmid_limbo_lru))
- goto out;
-
- if (!nr_needed)
- goto stabilize;
-
- /*
- * We have more event groups without RMIDs than available RMIDs,
- * or we have event groups that conflict with the ones currently
- * scheduled.
- *
- * We force deallocate the rmid of the group at the head of
- * cache_groups. The first event group without an RMID then gets
- * assigned intel_cqm_rotation_rmid. This ensures we always make
- * forward progress.
- *
- * Rotate the cache_groups list so the previous head is now the
- * tail.
- */
- __intel_cqm_pick_and_rotate(start);
-
- /*
- * If the rotation is going to succeed, reduce the threshold so
- * that we don't needlessly reuse dirty RMIDs.
- */
- if (__rmid_valid(intel_cqm_rotation_rmid)) {
- intel_cqm_xchg_rmid(start, intel_cqm_rotation_rmid);
- intel_cqm_rotation_rmid = __get_rmid();
-
- intel_cqm_sched_out_conflicting_events(start);
-
- if (__intel_cqm_threshold)
- __intel_cqm_threshold--;
- }
-
- rotated = true;
-
-stabilize:
- /*
- * We now need to stablize the RMID we freed above (if any) to
- * ensure that the next time we rotate we have an RMID with zero
- * occupancy value.
- *
- * Alternatively, if we didn't need to perform any rotation,
- * we'll have a bunch of RMIDs in limbo that need stabilizing.
- */
- threshold_limit = __intel_cqm_max_threshold / cqm_l3_scale;
-
- while (intel_cqm_rmid_stabilize(&nr_available) &&
- __intel_cqm_threshold < threshold_limit) {
- unsigned int steal_limit;
-
- /*
- * Don't spin if nobody is actively waiting for an RMID,
- * the rotation worker will be kicked as soon as an
- * event needs an RMID anyway.
- */
- if (!nr_needed)
- break;
-
- /* Allow max 25% of RMIDs to be in limbo. */
- steal_limit = (cqm_max_rmid + 1) / 4;
-
- /*
- * We failed to stabilize any RMIDs so our rotation
- * logic is now stuck. In order to make forward progress
- * we have a few options:
- *
- * 1. rotate ("steal") another RMID
- * 2. increase the threshold
- * 3. do nothing
- *
- * We do both of 1. and 2. until we hit the steal limit.
- *
- * The steal limit prevents all RMIDs ending up on the
- * limbo list. This can happen if every RMID has a
- * non-zero occupancy above threshold_limit, and the
- * occupancy values aren't dropping fast enough.
- *
- * Note that there is prioritisation at work here - we'd
- * rather increase the number of RMIDs on the limbo list
- * than increase the threshold, because increasing the
- * threshold skews the event data (because we reuse
- * dirty RMIDs) - threshold bumps are a last resort.
- */
- if (nr_available < steal_limit)
- goto again;
-
- __intel_cqm_threshold++;
- }
-
-out:
- mutex_unlock(&cache_mutex);
- return rotated;
-}
-
-static void intel_cqm_rmid_rotate(struct work_struct *work);
-
-static DECLARE_DELAYED_WORK(intel_cqm_rmid_work, intel_cqm_rmid_rotate);
-
-static struct pmu intel_cqm_pmu;
-
-static void intel_cqm_rmid_rotate(struct work_struct *work)
-{
- unsigned long delay;
-
- __intel_cqm_rmid_rotate();
-
- delay = msecs_to_jiffies(intel_cqm_pmu.hrtimer_interval_ms);
- schedule_delayed_work(&intel_cqm_rmid_work, delay);
-}
-
-static u64 update_sample(unsigned int rmid, u32 evt_type, int first)
-{
- struct sample *mbm_current;
- u32 vrmid = rmid_2_index(rmid);
- u64 val, bytes, shift;
- u32 eventid;
-
- if (evt_type == QOS_MBM_LOCAL_EVENT_ID) {
- mbm_current = &mbm_local[vrmid];
- eventid = QOS_MBM_LOCAL_EVENT_ID;
- } else {
- mbm_current = &mbm_total[vrmid];
- eventid = QOS_MBM_TOTAL_EVENT_ID;
- }
-
- wrmsr(MSR_IA32_QM_EVTSEL, eventid, rmid);
- rdmsrl(MSR_IA32_QM_CTR, val);
- if (val & (RMID_VAL_ERROR | RMID_VAL_UNAVAIL))
- return mbm_current->total_bytes;
-
- if (first) {
- mbm_current->prev_msr = val;
- mbm_current->total_bytes = 0;
- return mbm_current->total_bytes;
- }
-
- /*
- * The h/w guarantees that counters will not overflow
- * so long as we poll them at least once per second.
- */
- shift = 64 - MBM_CNTR_WIDTH;
- bytes = (val << shift) - (mbm_current->prev_msr << shift);
- bytes >>= shift;
-
- bytes *= cqm_l3_scale;
-
- mbm_current->total_bytes += bytes;
- mbm_current->prev_msr = val;
-
- return mbm_current->total_bytes;
-}
-
-static u64 rmid_read_mbm(unsigned int rmid, u32 evt_type)
-{
- return update_sample(rmid, evt_type, 0);
-}
-
-static void __intel_mbm_event_init(void *info)
-{
- struct rmid_read *rr = info;
-
- update_sample(rr->rmid, rr->evt_type, 1);
-}
-
-static void init_mbm_sample(u32 rmid, u32 evt_type)
-{
- struct rmid_read rr = {
- .rmid = rmid,
- .evt_type = evt_type,
- .value = ATOMIC64_INIT(0),
- };
-
- /* on each socket, init sample */
- on_each_cpu_mask(&cqm_cpumask, __intel_mbm_event_init, &rr, 1);
-}
-
-/*
- * Find a group and setup RMID.
- *
- * If we're part of a group, we use the group's RMID.
- */
-static void intel_cqm_setup_event(struct perf_event *event,
- struct perf_event **group)
-{
- struct perf_event *iter;
- bool conflict = false;
- u32 rmid;
-
- event->hw.is_group_event = false;
- list_for_each_entry(iter, &cache_groups, hw.cqm_groups_entry) {
- rmid = iter->hw.cqm_rmid;
-
- if (__match_event(iter, event)) {
- /* All tasks in a group share an RMID */
- event->hw.cqm_rmid = rmid;
- *group = iter;
- if (is_mbm_event(event->attr.config) && __rmid_valid(rmid))
- init_mbm_sample(rmid, event->attr.config);
- return;
- }
-
- /*
- * We only care about conflicts for events that are
- * actually scheduled in (and hence have a valid RMID).
- */
- if (__conflict_event(iter, event) && __rmid_valid(rmid))
- conflict = true;
- }
-
- if (conflict)
- rmid = INVALID_RMID;
- else
- rmid = __get_rmid();
-
- if (is_mbm_event(event->attr.config) && __rmid_valid(rmid))
- init_mbm_sample(rmid, event->attr.config);
-
- event->hw.cqm_rmid = rmid;
-}
-
-static void intel_cqm_event_read(struct perf_event *event)
-{
- unsigned long flags;
- u32 rmid;
- u64 val;
-
- /*
- * Task events are handled by intel_cqm_event_count().
- */
- if (event->cpu == -1)
- return;
-
- raw_spin_lock_irqsave(&cache_lock, flags);
- rmid = event->hw.cqm_rmid;
-
- if (!__rmid_valid(rmid))
- goto out;
-
- if (is_mbm_event(event->attr.config))
- val = rmid_read_mbm(rmid, event->attr.config);
- else
- val = __rmid_read(rmid);
-
- /*
- * Ignore this reading on error states and do not update the value.
- */
- if (val & (RMID_VAL_ERROR | RMID_VAL_UNAVAIL))
- goto out;
-
- local64_set(&event->count, val);
-out:
- raw_spin_unlock_irqrestore(&cache_lock, flags);
-}
-
-static void __intel_cqm_event_count(void *info)
-{
- struct rmid_read *rr = info;
- u64 val;
-
- val = __rmid_read(rr->rmid);
-
- if (val & (RMID_VAL_ERROR | RMID_VAL_UNAVAIL))
- return;
-
- atomic64_add(val, &rr->value);
-}
-
-static inline bool cqm_group_leader(struct perf_event *event)
-{
- return !list_empty(&event->hw.cqm_groups_entry);
-}
-
-static void __intel_mbm_event_count(void *info)
-{
- struct rmid_read *rr = info;
- u64 val;
-
- val = rmid_read_mbm(rr->rmid, rr->evt_type);
- if (val & (RMID_VAL_ERROR | RMID_VAL_UNAVAIL))
- return;
- atomic64_add(val, &rr->value);
-}
-
-static enum hrtimer_restart mbm_hrtimer_handle(struct hrtimer *hrtimer)
-{
- struct perf_event *iter, *iter1;
- int ret = HRTIMER_RESTART;
- struct list_head *head;
- unsigned long flags;
- u32 grp_rmid;
-
- /*
- * Need to cache_lock as the timer Event Select MSR reads
- * can race with the mbm/cqm count() and mbm_init() reads.
- */
- raw_spin_lock_irqsave(&cache_lock, flags);
-
- if (list_empty(&cache_groups)) {
- ret = HRTIMER_NORESTART;
- goto out;
- }
-
- list_for_each_entry(iter, &cache_groups, hw.cqm_groups_entry) {
- grp_rmid = iter->hw.cqm_rmid;
- if (!__rmid_valid(grp_rmid))
- continue;
- if (is_mbm_event(iter->attr.config))
- update_sample(grp_rmid, iter->attr.config, 0);
-
- head = &iter->hw.cqm_group_entry;
- if (list_empty(head))
- continue;
- list_for_each_entry(iter1, head, hw.cqm_group_entry) {
- if (!iter1->hw.is_group_event)
- break;
- if (is_mbm_event(iter1->attr.config))
- update_sample(iter1->hw.cqm_rmid,
- iter1->attr.config, 0);
- }
- }
-
- hrtimer_forward_now(hrtimer, ms_to_ktime(MBM_CTR_OVERFLOW_TIME));
-out:
- raw_spin_unlock_irqrestore(&cache_lock, flags);
-
- return ret;
-}
-
-static void __mbm_start_timer(void *info)
-{
- hrtimer_start(&mbm_timers[pkg_id], ms_to_ktime(MBM_CTR_OVERFLOW_TIME),
- HRTIMER_MODE_REL_PINNED);
-}
-
-static void __mbm_stop_timer(void *info)
-{
- hrtimer_cancel(&mbm_timers[pkg_id]);
-}
-
-static void mbm_start_timers(void)
-{
- on_each_cpu_mask(&cqm_cpumask, __mbm_start_timer, NULL, 1);
-}
-
-static void mbm_stop_timers(void)
-{
- on_each_cpu_mask(&cqm_cpumask, __mbm_stop_timer, NULL, 1);
-}
-
-static void mbm_hrtimer_init(void)
-{
- struct hrtimer *hr;
- int i;
-
- for (i = 0; i < mbm_socket_max; i++) {
- hr = &mbm_timers[i];
- hrtimer_init(hr, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
- hr->function = mbm_hrtimer_handle;
- }
-}
-
-static u64 intel_cqm_event_count(struct perf_event *event)
-{
- unsigned long flags;
- struct rmid_read rr = {
- .evt_type = event->attr.config,
- .value = ATOMIC64_INIT(0),
- };
-
- /*
- * We only need to worry about task events. System-wide events
- * are handled like usual, i.e. entirely with
- * intel_cqm_event_read().
- */
- if (event->cpu != -1)
- return __perf_event_count(event);
-
- /*
- * Only the group leader gets to report values except in case of
- * multiple events in the same group, we still need to read the
- * other events.This stops us
- * reporting duplicate values to userspace, and gives us a clear
- * rule for which task gets to report the values.
- *
- * Note that it is impossible to attribute these values to
- * specific packages - we forfeit that ability when we create
- * task events.
- */
- if (!cqm_group_leader(event) && !event->hw.is_group_event)
- return 0;
-
- /*
- * Getting up-to-date values requires an SMP IPI which is not
- * possible if we're being called in interrupt context. Return
- * the cached values instead.
- */
- if (unlikely(in_interrupt()))
- goto out;
-
- /*
- * Notice that we don't perform the reading of an RMID
- * atomically, because we can't hold a spin lock across the
- * IPIs.
- *
- * Speculatively perform the read, since @event might be
- * assigned a different (possibly invalid) RMID while we're
- * busying performing the IPI calls. It's therefore necessary to
- * check @event's RMID afterwards, and if it has changed,
- * discard the result of the read.
- */
- rr.rmid = ACCESS_ONCE(event->hw.cqm_rmid);
-
- if (!__rmid_valid(rr.rmid))
- goto out;
-
- cqm_mask_call(&rr);
-
- raw_spin_lock_irqsave(&cache_lock, flags);
- if (event->hw.cqm_rmid == rr.rmid)
- local64_set(&event->count, atomic64_read(&rr.value));
- raw_spin_unlock_irqrestore(&cache_lock, flags);
-out:
- return __perf_event_count(event);
-}
-
-static void intel_cqm_event_start(struct perf_event *event, int mode)
-{
- struct intel_pqr_state *state = this_cpu_ptr(&pqr_state);
- u32 rmid = event->hw.cqm_rmid;
-
- if (!(event->hw.cqm_state & PERF_HES_STOPPED))
- return;
-
- event->hw.cqm_state &= ~PERF_HES_STOPPED;
-
- if (state->rmid_usecnt++) {
- if (!WARN_ON_ONCE(state->rmid != rmid))
- return;
- } else {
- WARN_ON_ONCE(state->rmid);
- }
-
- state->rmid = rmid;
- wrmsr(MSR_IA32_PQR_ASSOC, rmid, state->closid);
-}
-
-static void intel_cqm_event_stop(struct perf_event *event, int mode)
-{
- struct intel_pqr_state *state = this_cpu_ptr(&pqr_state);
-
- if (event->hw.cqm_state & PERF_HES_STOPPED)
- return;
-
- event->hw.cqm_state |= PERF_HES_STOPPED;
-
- intel_cqm_event_read(event);
-
- if (!--state->rmid_usecnt) {
- state->rmid = 0;
- wrmsr(MSR_IA32_PQR_ASSOC, 0, state->closid);
- } else {
- WARN_ON_ONCE(!state->rmid);
- }
-}
-
-static int intel_cqm_event_add(struct perf_event *event, int mode)
-{
- unsigned long flags;
- u32 rmid;
-
- raw_spin_lock_irqsave(&cache_lock, flags);
-
- event->hw.cqm_state = PERF_HES_STOPPED;
- rmid = event->hw.cqm_rmid;
-
- if (__rmid_valid(rmid) && (mode & PERF_EF_START))
- intel_cqm_event_start(event, mode);
-
- raw_spin_unlock_irqrestore(&cache_lock, flags);
-
- return 0;
-}
-
-static void intel_cqm_event_destroy(struct perf_event *event)
-{
- struct perf_event *group_other = NULL;
- unsigned long flags;
-
- mutex_lock(&cache_mutex);
- /*
- * Hold the cache_lock as mbm timer handlers could be
- * scanning the list of events.
- */
- raw_spin_lock_irqsave(&cache_lock, flags);
-
- /*
- * If there's another event in this group...
- */
- if (!list_empty(&event->hw.cqm_group_entry)) {
- group_other = list_first_entry(&event->hw.cqm_group_entry,
- struct perf_event,
- hw.cqm_group_entry);
- list_del(&event->hw.cqm_group_entry);
- }
-
- /*
- * And we're the group leader..
- */
- if (cqm_group_leader(event)) {
- /*
- * If there was a group_other, make that leader, otherwise
- * destroy the group and return the RMID.
- */
- if (group_other) {
- list_replace(&event->hw.cqm_groups_entry,
- &group_other->hw.cqm_groups_entry);
- } else {
- u32 rmid = event->hw.cqm_rmid;
-
- if (__rmid_valid(rmid))
- __put_rmid(rmid);
- list_del(&event->hw.cqm_groups_entry);
- }
- }
-
- raw_spin_unlock_irqrestore(&cache_lock, flags);
-
- /*
- * Stop the mbm overflow timers when the last event is destroyed.
- */
- if (mbm_enabled && list_empty(&cache_groups))
- mbm_stop_timers();
-
- mutex_unlock(&cache_mutex);
-}
-
-static int intel_cqm_event_init(struct perf_event *event)
-{
- struct perf_event *group = NULL;
- bool rotate = false;
- unsigned long flags;
-
- if (event->attr.type != intel_cqm_pmu.type)
- return -ENOENT;
-
- if ((event->attr.config < QOS_L3_OCCUP_EVENT_ID) ||
- (event->attr.config > QOS_MBM_LOCAL_EVENT_ID))
- return -EINVAL;
-
- if ((is_cqm_event(event->attr.config) && !cqm_enabled) ||
- (is_mbm_event(event->attr.config) && !mbm_enabled))
- return -EINVAL;
-
- /* unsupported modes and filters */
- if (event->attr.exclude_user ||
- event->attr.exclude_kernel ||
- event->attr.exclude_hv ||
- event->attr.exclude_idle ||
- event->attr.exclude_host ||
- event->attr.exclude_guest ||
- event->attr.sample_period) /* no sampling */
- return -EINVAL;
-
- INIT_LIST_HEAD(&event->hw.cqm_group_entry);
- INIT_LIST_HEAD(&event->hw.cqm_groups_entry);
-
- event->destroy = intel_cqm_event_destroy;
-
- mutex_lock(&cache_mutex);
-
- /*
- * Start the mbm overflow timers when the first event is created.
- */
- if (mbm_enabled && list_empty(&cache_groups))
- mbm_start_timers();
-
- /* Will also set rmid */
- intel_cqm_setup_event(event, &group);
-
- /*
- * Hold the cache_lock as mbm timer handlers be
- * scanning the list of events.
- */
- raw_spin_lock_irqsave(&cache_lock, flags);
-
- if (group) {
- list_add_tail(&event->hw.cqm_group_entry,
- &group->hw.cqm_group_entry);
- } else {
- list_add_tail(&event->hw.cqm_groups_entry,
- &cache_groups);
-
- /*
- * All RMIDs are either in use or have recently been
- * used. Kick the rotation worker to clean/free some.
- *
- * We only do this for the group leader, rather than for
- * every event in a group to save on needless work.
- */
- if (!__rmid_valid(event->hw.cqm_rmid))
- rotate = true;
- }
-
- raw_spin_unlock_irqrestore(&cache_lock, flags);
- mutex_unlock(&cache_mutex);
-
- if (rotate)
- schedule_delayed_work(&intel_cqm_rmid_work, 0);
-
- return 0;
-}
-
-EVENT_ATTR_STR(llc_occupancy, intel_cqm_llc, "event=0x01");
-EVENT_ATTR_STR(llc_occupancy.per-pkg, intel_cqm_llc_pkg, "1");
-EVENT_ATTR_STR(llc_occupancy.unit, intel_cqm_llc_unit, "Bytes");
-EVENT_ATTR_STR(llc_occupancy.scale, intel_cqm_llc_scale, NULL);
-EVENT_ATTR_STR(llc_occupancy.snapshot, intel_cqm_llc_snapshot, "1");
-
-EVENT_ATTR_STR(total_bytes, intel_cqm_total_bytes, "event=0x02");
-EVENT_ATTR_STR(total_bytes.per-pkg, intel_cqm_total_bytes_pkg, "1");
-EVENT_ATTR_STR(total_bytes.unit, intel_cqm_total_bytes_unit, "MB");
-EVENT_ATTR_STR(total_bytes.scale, intel_cqm_total_bytes_scale, "1e-6");
-
-EVENT_ATTR_STR(local_bytes, intel_cqm_local_bytes, "event=0x03");
-EVENT_ATTR_STR(local_bytes.per-pkg, intel_cqm_local_bytes_pkg, "1");
-EVENT_ATTR_STR(local_bytes.unit, intel_cqm_local_bytes_unit, "MB");
-EVENT_ATTR_STR(local_bytes.scale, intel_cqm_local_bytes_scale, "1e-6");
-
-static struct attribute *intel_cqm_events_attr[] = {
- EVENT_PTR(intel_cqm_llc),
- EVENT_PTR(intel_cqm_llc_pkg),
- EVENT_PTR(intel_cqm_llc_unit),
- EVENT_PTR(intel_cqm_llc_scale),
- EVENT_PTR(intel_cqm_llc_snapshot),
- NULL,
-};
-
-static struct attribute *intel_mbm_events_attr[] = {
- EVENT_PTR(intel_cqm_total_bytes),
- EVENT_PTR(intel_cqm_local_bytes),
- EVENT_PTR(intel_cqm_total_bytes_pkg),
- EVENT_PTR(intel_cqm_local_bytes_pkg),
- EVENT_PTR(intel_cqm_total_bytes_unit),
- EVENT_PTR(intel_cqm_local_bytes_unit),
- EVENT_PTR(intel_cqm_total_bytes_scale),
- EVENT_PTR(intel_cqm_local_bytes_scale),
- NULL,
-};
-
-static struct attribute *intel_cmt_mbm_events_attr[] = {
- EVENT_PTR(intel_cqm_llc),
- EVENT_PTR(intel_cqm_total_bytes),
- EVENT_PTR(intel_cqm_local_bytes),
- EVENT_PTR(intel_cqm_llc_pkg),
- EVENT_PTR(intel_cqm_total_bytes_pkg),
- EVENT_PTR(intel_cqm_local_bytes_pkg),
- EVENT_PTR(intel_cqm_llc_unit),
- EVENT_PTR(intel_cqm_total_bytes_unit),
- EVENT_PTR(intel_cqm_local_bytes_unit),
- EVENT_PTR(intel_cqm_llc_scale),
- EVENT_PTR(intel_cqm_total_bytes_scale),
- EVENT_PTR(intel_cqm_local_bytes_scale),
- EVENT_PTR(intel_cqm_llc_snapshot),
- NULL,
-};
-
-static struct attribute_group intel_cqm_events_group = {
- .name = "events",
- .attrs = NULL,
-};
-
-PMU_FORMAT_ATTR(event, "config:0-7");
-static struct attribute *intel_cqm_formats_attr[] = {
- &format_attr_event.attr,
- NULL,
-};
-
-static struct attribute_group intel_cqm_format_group = {
- .name = "format",
- .attrs = intel_cqm_formats_attr,
-};
-
-static ssize_t
-max_recycle_threshold_show(struct device *dev, struct device_attribute *attr,
- char *page)
-{
- ssize_t rv;
-
- mutex_lock(&cache_mutex);
- rv = snprintf(page, PAGE_SIZE-1, "%u\n", __intel_cqm_max_threshold);
- mutex_unlock(&cache_mutex);
-
- return rv;
-}
-
-static ssize_t
-max_recycle_threshold_store(struct device *dev,
- struct device_attribute *attr,
- const char *buf, size_t count)
-{
- unsigned int bytes, cachelines;
- int ret;
-
- ret = kstrtouint(buf, 0, &bytes);
- if (ret)
- return ret;
-
- mutex_lock(&cache_mutex);
-
- __intel_cqm_max_threshold = bytes;
- cachelines = bytes / cqm_l3_scale;
-
- /*
- * The new maximum takes effect immediately.
- */
- if (__intel_cqm_threshold > cachelines)
- __intel_cqm_threshold = cachelines;
-
- mutex_unlock(&cache_mutex);
-
- return count;
-}
-
-static DEVICE_ATTR_RW(max_recycle_threshold);
-
-static struct attribute *intel_cqm_attrs[] = {
- &dev_attr_max_recycle_threshold.attr,
- NULL,
-};
-
-static const struct attribute_group intel_cqm_group = {
- .attrs = intel_cqm_attrs,
-};
-
-static const struct attribute_group *intel_cqm_attr_groups[] = {
- &intel_cqm_events_group,
- &intel_cqm_format_group,
- &intel_cqm_group,
- NULL,
-};
-
-static struct pmu intel_cqm_pmu = {
- .hrtimer_interval_ms = RMID_DEFAULT_QUEUE_TIME,
- .attr_groups = intel_cqm_attr_groups,
- .task_ctx_nr = perf_sw_context,
- .event_init = intel_cqm_event_init,
- .add = intel_cqm_event_add,
- .del = intel_cqm_event_stop,
- .start = intel_cqm_event_start,
- .stop = intel_cqm_event_stop,
- .read = intel_cqm_event_read,
- .count = intel_cqm_event_count,
-};
-
-static inline void cqm_pick_event_reader(int cpu)
-{
- int reader;
-
- /* First online cpu in package becomes the reader */
- reader = cpumask_any_and(&cqm_cpumask, topology_core_cpumask(cpu));
- if (reader >= nr_cpu_ids)
- cpumask_set_cpu(cpu, &cqm_cpumask);
-}
-
-static int intel_cqm_cpu_starting(unsigned int cpu)
-{
- struct intel_pqr_state *state = &per_cpu(pqr_state, cpu);
- struct cpuinfo_x86 *c = &cpu_data(cpu);
-
- state->rmid = 0;
- state->closid = 0;
- state->rmid_usecnt = 0;
-
- WARN_ON(c->x86_cache_max_rmid != cqm_max_rmid);
- WARN_ON(c->x86_cache_occ_scale != cqm_l3_scale);
-
- cqm_pick_event_reader(cpu);
- return 0;
-}
-
-static int intel_cqm_cpu_exit(unsigned int cpu)
-{
- int target;
-
- /* Is @cpu the current cqm reader for this package ? */
- if (!cpumask_test_and_clear_cpu(cpu, &cqm_cpumask))
- return 0;
-
- /* Find another online reader in this package */
- target = cpumask_any_but(topology_core_cpumask(cpu), cpu);
-
- if (target < nr_cpu_ids)
- cpumask_set_cpu(target, &cqm_cpumask);
-
- return 0;
-}
-
-static const struct x86_cpu_id intel_cqm_match[] = {
- { .vendor = X86_VENDOR_INTEL, .feature = X86_FEATURE_CQM_OCCUP_LLC },
- {}
-};
-
-static void mbm_cleanup(void)
-{
- if (!mbm_enabled)
- return;
-
- kfree(mbm_local);
- kfree(mbm_total);
- mbm_enabled = false;
-}
-
-static const struct x86_cpu_id intel_mbm_local_match[] = {
- { .vendor = X86_VENDOR_INTEL, .feature = X86_FEATURE_CQM_MBM_LOCAL },
- {}
-};
-
-static const struct x86_cpu_id intel_mbm_total_match[] = {
- { .vendor = X86_VENDOR_INTEL, .feature = X86_FEATURE_CQM_MBM_TOTAL },
- {}
-};
-
-static int intel_mbm_init(void)
-{
- int ret = 0, array_size, maxid = cqm_max_rmid + 1;
-
- mbm_socket_max = topology_max_packages();
- array_size = sizeof(struct sample) * maxid * mbm_socket_max;
- mbm_local = kmalloc(array_size, GFP_KERNEL);
- if (!mbm_local)
- return -ENOMEM;
-
- mbm_total = kmalloc(array_size, GFP_KERNEL);
- if (!mbm_total) {
- ret = -ENOMEM;
- goto out;
- }
-
- array_size = sizeof(struct hrtimer) * mbm_socket_max;
- mbm_timers = kmalloc(array_size, GFP_KERNEL);
- if (!mbm_timers) {
- ret = -ENOMEM;
- goto out;
- }
- mbm_hrtimer_init();
-
-out:
- if (ret)
- mbm_cleanup();
-
- return ret;
-}
-
-static int __init intel_cqm_init(void)
-{
- char *str = NULL, scale[20];
- int cpu, ret;
-
- if (x86_match_cpu(intel_cqm_match))
- cqm_enabled = true;
-
- if (x86_match_cpu(intel_mbm_local_match) &&
- x86_match_cpu(intel_mbm_total_match))
- mbm_enabled = true;
-
- if (!cqm_enabled && !mbm_enabled)
- return -ENODEV;
-
- cqm_l3_scale = boot_cpu_data.x86_cache_occ_scale;
-
- /*
- * It's possible that not all resources support the same number
- * of RMIDs. Instead of making scheduling much more complicated
- * (where we have to match a task's RMID to a cpu that supports
- * that many RMIDs) just find the minimum RMIDs supported across
- * all cpus.
- *
- * Also, check that the scales match on all cpus.
- */
- cpus_read_lock();
- for_each_online_cpu(cpu) {
- struct cpuinfo_x86 *c = &cpu_data(cpu);
-
- if (c->x86_cache_max_rmid < cqm_max_rmid)
- cqm_max_rmid = c->x86_cache_max_rmid;
-
- if (c->x86_cache_occ_scale != cqm_l3_scale) {
- pr_err("Multiple LLC scale values, disabling\n");
- ret = -EINVAL;
- goto out;
- }
- }
-
- /*
- * A reasonable upper limit on the max threshold is the number
- * of lines tagged per RMID if all RMIDs have the same number of
- * lines tagged in the LLC.
- *
- * For a 35MB LLC and 56 RMIDs, this is ~1.8% of the LLC.
- */
- __intel_cqm_max_threshold =
- boot_cpu_data.x86_cache_size * 1024 / (cqm_max_rmid + 1);
-
- snprintf(scale, sizeof(scale), "%u", cqm_l3_scale);
- str = kstrdup(scale, GFP_KERNEL);
- if (!str) {
- ret = -ENOMEM;
- goto out;
- }
-
- event_attr_intel_cqm_llc_scale.event_str = str;
-
- ret = intel_cqm_setup_rmid_cache();
- if (ret)
- goto out;
-
- if (mbm_enabled)
- ret = intel_mbm_init();
- if (ret && !cqm_enabled)
- goto out;
-
- if (cqm_enabled && mbm_enabled)
- intel_cqm_events_group.attrs = intel_cmt_mbm_events_attr;
- else if (!cqm_enabled && mbm_enabled)
- intel_cqm_events_group.attrs = intel_mbm_events_attr;
- else if (cqm_enabled && !mbm_enabled)
- intel_cqm_events_group.attrs = intel_cqm_events_attr;
-
- ret = perf_pmu_register(&intel_cqm_pmu, "intel_cqm", -1);
- if (ret) {
- pr_err("Intel CQM perf registration failed: %d\n", ret);
- goto out;
- }
-
- if (cqm_enabled)
- pr_info("Intel CQM monitoring enabled\n");
- if (mbm_enabled)
- pr_info("Intel MBM enabled\n");
-
- /*
- * Setup the hot cpu notifier once we are sure cqm
- * is enabled to avoid notifier leak.
- */
- cpuhp_setup_state_cpuslocked(CPUHP_AP_PERF_X86_CQM_STARTING,
- "perf/x86/cqm:starting",
- intel_cqm_cpu_starting, NULL);
- cpuhp_setup_state_cpuslocked(CPUHP_AP_PERF_X86_CQM_ONLINE,
- "perf/x86/cqm:online",
- NULL, intel_cqm_cpu_exit);
-out:
- cpus_read_unlock();
-
- if (ret) {
- kfree(str);
- cqm_cleanup();
- mbm_cleanup();
- }
-
- return ret;
-}
-device_initcall(intel_cqm_init);
diff --git a/arch/x86/include/asm/intel_rdt.h b/arch/x86/include/asm/intel_rdt.h
deleted file mode 100644
index 597dc4995678..000000000000
--- a/arch/x86/include/asm/intel_rdt.h
+++ /dev/null
@@ -1,286 +0,0 @@
-#ifndef _ASM_X86_INTEL_RDT_H
-#define _ASM_X86_INTEL_RDT_H
-
-#ifdef CONFIG_INTEL_RDT_A
-
-#include <linux/sched.h>
-#include <linux/kernfs.h>
-#include <linux/jump_label.h>
-
-#include <asm/intel_rdt_common.h>
-
-#define IA32_L3_QOS_CFG 0xc81
-#define IA32_L3_CBM_BASE 0xc90
-#define IA32_L2_CBM_BASE 0xd10
-#define IA32_MBA_THRTL_BASE 0xd50
-
-#define L3_QOS_CDP_ENABLE 0x01ULL
-
-/**
- * struct rdtgroup - store rdtgroup's data in resctrl file system.
- * @kn: kernfs node
- * @rdtgroup_list: linked list for all rdtgroups
- * @closid: closid for this rdtgroup
- * @cpu_mask: CPUs assigned to this rdtgroup
- * @flags: status bits
- * @waitcount: how many cpus expect to find this
- * group when they acquire rdtgroup_mutex
- */
-struct rdtgroup {
- struct kernfs_node *kn;
- struct list_head rdtgroup_list;
- int closid;
- struct cpumask cpu_mask;
- int flags;
- atomic_t waitcount;
-};
-
-/* rdtgroup.flags */
-#define RDT_DELETED 1
-
-/* rftype.flags */
-#define RFTYPE_FLAGS_CPUS_LIST 1
-
-/* List of all resource groups */
-extern struct list_head rdt_all_groups;
-
-extern int max_name_width, max_data_width;
-
-int __init rdtgroup_init(void);
-
-/**
- * struct rftype - describe each file in the resctrl file system
- * @name: File name
- * @mode: Access mode
- * @kf_ops: File operations
- * @flags: File specific RFTYPE_FLAGS_* flags
- * @seq_show: Show content of the file
- * @write: Write to the file
- */
-struct rftype {
- char *name;
- umode_t mode;
- struct kernfs_ops *kf_ops;
- unsigned long flags;
-
- int (*seq_show)(struct kernfs_open_file *of,
- struct seq_file *sf, void *v);
- /*
- * write() is the generic write callback which maps directly to
- * kernfs write operation and overrides all other operations.
- * Maximum write size is determined by ->max_write_len.
- */
- ssize_t (*write)(struct kernfs_open_file *of,
- char *buf, size_t nbytes, loff_t off);
-};
-
-/**
- * struct rdt_domain - group of cpus sharing an RDT resource
- * @list: all instances of this resource
- * @id: unique id for this instance
- * @cpu_mask: which cpus share this resource
- * @ctrl_val: array of cache or mem ctrl values (indexed by CLOSID)
- * @new_ctrl: new ctrl value to be loaded
- * @have_new_ctrl: did user provide new_ctrl for this domain
- */
-struct rdt_domain {
- struct list_head list;
- int id;
- struct cpumask cpu_mask;
- u32 *ctrl_val;
- u32 new_ctrl;
- bool have_new_ctrl;
-};
-
-/**
- * struct msr_param - set a range of MSRs from a domain
- * @res: The resource to use
- * @low: Beginning index from base MSR
- * @high: End index
- */
-struct msr_param {
- struct rdt_resource *res;
- int low;
- int high;
-};
-
-/**
- * struct rdt_cache - Cache allocation related data
- * @cbm_len: Length of the cache bit mask
- * @min_cbm_bits: Minimum number of consecutive bits to be set
- * @cbm_idx_mult: Multiplier of CBM index
- * @cbm_idx_offset: Offset of CBM index. CBM index is computed by:
- * closid * cbm_idx_multi + cbm_idx_offset
- * in a cache bit mask
- */
-struct rdt_cache {
- unsigned int cbm_len;
- unsigned int min_cbm_bits;
- unsigned int cbm_idx_mult;
- unsigned int cbm_idx_offset;
-};
-
-/**
- * struct rdt_membw - Memory bandwidth allocation related data
- * @max_delay: Max throttle delay. Delay is the hardware
- * representation for memory bandwidth.
- * @min_bw: Minimum memory bandwidth percentage user can request
- * @bw_gran: Granularity at which the memory bandwidth is allocated
- * @delay_linear: True if memory B/W delay is in linear scale
- * @mb_map: Mapping of memory B/W percentage to memory B/W delay
- */
-struct rdt_membw {
- u32 max_delay;
- u32 min_bw;
- u32 bw_gran;
- u32 delay_linear;
- u32 *mb_map;
-};
-
-/**
- * struct rdt_resource - attributes of an RDT resource
- * @enabled: Is this feature enabled on this machine
- * @capable: Is this feature available on this machine
- * @name: Name to use in "schemata" file
- * @num_closid: Number of CLOSIDs available
- * @cache_level: Which cache level defines scope of this resource
- * @default_ctrl: Specifies default cache cbm or memory B/W percent.
- * @msr_base: Base MSR address for CBMs
- * @msr_update: Function pointer to update QOS MSRs
- * @data_width: Character width of data when displaying
- * @domains: All domains for this resource
- * @cache: Cache allocation related data
- * @info_files: resctrl info files for the resource
- * @nr_info_files: Number of info files
- * @format_str: Per resource format string to show domain value
- * @parse_ctrlval: Per resource function pointer to parse control values
- */
-struct rdt_resource {
- bool enabled;
- bool capable;
- char *name;
- int num_closid;
- int cache_level;
- u32 default_ctrl;
- unsigned int msr_base;
- void (*msr_update) (struct rdt_domain *d, struct msr_param *m,
- struct rdt_resource *r);
- int data_width;
- struct list_head domains;
- struct rdt_cache cache;
- struct rdt_membw membw;
- struct rftype *info_files;
- int nr_info_files;
- const char *format_str;
- int (*parse_ctrlval) (char *buf, struct rdt_resource *r,
- struct rdt_domain *d);
-};
-
-void rdt_get_cache_infofile(struct rdt_resource *r);
-void rdt_get_mba_infofile(struct rdt_resource *r);
-int parse_cbm(char *buf, struct rdt_resource *r, struct rdt_domain *d);
-int parse_bw(char *buf, struct rdt_resource *r, struct rdt_domain *d);
-
-extern struct mutex rdtgroup_mutex;
-
-extern struct rdt_resource rdt_resources_all[];
-extern struct rdtgroup rdtgroup_default;
-DECLARE_STATIC_KEY_FALSE(rdt_enable_key);
-
-int __init rdtgroup_init(void);
-
-enum {
- RDT_RESOURCE_L3,
- RDT_RESOURCE_L3DATA,
- RDT_RESOURCE_L3CODE,
- RDT_RESOURCE_L2,
- RDT_RESOURCE_MBA,
-
- /* Must be the last */
- RDT_NUM_RESOURCES,
-};
-
-#define for_each_capable_rdt_resource(r) \
- for (r = rdt_resources_all; r < rdt_resources_all + RDT_NUM_RESOURCES;\
- r++) \
- if (r->capable)
-
-#define for_each_enabled_rdt_resource(r) \
- for (r = rdt_resources_all; r < rdt_resources_all + RDT_NUM_RESOURCES;\
- r++) \
- if (r->enabled)
-
-/* CPUID.(EAX=10H, ECX=ResID=1).EAX */
-union cpuid_0x10_1_eax {
- struct {
- unsigned int cbm_len:5;
- } split;
- unsigned int full;
-};
-
-/* CPUID.(EAX=10H, ECX=ResID=3).EAX */
-union cpuid_0x10_3_eax {
- struct {
- unsigned int max_delay:12;
- } split;
- unsigned int full;
-};
-
-/* CPUID.(EAX=10H, ECX=ResID).EDX */
-union cpuid_0x10_x_edx {
- struct {
- unsigned int cos_max:16;
- } split;
- unsigned int full;
-};
-
-DECLARE_PER_CPU_READ_MOSTLY(int, cpu_closid);
-
-void rdt_ctrl_update(void *arg);
-struct rdtgroup *rdtgroup_kn_lock_live(struct kernfs_node *kn);
-void rdtgroup_kn_unlock(struct kernfs_node *kn);
-ssize_t rdtgroup_schemata_write(struct kernfs_open_file *of,
- char *buf, size_t nbytes, loff_t off);
-int rdtgroup_schemata_show(struct kernfs_open_file *of,
- struct seq_file *s, void *v);
-
-/*
- * intel_rdt_sched_in() - Writes the task's CLOSid to IA32_PQR_MSR
- *
- * Following considerations are made so that this has minimal impact
- * on scheduler hot path:
- * - This will stay as no-op unless we are running on an Intel SKU
- * which supports resource control and we enable by mounting the
- * resctrl file system.
- * - Caches the per cpu CLOSid values and does the MSR write only
- * when a task with a different CLOSid is scheduled in.
- *
- * Must be called with preemption disabled.
- */
-static inline void intel_rdt_sched_in(void)
-{
- if (static_branch_likely(&rdt_enable_key)) {
- struct intel_pqr_state *state = this_cpu_ptr(&pqr_state);
- int closid;
-
- /*
- * If this task has a closid assigned, use it.
- * Else use the closid assigned to this cpu.
- */
- closid = current->closid;
- if (closid == 0)
- closid = this_cpu_read(cpu_closid);
-
- if (closid != state->closid) {
- state->closid = closid;
- wrmsr(MSR_IA32_PQR_ASSOC, state->rmid, closid);
- }
- }
-}
-
-#else
-
-static inline void intel_rdt_sched_in(void) {}
-
-#endif /* CONFIG_INTEL_RDT_A */
-#endif /* _ASM_X86_INTEL_RDT_H */
diff --git a/arch/x86/include/asm/intel_rdt_common.h b/arch/x86/include/asm/intel_rdt_common.h
deleted file mode 100644
index b31081b89407..000000000000
--- a/arch/x86/include/asm/intel_rdt_common.h
+++ /dev/null
@@ -1,27 +0,0 @@
-#ifndef _ASM_X86_INTEL_RDT_COMMON_H
-#define _ASM_X86_INTEL_RDT_COMMON_H
-
-#define MSR_IA32_PQR_ASSOC 0x0c8f
-
-/**
- * struct intel_pqr_state - State cache for the PQR MSR
- * @rmid: The cached Resource Monitoring ID
- * @closid: The cached Class Of Service ID
- * @rmid_usecnt: The usage counter for rmid
- *
- * The upper 32 bits of MSR_IA32_PQR_ASSOC contain closid and the
- * lower 10 bits rmid. The update to MSR_IA32_PQR_ASSOC always
- * contains both parts, so we need to cache them.
- *
- * The cache also helps to avoid pointless updates if the value does
- * not change.
- */
-struct intel_pqr_state {
- u32 rmid;
- u32 closid;
- int rmid_usecnt;
-};
-
-DECLARE_PER_CPU(struct intel_pqr_state, pqr_state);
-
-#endif /* _ASM_X86_INTEL_RDT_COMMON_H */
diff --git a/arch/x86/include/asm/intel_rdt_sched.h b/arch/x86/include/asm/intel_rdt_sched.h
new file mode 100644
index 000000000000..b4bbf8b21512
--- /dev/null
+++ b/arch/x86/include/asm/intel_rdt_sched.h
@@ -0,0 +1,92 @@
+#ifndef _ASM_X86_INTEL_RDT_SCHED_H
+#define _ASM_X86_INTEL_RDT_SCHED_H
+
+#ifdef CONFIG_INTEL_RDT
+
+#include <linux/sched.h>
+#include <linux/jump_label.h>
+
+#define IA32_PQR_ASSOC 0x0c8f
+
+/**
+ * struct intel_pqr_state - State cache for the PQR MSR
+ * @cur_rmid: The cached Resource Monitoring ID
+ * @cur_closid: The cached Class Of Service ID
+ * @default_rmid: The user assigned Resource Monitoring ID
+ * @default_closid: The user assigned cached Class Of Service ID
+ *
+ * The upper 32 bits of IA32_PQR_ASSOC contain closid and the
+ * lower 10 bits rmid. The update to IA32_PQR_ASSOC always
+ * contains both parts, so we need to cache them. This also
+ * stores the user configured per cpu CLOSID and RMID.
+ *
+ * The cache also helps to avoid pointless updates if the value does
+ * not change.
+ */
+struct intel_pqr_state {
+ u32 cur_rmid;
+ u32 cur_closid;
+ u32 default_rmid;
+ u32 default_closid;
+};
+
+DECLARE_PER_CPU(struct intel_pqr_state, pqr_state);
+
+DECLARE_STATIC_KEY_FALSE(rdt_enable_key);
+DECLARE_STATIC_KEY_FALSE(rdt_alloc_enable_key);
+DECLARE_STATIC_KEY_FALSE(rdt_mon_enable_key);
+
+/*
+ * __intel_rdt_sched_in() - Writes the task's CLOSid/RMID to IA32_PQR_MSR
+ *
+ * Following considerations are made so that this has minimal impact
+ * on scheduler hot path:
+ * - This will stay as no-op unless we are running on an Intel SKU
+ * which supports resource control or monitoring and we enable by
+ * mounting the resctrl file system.
+ * - Caches the per cpu CLOSid/RMID values and does the MSR write only
+ * when a task with a different CLOSid/RMID is scheduled in.
+ * - We allocate RMIDs/CLOSids globally in order to keep this as
+ * simple as possible.
+ * Must be called with preemption disabled.
+ */
+static void __intel_rdt_sched_in(void)
+{
+ struct intel_pqr_state *state = this_cpu_ptr(&pqr_state);
+ u32 closid = state->default_closid;
+ u32 rmid = state->default_rmid;
+
+ /*
+ * If this task has a closid/rmid assigned, use it.
+ * Else use the closid/rmid assigned to this cpu.
+ */
+ if (static_branch_likely(&rdt_alloc_enable_key)) {
+ if (current->closid)
+ closid = current->closid;
+ }
+
+ if (static_branch_likely(&rdt_mon_enable_key)) {
+ if (current->rmid)
+ rmid = current->rmid;
+ }
+
+ if (closid != state->cur_closid || rmid != state->cur_rmid) {
+ state->cur_closid = closid;
+ state->cur_rmid = rmid;
+ wrmsr(IA32_PQR_ASSOC, rmid, closid);
+ }
+}
+
+static inline void intel_rdt_sched_in(void)
+{
+ if (static_branch_likely(&rdt_enable_key))
+ __intel_rdt_sched_in();
+}
+
+#else
+
+static inline void intel_rdt_sched_in(void) {}
+
+#endif /* CONFIG_INTEL_RDT */
+
+#endif /* _ASM_X86_INTEL_RDT_SCHED_H */
diff --git a/arch/x86/kernel/cpu/Makefile b/arch/x86/kernel/cpu/Makefile
index cdf82492b770..e17942c131c8 100644
--- a/arch/x86/kernel/cpu/Makefile
+++ b/arch/x86/kernel/cpu/Makefile
@@ -33,7 +33,7 @@ obj-$(CONFIG_CPU_SUP_CENTAUR) += centaur.o
obj-$(CONFIG_CPU_SUP_TRANSMETA_32) += transmeta.o
obj-$(CONFIG_CPU_SUP_UMC_32) += umc.o
-obj-$(CONFIG_INTEL_RDT_A) += intel_rdt.o intel_rdt_rdtgroup.o intel_rdt_schemata.o
+obj-$(CONFIG_INTEL_RDT) += intel_rdt.o intel_rdt_rdtgroup.o intel_rdt_monitor.o intel_rdt_ctrlmondata.o
obj-$(CONFIG_X86_MCE) += mcheck/
obj-$(CONFIG_MTRR) += mtrr/
diff --git a/arch/x86/kernel/cpu/intel_rdt.c b/arch/x86/kernel/cpu/intel_rdt.c
index 5b366462f579..cd5fc61ba450 100644
--- a/arch/x86/kernel/cpu/intel_rdt.c
+++ b/arch/x86/kernel/cpu/intel_rdt.c
@@ -30,7 +30,8 @@
#include <linux/cpuhotplug.h>
#include <asm/intel-family.h>
-#include <asm/intel_rdt.h>
+#include <asm/intel_rdt_sched.h>
+#include "intel_rdt.h"
#define MAX_MBA_BW 100u
#define MBA_IS_LINEAR 0x4
@@ -38,7 +39,13 @@
/* Mutex to protect rdtgroup access. */
DEFINE_MUTEX(rdtgroup_mutex);
-DEFINE_PER_CPU_READ_MOSTLY(int, cpu_closid);
+/*
+ * The cached intel_pqr_state is strictly per CPU and can never be
+ * updated from a remote CPU. Functions which modify the state
+ * are called with interrupts disabled and no preemption, which
+ * is sufficient for the protection.
+ */
+DEFINE_PER_CPU(struct intel_pqr_state, pqr_state);
/*
* Used to store the max resource name width and max resource data width
@@ -46,6 +53,12 @@ DEFINE_PER_CPU_READ_MOSTLY(int, cpu_closid);
*/
int max_name_width, max_data_width;
+/*
+ * Global boolean for rdt_alloc which is true if any
+ * resource allocation is enabled.
+ */
+bool rdt_alloc_capable;
+
static void
mba_wrmsr(struct rdt_domain *d, struct msr_param *m, struct rdt_resource *r);
static void
@@ -54,7 +67,9 @@ cat_wrmsr(struct rdt_domain *d, struct msr_param *m, struct rdt_resource *r);
#define domain_init(id) LIST_HEAD_INIT(rdt_resources_all[id].domains)
struct rdt_resource rdt_resources_all[] = {
+ [RDT_RESOURCE_L3] =
{
+ .rid = RDT_RESOURCE_L3,
.name = "L3",
.domains = domain_init(RDT_RESOURCE_L3),
.msr_base = IA32_L3_CBM_BASE,
@@ -67,8 +82,11 @@ struct rdt_resource rdt_resources_all[] = {
},
.parse_ctrlval = parse_cbm,
.format_str = "%d=%0*x",
+ .fflags = RFTYPE_RES_CACHE,
},
+ [RDT_RESOURCE_L3DATA] =
{
+ .rid = RDT_RESOURCE_L3DATA,
.name = "L3DATA",
.domains = domain_init(RDT_RESOURCE_L3DATA),
.msr_base = IA32_L3_CBM_BASE,
@@ -81,8 +99,11 @@ struct rdt_resource rdt_resources_all[] = {
},
.parse_ctrlval = parse_cbm,
.format_str = "%d=%0*x",
+ .fflags = RFTYPE_RES_CACHE,
},
+ [RDT_RESOURCE_L3CODE] =
{
+ .rid = RDT_RESOURCE_L3CODE,
.name = "L3CODE",
.domains = domain_init(RDT_RESOURCE_L3CODE),
.msr_base = IA32_L3_CBM_BASE,
@@ -95,8 +116,11 @@ struct rdt_resource rdt_resources_all[] = {
},
.parse_ctrlval = parse_cbm,
.format_str = "%d=%0*x",
+ .fflags = RFTYPE_RES_CACHE,
},
+ [RDT_RESOURCE_L2] =
{
+ .rid = RDT_RESOURCE_L2,
.name = "L2",
.domains = domain_init(RDT_RESOURCE_L2),
.msr_base = IA32_L2_CBM_BASE,
@@ -109,8 +133,11 @@ struct rdt_resource rdt_resources_all[] = {
},
.parse_ctrlval = parse_cbm,
.format_str = "%d=%0*x",
+ .fflags = RFTYPE_RES_CACHE,
},
+ [RDT_RESOURCE_MBA] =
{
+ .rid = RDT_RESOURCE_MBA,
.name = "MB",
.domains = domain_init(RDT_RESOURCE_MBA),
.msr_base = IA32_MBA_THRTL_BASE,
@@ -118,6 +145,7 @@ struct rdt_resource rdt_resources_all[] = {
.cache_level = 3,
.parse_ctrlval = parse_bw,
.format_str = "%d=%*d",
+ .fflags = RFTYPE_RES_MB,
},
};
@@ -144,33 +172,28 @@ static unsigned int cbm_idx(struct rdt_resource *r, unsigned int closid)
* is always 20 on hsw server parts. The minimum cache bitmask length
* allowed for HSW server is always 2 bits. Hardcode all of them.
*/
-static inline bool cache_alloc_hsw_probe(void)
+static inline void cache_alloc_hsw_probe(void)
{
- if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
- boot_cpu_data.x86 == 6 &&
- boot_cpu_data.x86_model == INTEL_FAM6_HASWELL_X) {
- struct rdt_resource *r = &rdt_resources_all[RDT_RESOURCE_L3];
- u32 l, h, max_cbm = BIT_MASK(20) - 1;
-
- if (wrmsr_safe(IA32_L3_CBM_BASE, max_cbm, 0))
- return false;
- rdmsr(IA32_L3_CBM_BASE, l, h);
+ struct rdt_resource *r = &rdt_resources_all[RDT_RESOURCE_L3];
+ u32 l, h, max_cbm = BIT_MASK(20) - 1;
- /* If all the bits were set in MSR, return success */
- if (l != max_cbm)
- return false;
+ if (wrmsr_safe(IA32_L3_CBM_BASE, max_cbm, 0))
+ return;
+ rdmsr(IA32_L3_CBM_BASE, l, h);
- r->num_closid = 4;
- r->default_ctrl = max_cbm;
- r->cache.cbm_len = 20;
- r->cache.min_cbm_bits = 2;
- r->capable = true;
- r->enabled = true;
+ /* If all the bits were set in MSR, return success */
+ if (l != max_cbm)
+ return;
- return true;
- }
+ r->num_closid = 4;
+ r->default_ctrl = max_cbm;
+ r->cache.cbm_len = 20;
+ r->cache.shareable_bits = 0xc0000;
+ r->cache.min_cbm_bits = 2;
+ r->alloc_capable = true;
+ r->alloc_enabled = true;
- return false;
+ rdt_alloc_capable = true;
}
/*
@@ -213,15 +236,14 @@ static bool rdt_get_mem_config(struct rdt_resource *r)
return false;
}
r->data_width = 3;
- rdt_get_mba_infofile(r);
- r->capable = true;
- r->enabled = true;
+ r->alloc_capable = true;
+ r->alloc_enabled = true;
return true;
}
-static void rdt_get_cache_config(int idx, struct rdt_resource *r)
+static void rdt_get_cache_alloc_cfg(int idx, struct rdt_resource *r)
{
union cpuid_0x10_1_eax eax;
union cpuid_0x10_x_edx edx;
@@ -231,10 +253,10 @@ static void rdt_get_cache_config(int idx, struct rdt_resource *r)
r->num_closid = edx.split.cos_max + 1;
r->cache.cbm_len = eax.split.cbm_len + 1;
r->default_ctrl = BIT_MASK(eax.split.cbm_len + 1) - 1;
+ r->cache.shareable_bits = ebx & r->default_ctrl;
r->data_width = (r->cache.cbm_len + 3) / 4;
- rdt_get_cache_infofile(r);
- r->capable = true;
- r->enabled = true;
+ r->alloc_capable = true;
+ r->alloc_enabled = true;
}
static void rdt_get_cdp_l3_config(int type)
@@ -246,12 +268,12 @@ static void rdt_get_cdp_l3_config(int type)
r->cache.cbm_len = r_l3->cache.cbm_len;
r->default_ctrl = r_l3->default_ctrl;
r->data_width = (r->cache.cbm_len + 3) / 4;
- r->capable = true;
+ r->alloc_capable = true;
/*
* By default, CDP is disabled. CDP can be enabled by mount parameter
* "cdp" during resctrl file system mount time.
*/
- r->enabled = false;
+ r->alloc_enabled = false;
}
static int get_cache_id(int cpu, int level)
@@ -300,6 +322,19 @@ cat_wrmsr(struct rdt_domain *d, struct msr_param *m, struct rdt_resource *r)
wrmsrl(r->msr_base + cbm_idx(r, i), d->ctrl_val[i]);
}
+struct rdt_domain *get_domain_from_cpu(int cpu, struct rdt_resource *r)
+{
+ struct rdt_domain *d;
+
+ list_for_each_entry(d, &r->domains, list) {
+ /* Find the domain that contains this CPU */
+ if (cpumask_test_cpu(cpu, &d->cpu_mask))
+ return d;
+ }
+
+ return NULL;
+}
+
void rdt_ctrl_update(void *arg)
{
struct msr_param *m = arg;
@@ -307,12 +342,10 @@ void rdt_ctrl_update(void *arg)
int cpu = smp_processor_id();
struct rdt_domain *d;
- list_for_each_entry(d, &r->domains, list) {
- /* Find the domain that contains this CPU */
- if (cpumask_test_cpu(cpu, &d->cpu_mask)) {
- r->msr_update(d, m, r);
- return;
- }
+ d = get_domain_from_cpu(cpu, r);
+ if (d) {
+ r->msr_update(d, m, r);
+ return;
}
pr_warn_once("cpu %d not found in any domain for resource %s\n",
cpu, r->name);
@@ -326,8 +359,8 @@ void rdt_ctrl_update(void *arg)
* caller, return the first domain whose id is bigger than the input id.
* The domain list is sorted by id in ascending order.
*/
-static struct rdt_domain *rdt_find_domain(struct rdt_resource *r, int id,
- struct list_head **pos)
+struct rdt_domain *rdt_find_domain(struct rdt_resource *r, int id,
+ struct list_head **pos)
{
struct rdt_domain *d;
struct list_head *l;
@@ -377,6 +410,44 @@ static int domain_setup_ctrlval(struct rdt_resource *r, struct rdt_domain *d)
return 0;
}
+static int domain_setup_mon_state(struct rdt_resource *r, struct rdt_domain *d)
+{
+ size_t tsize;
+
+ if (is_llc_occupancy_enabled()) {
+ d->rmid_busy_llc = kcalloc(BITS_TO_LONGS(r->num_rmid),
+ sizeof(unsigned long),
+ GFP_KERNEL);
+ if (!d->rmid_busy_llc)
+ return -ENOMEM;
+ INIT_DELAYED_WORK(&d->cqm_limbo, cqm_handle_limbo);
+ }
+ if (is_mbm_total_enabled()) {
+ tsize = sizeof(*d->mbm_total);
+ d->mbm_total = kcalloc(r->num_rmid, tsize, GFP_KERNEL);
+ if (!d->mbm_total) {
+ kfree(d->rmid_busy_llc);
+ return -ENOMEM;
+ }
+ }
+ if (is_mbm_local_enabled()) {
+ tsize = sizeof(*d->mbm_local);
+ d->mbm_local = kcalloc(r->num_rmid, tsize, GFP_KERNEL);
+ if (!d->mbm_local) {
+ kfree(d->rmid_busy_llc);
+ kfree(d->mbm_total);
+ return -ENOMEM;
+ }
+ }
+
+ if (is_mbm_enabled()) {
+ INIT_DELAYED_WORK(&d->mbm_over, mbm_handle_overflow);
+ mbm_setup_overflow_handler(d, MBM_OVERFLOW_INTERVAL);
+ }
+
+ return 0;
+}
+
/*
* domain_add_cpu - Add a cpu to a resource's domain list.
*
@@ -412,14 +483,26 @@ static void domain_add_cpu(int cpu, struct rdt_resource *r)
return;
d->id = id;
+ cpumask_set_cpu(cpu, &d->cpu_mask);
- if (domain_setup_ctrlval(r, d)) {
+ if (r->alloc_capable && domain_setup_ctrlval(r, d)) {
+ kfree(d);
+ return;
+ }
+
+ if (r->mon_capable && domain_setup_mon_state(r, d)) {
kfree(d);
return;
}
- cpumask_set_cpu(cpu, &d->cpu_mask);
list_add_tail(&d->list, add_pos);
+
+ /*
+ * If resctrl is mounted, add
+ * per domain monitor data directories.
+ */
+ if (static_branch_unlikely(&rdt_mon_enable_key))
+ mkdir_mondata_subdir_allrdtgrp(r, d);
}
static void domain_remove_cpu(int cpu, struct rdt_resource *r)
@@ -435,19 +518,58 @@ static void domain_remove_cpu(int cpu, struct rdt_resource *r)
cpumask_clear_cpu(cpu, &d->cpu_mask);
if (cpumask_empty(&d->cpu_mask)) {
+ /*
+ * If resctrl is mounted, remove all the
+ * per domain monitor data directories.
+ */
+ if (static_branch_unlikely(&rdt_mon_enable_key))
+ rmdir_mondata_subdir_allrdtgrp(r, d->id);
kfree(d->ctrl_val);
+ kfree(d->rmid_busy_llc);
+ kfree(d->mbm_total);
+ kfree(d->mbm_local);
list_del(&d->list);
+ if (is_mbm_enabled())
+ cancel_delayed_work(&d->mbm_over);
+ if (is_llc_occupancy_enabled() && has_busy_rmid(r, d)) {
+ /*
+ * When a package is going down, forcefully
+ * decrement rmid->ebusy. There is no way to know
+ * that the L3 was flushed and hence may lead to
+ * incorrect counts in rare scenarios, but leaving
+ * the RMID as busy creates RMID leaks if the
+ * package never comes back.
+ */
+ __check_limbo(d, true);
+ cancel_delayed_work(&d->cqm_limbo);
+ }
+
kfree(d);
+ return;
+ }
+
+ if (r == &rdt_resources_all[RDT_RESOURCE_L3]) {
+ if (is_mbm_enabled() && cpu == d->mbm_work_cpu) {
+ cancel_delayed_work(&d->mbm_over);
+ mbm_setup_overflow_handler(d, 0);
+ }
+ if (is_llc_occupancy_enabled() && cpu == d->cqm_work_cpu &&
+ has_busy_rmid(r, d)) {
+ cancel_delayed_work(&d->cqm_limbo);
+ cqm_setup_limbo_handler(d, 0);
+ }
}
}
-static void clear_closid(int cpu)
+static void clear_closid_rmid(int cpu)
{
struct intel_pqr_state *state = this_cpu_ptr(&pqr_state);
- per_cpu(cpu_closid, cpu) = 0;
- state->closid = 0;
- wrmsr(MSR_IA32_PQR_ASSOC, state->rmid, 0);
+ state->default_closid = 0;
+ state->default_rmid = 0;
+ state->cur_closid = 0;
+ state->cur_rmid = 0;
+ wrmsr(IA32_PQR_ASSOC, 0, 0);
}
static int intel_rdt_online_cpu(unsigned int cpu)
@@ -459,12 +581,23 @@ static int intel_rdt_online_cpu(unsigned int cpu)
domain_add_cpu(cpu, r);
/* The cpu is set in default rdtgroup after online. */
cpumask_set_cpu(cpu, &rdtgroup_default.cpu_mask);
- clear_closid(cpu);
+ clear_closid_rmid(cpu);
mutex_unlock(&rdtgroup_mutex);
return 0;
}
+static void clear_childcpus(struct rdtgroup *r, unsigned int cpu)
+{
+ struct rdtgroup *cr;
+
+ list_for_each_entry(cr, &r->mon.crdtgrp_list, mon.crdtgrp_list) {
+ if (cpumask_test_and_clear_cpu(cpu, &cr->cpu_mask)) {
+ break;
+ }
+ }
+}
+
static int intel_rdt_offline_cpu(unsigned int cpu)
{
struct rdtgroup *rdtgrp;
@@ -474,10 +607,12 @@ static int intel_rdt_offline_cpu(unsigned int cpu)
for_each_capable_rdt_resource(r)
domain_remove_cpu(cpu, r);
list_for_each_entry(rdtgrp, &rdt_all_groups, rdtgroup_list) {
- if (cpumask_test_and_clear_cpu(cpu, &rdtgrp->cpu_mask))
+ if (cpumask_test_and_clear_cpu(cpu, &rdtgrp->cpu_mask)) {
+ clear_childcpus(rdtgrp, cpu);
break;
+ }
}
- clear_closid(cpu);
+ clear_closid_rmid(cpu);
mutex_unlock(&rdtgroup_mutex);
return 0;
@@ -492,7 +627,7 @@ static __init void rdt_init_padding(void)
struct rdt_resource *r;
int cl;
- for_each_capable_rdt_resource(r) {
+ for_each_alloc_capable_rdt_resource(r) {
cl = strlen(r->name);
if (cl > max_name_width)
max_name_width = cl;
@@ -502,38 +637,153 @@ static __init void rdt_init_padding(void)
}
}
-static __init bool get_rdt_resources(void)
+enum {
+ RDT_FLAG_CMT,
+ RDT_FLAG_MBM_TOTAL,
+ RDT_FLAG_MBM_LOCAL,
+ RDT_FLAG_L3_CAT,
+ RDT_FLAG_L3_CDP,
+ RDT_FLAG_L2_CAT,
+ RDT_FLAG_MBA,
+};
+
+#define RDT_OPT(idx, n, f) \
+[idx] = { \
+ .name = n, \
+ .flag = f \
+}
+
+struct rdt_options {
+ char *name;
+ int flag;
+ bool force_off, force_on;
+};
+
+static struct rdt_options rdt_options[] __initdata = {
+ RDT_OPT(RDT_FLAG_CMT, "cmt", X86_FEATURE_CQM_OCCUP_LLC),
+ RDT_OPT(RDT_FLAG_MBM_TOTAL, "mbmtotal", X86_FEATURE_CQM_MBM_TOTAL),
+ RDT_OPT(RDT_FLAG_MBM_LOCAL, "mbmlocal", X86_FEATURE_CQM_MBM_LOCAL),
+ RDT_OPT(RDT_FLAG_L3_CAT, "l3cat", X86_FEATURE_CAT_L3),
+ RDT_OPT(RDT_FLAG_L3_CDP, "l3cdp", X86_FEATURE_CDP_L3),
+ RDT_OPT(RDT_FLAG_L2_CAT, "l2cat", X86_FEATURE_CAT_L2),
+ RDT_OPT(RDT_FLAG_MBA, "mba", X86_FEATURE_MBA),
+};
+#define NUM_RDT_OPTIONS ARRAY_SIZE(rdt_options)
+
+static int __init set_rdt_options(char *str)
+{
+ struct rdt_options *o;
+ bool force_off;
+ char *tok;
+
+ if (*str == '=')
+ str++;
+ while ((tok = strsep(&str, ",")) != NULL) {
+ force_off = *tok == '!';
+ if (force_off)
+ tok++;
+ for (o = rdt_options; o < &rdt_options[NUM_RDT_OPTIONS]; o++) {
+ if (strcmp(tok, o->name) == 0) {
+ if (force_off)
+ o->force_off = true;
+ else
+ o->force_on = true;
+ break;
+ }
+ }
+ }
+ return 1;
+}
+__setup("rdt", set_rdt_options);
+
+static bool __init rdt_cpu_has(int flag)
+{
+ bool ret = boot_cpu_has(flag);
+ struct rdt_options *o;
+
+ if (!ret)
+ return ret;
+
+ for (o = rdt_options; o < &rdt_options[NUM_RDT_OPTIONS]; o++) {
+ if (flag == o->flag) {
+ if (o->force_off)
+ ret = false;
+ if (o->force_on)
+ ret = true;
+ break;
+ }
+ }
+ return ret;
+}
+
+static __init bool get_rdt_alloc_resources(void)
{
bool ret = false;
- if (cache_alloc_hsw_probe())
+ if (rdt_alloc_capable)
return true;
if (!boot_cpu_has(X86_FEATURE_RDT_A))
return false;
- if (boot_cpu_has(X86_FEATURE_CAT_L3)) {
- rdt_get_cache_config(1, &rdt_resources_all[RDT_RESOURCE_L3]);
- if (boot_cpu_has(X86_FEATURE_CDP_L3)) {
+ if (rdt_cpu_has(X86_FEATURE_CAT_L3)) {
+ rdt_get_cache_alloc_cfg(1, &rdt_resources_all[RDT_RESOURCE_L3]);
+ if (rdt_cpu_has(X86_FEATURE_CDP_L3)) {
rdt_get_cdp_l3_config(RDT_RESOURCE_L3DATA);
rdt_get_cdp_l3_config(RDT_RESOURCE_L3CODE);
}
ret = true;
}
- if (boot_cpu_has(X86_FEATURE_CAT_L2)) {
+ if (rdt_cpu_has(X86_FEATURE_CAT_L2)) {
/* CPUID 0x10.2 fields are same format at 0x10.1 */
- rdt_get_cache_config(2, &rdt_resources_all[RDT_RESOURCE_L2]);
+ rdt_get_cache_alloc_cfg(2, &rdt_resources_all[RDT_RESOURCE_L2]);
ret = true;
}
- if (boot_cpu_has(X86_FEATURE_MBA)) {
+ if (rdt_cpu_has(X86_FEATURE_MBA)) {
if (rdt_get_mem_config(&rdt_resources_all[RDT_RESOURCE_MBA]))
ret = true;
}
-
return ret;
}
+static __init bool get_rdt_mon_resources(void)
+{
+ if (rdt_cpu_has(X86_FEATURE_CQM_OCCUP_LLC))
+ rdt_mon_features |= (1 << QOS_L3_OCCUP_EVENT_ID);
+ if (rdt_cpu_has(X86_FEATURE_CQM_MBM_TOTAL))
+ rdt_mon_features |= (1 << QOS_L3_MBM_TOTAL_EVENT_ID);
+ if (rdt_cpu_has(X86_FEATURE_CQM_MBM_LOCAL))
+ rdt_mon_features |= (1 << QOS_L3_MBM_LOCAL_EVENT_ID);
+
+ if (!rdt_mon_features)
+ return false;
+
+ return !rdt_get_mon_l3_config(&rdt_resources_all[RDT_RESOURCE_L3]);
+}
+
+static __init void rdt_quirks(void)
+{
+ switch (boot_cpu_data.x86_model) {
+ case INTEL_FAM6_HASWELL_X:
+ if (!rdt_options[RDT_FLAG_L3_CAT].force_off)
+ cache_alloc_hsw_probe();
+ break;
+ case INTEL_FAM6_SKYLAKE_X:
+ if (boot_cpu_data.x86_mask <= 4)
+ set_rdt_options("!cmt,!mbmtotal,!mbmlocal,!l3cat");
+ }
+}
+
+static __init bool get_rdt_resources(void)
+{
+ rdt_quirks();
+ rdt_alloc_capable = get_rdt_alloc_resources();
+ rdt_mon_capable = get_rdt_mon_resources();
+
+ return (rdt_mon_capable || rdt_alloc_capable);
+}
+
static int __init intel_rdt_late_init(void)
{
struct rdt_resource *r;
@@ -556,9 +806,12 @@ static int __init intel_rdt_late_init(void)
return ret;
}
- for_each_capable_rdt_resource(r)
+ for_each_alloc_capable_rdt_resource(r)
pr_info("Intel RDT %s allocation detected\n", r->name);
+ for_each_mon_capable_rdt_resource(r)
+ pr_info("Intel RDT %s monitoring detected\n", r->name);
+
return 0;
}
diff --git a/arch/x86/kernel/cpu/intel_rdt.h b/arch/x86/kernel/cpu/intel_rdt.h
new file mode 100644
index 000000000000..ebaddaeef023
--- /dev/null
+++ b/arch/x86/kernel/cpu/intel_rdt.h
@@ -0,0 +1,440 @@
+#ifndef _ASM_X86_INTEL_RDT_H
+#define _ASM_X86_INTEL_RDT_H
+
+#include <linux/sched.h>
+#include <linux/kernfs.h>
+#include <linux/jump_label.h>
+
+#define IA32_L3_QOS_CFG 0xc81
+#define IA32_L3_CBM_BASE 0xc90
+#define IA32_L2_CBM_BASE 0xd10
+#define IA32_MBA_THRTL_BASE 0xd50
+
+#define L3_QOS_CDP_ENABLE 0x01ULL
+
+/*
+ * Event IDs are used to program IA32_QM_EVTSEL before reading event
+ * counter from IA32_QM_CTR
+ */
+#define QOS_L3_OCCUP_EVENT_ID 0x01
+#define QOS_L3_MBM_TOTAL_EVENT_ID 0x02
+#define QOS_L3_MBM_LOCAL_EVENT_ID 0x03
+
+#define CQM_LIMBOCHECK_INTERVAL 1000
+
+#define MBM_CNTR_WIDTH 24
+#define MBM_OVERFLOW_INTERVAL 1000
+
+#define RMID_VAL_ERROR BIT_ULL(63)
+#define RMID_VAL_UNAVAIL BIT_ULL(62)
+
+DECLARE_STATIC_KEY_FALSE(rdt_enable_key);
+
+/**
+ * struct mon_evt - Entry in the event list of a resource
+ * @evtid: event id
+ * @name: name of the event
+ */
+struct mon_evt {
+ u32 evtid;
+ char *name;
+ struct list_head list;
+};
+
+/**
+ * struct mon_data_bits - Monitoring details for each event file
+ * @rid: Resource id associated with the event file.
+ * @evtid: Event id associated with the event file
+ * @domid: The domain to which the event file belongs
+ */
+union mon_data_bits {
+ void *priv;
+ struct {
+ unsigned int rid : 10;
+ unsigned int evtid : 8;
+ unsigned int domid : 14;
+ } u;
+};
+
+struct rmid_read {
+ struct rdtgroup *rgrp;
+ struct rdt_domain *d;
+ int evtid;
+ bool first;
+ u64 val;
+};
+
+extern unsigned int intel_cqm_threshold;
+extern bool rdt_alloc_capable;
+extern bool rdt_mon_capable;
+extern unsigned int rdt_mon_features;
+
+enum rdt_group_type {
+ RDTCTRL_GROUP = 0,
+ RDTMON_GROUP,
+ RDT_NUM_GROUP,
+};
+
+/**
+ * struct mongroup - store mon group's data in resctrl fs.
+ * @mon_data_kn kernlfs node for the mon_data directory
+ * @parent: parent rdtgrp
+ * @crdtgrp_list: child rdtgroup node list
+ * @rmid: rmid for this rdtgroup
+ */
+struct mongroup {
+ struct kernfs_node *mon_data_kn;
+ struct rdtgroup *parent;
+ struct list_head crdtgrp_list;
+ u32 rmid;
+};
+
+/**
+ * struct rdtgroup - store rdtgroup's data in resctrl file system.
+ * @kn: kernfs node
+ * @rdtgroup_list: linked list for all rdtgroups
+ * @closid: closid for this rdtgroup
+ * @cpu_mask: CPUs assigned to this rdtgroup
+ * @flags: status bits
+ * @waitcount: how many cpus expect to find this
+ * group when they acquire rdtgroup_mutex
+ * @type: indicates type of this rdtgroup - either
+ * monitor only or ctrl_mon group
+ * @mon: mongroup related data
+ */
+struct rdtgroup {
+ struct kernfs_node *kn;
+ struct list_head rdtgroup_list;
+ u32 closid;
+ struct cpumask cpu_mask;
+ int flags;
+ atomic_t waitcount;
+ enum rdt_group_type type;
+ struct mongroup mon;
+};
+
+/* rdtgroup.flags */
+#define RDT_DELETED 1
+
+/* rftype.flags */
+#define RFTYPE_FLAGS_CPUS_LIST 1
+
+/*
+ * Define the file type flags for base and info directories.
+ */
+#define RFTYPE_INFO BIT(0)
+#define RFTYPE_BASE BIT(1)
+#define RF_CTRLSHIFT 4
+#define RF_MONSHIFT 5
+#define RFTYPE_CTRL BIT(RF_CTRLSHIFT)
+#define RFTYPE_MON BIT(RF_MONSHIFT)
+#define RFTYPE_RES_CACHE BIT(8)
+#define RFTYPE_RES_MB BIT(9)
+#define RF_CTRL_INFO (RFTYPE_INFO | RFTYPE_CTRL)
+#define RF_MON_INFO (RFTYPE_INFO | RFTYPE_MON)
+#define RF_CTRL_BASE (RFTYPE_BASE | RFTYPE_CTRL)
+
+/* List of all resource groups */
+extern struct list_head rdt_all_groups;
+
+extern int max_name_width, max_data_width;
+
+int __init rdtgroup_init(void);
+
+/**
+ * struct rftype - describe each file in the resctrl file system
+ * @name: File name
+ * @mode: Access mode
+ * @kf_ops: File operations
+ * @flags: File specific RFTYPE_FLAGS_* flags
+ * @fflags: File specific RF_* or RFTYPE_* flags
+ * @seq_show: Show content of the file
+ * @write: Write to the file
+ */
+struct rftype {
+ char *name;
+ umode_t mode;
+ struct kernfs_ops *kf_ops;
+ unsigned long flags;
+ unsigned long fflags;
+
+ int (*seq_show)(struct kernfs_open_file *of,
+ struct seq_file *sf, void *v);
+ /*
+ * write() is the generic write callback which maps directly to
+ * kernfs write operation and overrides all other operations.
+ * Maximum write size is determined by ->max_write_len.
+ */
+ ssize_t (*write)(struct kernfs_open_file *of,
+ char *buf, size_t nbytes, loff_t off);
+};
+
+/**
+ * struct mbm_state - status for each MBM counter in each domain
+ * @chunks: Total data moved (multiply by rdt_group.mon_scale to get bytes)
+ * @prev_msr Value of IA32_QM_CTR for this RMID last time we read it
+ */
+struct mbm_state {
+ u64 chunks;
+ u64 prev_msr;
+};
+
+/**
+ * struct rdt_domain - group of cpus sharing an RDT resource
+ * @list: all instances of this resource
+ * @id: unique id for this instance
+ * @cpu_mask: which cpus share this resource
+ * @rmid_busy_llc:
+ * bitmap of which limbo RMIDs are above threshold
+ * @mbm_total: saved state for MBM total bandwidth
+ * @mbm_local: saved state for MBM local bandwidth
+ * @mbm_over: worker to periodically read MBM h/w counters
+ * @cqm_limbo: worker to periodically read CQM h/w counters
+ * @mbm_work_cpu:
+ * worker cpu for MBM h/w counters
+ * @cqm_work_cpu:
+ * worker cpu for CQM h/w counters
+ * @ctrl_val: array of cache or mem ctrl values (indexed by CLOSID)
+ * @new_ctrl: new ctrl value to be loaded
+ * @have_new_ctrl: did user provide new_ctrl for this domain
+ */
+struct rdt_domain {
+ struct list_head list;
+ int id;
+ struct cpumask cpu_mask;
+ unsigned long *rmid_busy_llc;
+ struct mbm_state *mbm_total;
+ struct mbm_state *mbm_local;
+ struct delayed_work mbm_over;
+ struct delayed_work cqm_limbo;
+ int mbm_work_cpu;
+ int cqm_work_cpu;
+ u32 *ctrl_val;
+ u32 new_ctrl;
+ bool have_new_ctrl;
+};
+
+/**
+ * struct msr_param - set a range of MSRs from a domain
+ * @res: The resource to use
+ * @low: Beginning index from base MSR
+ * @high: End index
+ */
+struct msr_param {
+ struct rdt_resource *res;
+ int low;
+ int high;
+};
+
+/**
+ * struct rdt_cache - Cache allocation related data
+ * @cbm_len: Length of the cache bit mask
+ * @min_cbm_bits: Minimum number of consecutive bits to be set
+ * @cbm_idx_mult: Multiplier of CBM index
+ * @cbm_idx_offset: Offset of CBM index. CBM index is computed by:
+ * closid * cbm_idx_multi + cbm_idx_offset
+ * in a cache bit mask
+ * @shareable_bits: Bitmask of shareable resource with other
+ * executing entities
+ */
+struct rdt_cache {
+ unsigned int cbm_len;
+ unsigned int min_cbm_bits;
+ unsigned int cbm_idx_mult;
+ unsigned int cbm_idx_offset;
+ unsigned int shareable_bits;
+};
+
+/**
+ * struct rdt_membw - Memory bandwidth allocation related data
+ * @max_delay: Max throttle delay. Delay is the hardware
+ * representation for memory bandwidth.
+ * @min_bw: Minimum memory bandwidth percentage user can request
+ * @bw_gran: Granularity at which the memory bandwidth is allocated
+ * @delay_linear: True if memory B/W delay is in linear scale
+ * @mb_map: Mapping of memory B/W percentage to memory B/W delay
+ */
+struct rdt_membw {
+ u32 max_delay;
+ u32 min_bw;
+ u32 bw_gran;
+ u32 delay_linear;
+ u32 *mb_map;
+};
+
+static inline bool is_llc_occupancy_enabled(void)
+{
+ return (rdt_mon_features & (1 << QOS_L3_OCCUP_EVENT_ID));
+}
+
+static inline bool is_mbm_total_enabled(void)
+{
+ return (rdt_mon_features & (1 << QOS_L3_MBM_TOTAL_EVENT_ID));
+}
+
+static inline bool is_mbm_local_enabled(void)
+{
+ return (rdt_mon_features & (1 << QOS_L3_MBM_LOCAL_EVENT_ID));
+}
+
+static inline bool is_mbm_enabled(void)
+{
+ return (is_mbm_total_enabled() || is_mbm_local_enabled());
+}
+
+static inline bool is_mbm_event(int e)
+{
+ return (e >= QOS_L3_MBM_TOTAL_EVENT_ID &&
+ e <= QOS_L3_MBM_LOCAL_EVENT_ID);
+}
+
+/**
+ * struct rdt_resource - attributes of an RDT resource
+ * @rid: The index of the resource
+ * @alloc_enabled: Is allocation enabled on this machine
+ * @mon_enabled: Is monitoring enabled for this feature
+ * @alloc_capable: Is allocation available on this machine
+ * @mon_capable: Is monitor feature available on this machine
+ * @name: Name to use in "schemata" file
+ * @num_closid: Number of CLOSIDs available
+ * @cache_level: Which cache level defines scope of this resource
+ * @default_ctrl: Specifies default cache cbm or memory B/W percent.
+ * @msr_base: Base MSR address for CBMs
+ * @msr_update: Function pointer to update QOS MSRs
+ * @data_width: Character width of data when displaying
+ * @domains: All domains for this resource
+ * @cache: Cache allocation related data
+ * @format_str: Per resource format string to show domain value
+ * @parse_ctrlval: Per resource function pointer to parse control values
+ * @evt_list: List of monitoring events
+ * @num_rmid: Number of RMIDs available
+ * @mon_scale: cqm counter * mon_scale = occupancy in bytes
+ * @fflags: flags to choose base and info files
+ */
+struct rdt_resource {
+ int rid;
+ bool alloc_enabled;
+ bool mon_enabled;
+ bool alloc_capable;
+ bool mon_capable;
+ char *name;
+ int num_closid;
+ int cache_level;
+ u32 default_ctrl;
+ unsigned int msr_base;
+ void (*msr_update) (struct rdt_domain *d, struct msr_param *m,
+ struct rdt_resource *r);
+ int data_width;
+ struct list_head domains;
+ struct rdt_cache cache;
+ struct rdt_membw membw;
+ const char *format_str;
+ int (*parse_ctrlval) (char *buf, struct rdt_resource *r,
+ struct rdt_domain *d);
+ struct list_head evt_list;
+ int num_rmid;
+ unsigned int mon_scale;
+ unsigned long fflags;
+};
+
+int parse_cbm(char *buf, struct rdt_resource *r, struct rdt_domain *d);
+int parse_bw(char *buf, struct rdt_resource *r, struct rdt_domain *d);
+
+extern struct mutex rdtgroup_mutex;
+
+extern struct rdt_resource rdt_resources_all[];
+extern struct rdtgroup rdtgroup_default;
+DECLARE_STATIC_KEY_FALSE(rdt_alloc_enable_key);
+
+int __init rdtgroup_init(void);
+
+enum {
+ RDT_RESOURCE_L3,
+ RDT_RESOURCE_L3DATA,
+ RDT_RESOURCE_L3CODE,
+ RDT_RESOURCE_L2,
+ RDT_RESOURCE_MBA,
+
+ /* Must be the last */
+ RDT_NUM_RESOURCES,
+};
+
+#define for_each_capable_rdt_resource(r) \
+ for (r = rdt_resources_all; r < rdt_resources_all + RDT_NUM_RESOURCES;\
+ r++) \
+ if (r->alloc_capable || r->mon_capable)
+
+#define for_each_alloc_capable_rdt_resource(r) \
+ for (r = rdt_resources_all; r < rdt_resources_all + RDT_NUM_RESOURCES;\
+ r++) \
+ if (r->alloc_capable)
+
+#define for_each_mon_capable_rdt_resource(r) \
+ for (r = rdt_resources_all; r < rdt_resources_all + RDT_NUM_RESOURCES;\
+ r++) \
+ if (r->mon_capable)
+
+#define for_each_alloc_enabled_rdt_resource(r) \
+ for (r = rdt_resources_all; r < rdt_resources_all + RDT_NUM_RESOURCES;\
+ r++) \
+ if (r->alloc_enabled)
+
+#define for_each_mon_enabled_rdt_resource(r) \
+ for (r = rdt_resources_all; r < rdt_resources_all + RDT_NUM_RESOURCES;\
+ r++) \
+ if (r->mon_enabled)
+
+/* CPUID.(EAX=10H, ECX=ResID=1).EAX */
+union cpuid_0x10_1_eax {
+ struct {
+ unsigned int cbm_len:5;
+ } split;
+ unsigned int full;
+};
+
+/* CPUID.(EAX=10H, ECX=ResID=3).EAX */
+union cpuid_0x10_3_eax {
+ struct {
+ unsigned int max_delay:12;
+ } split;
+ unsigned int full;
+};
+
+/* CPUID.(EAX=10H, ECX=ResID).EDX */
+union cpuid_0x10_x_edx {
+ struct {
+ unsigned int cos_max:16;
+ } split;
+ unsigned int full;
+};
+
+void rdt_ctrl_update(void *arg);
+struct rdtgroup *rdtgroup_kn_lock_live(struct kernfs_node *kn);
+void rdtgroup_kn_unlock(struct kernfs_node *kn);
+struct rdt_domain *rdt_find_domain(struct rdt_resource *r, int id,
+ struct list_head **pos);
+ssize_t rdtgroup_schemata_write(struct kernfs_open_file *of,
+ char *buf, size_t nbytes, loff_t off);
+int rdtgroup_schemata_show(struct kernfs_open_file *of,
+ struct seq_file *s, void *v);
+struct rdt_domain *get_domain_from_cpu(int cpu, struct rdt_resource *r);
+int alloc_rmid(void);
+void free_rmid(u32 rmid);
+int rdt_get_mon_l3_config(struct rdt_resource *r);
+void mon_event_count(void *info);
+int rdtgroup_mondata_show(struct seq_file *m, void *arg);
+void rmdir_mondata_subdir_allrdtgrp(struct rdt_resource *r,
+ unsigned int dom_id);
+void mkdir_mondata_subdir_allrdtgrp(struct rdt_resource *r,
+ struct rdt_domain *d);
+void mon_event_read(struct rmid_read *rr, struct rdt_domain *d,
+ struct rdtgroup *rdtgrp, int evtid, int first);
+void mbm_setup_overflow_handler(struct rdt_domain *dom,
+ unsigned long delay_ms);
+void mbm_handle_overflow(struct work_struct *work);
+void cqm_setup_limbo_handler(struct rdt_domain *dom, unsigned long delay_ms);
+void cqm_handle_limbo(struct work_struct *work);
+bool has_busy_rmid(struct rdt_resource *r, struct rdt_domain *d);
+void __check_limbo(struct rdt_domain *d, bool force_free);
+
+#endif /* _ASM_X86_INTEL_RDT_H */
diff --git a/arch/x86/kernel/cpu/intel_rdt_schemata.c b/arch/x86/kernel/cpu/intel_rdt_ctrlmondata.c
index 406d7a6532f9..f6ea94f8954a 100644
--- a/arch/x86/kernel/cpu/intel_rdt_schemata.c
+++ b/arch/x86/kernel/cpu/intel_rdt_ctrlmondata.c
@@ -26,7 +26,7 @@
#include <linux/kernfs.h>
#include <linux/seq_file.h>
#include <linux/slab.h>
-#include <asm/intel_rdt.h>
+#include "intel_rdt.h"
/*
* Check whether MBA bandwidth percentage value is correct. The value is
@@ -192,7 +192,7 @@ static int rdtgroup_parse_resource(char *resname, char *tok, int closid)
{
struct rdt_resource *r;
- for_each_enabled_rdt_resource(r) {
+ for_each_alloc_enabled_rdt_resource(r) {
if (!strcmp(resname, r->name) && closid < r->num_closid)
return parse_line(tok, r);
}
@@ -221,7 +221,7 @@ ssize_t rdtgroup_schemata_write(struct kernfs_open_file *of,
closid = rdtgrp->closid;
- for_each_enabled_rdt_resource(r) {
+ for_each_alloc_enabled_rdt_resource(r) {
list_for_each_entry(dom, &r->domains, list)
dom->have_new_ctrl = false;
}
@@ -237,7 +237,7 @@ ssize_t rdtgroup_schemata_write(struct kernfs_open_file *of,
goto out;
}
- for_each_enabled_rdt_resource(r) {
+ for_each_alloc_enabled_rdt_resource(r) {
ret = update_domains(r, closid);
if (ret)
goto out;
@@ -269,12 +269,13 @@ int rdtgroup_schemata_show(struct kernfs_open_file *of,
{
struct rdtgroup *rdtgrp;
struct rdt_resource *r;
- int closid, ret = 0;
+ int ret = 0;
+ u32 closid;
rdtgrp = rdtgroup_kn_lock_live(of->kn);
if (rdtgrp) {
closid = rdtgrp->closid;
- for_each_enabled_rdt_resource(r) {
+ for_each_alloc_enabled_rdt_resource(r) {
if (closid < r->num_closid)
show_doms(s, r, closid);
}
@@ -284,3 +285,57 @@ int rdtgroup_schemata_show(struct kernfs_open_file *of,
rdtgroup_kn_unlock(of->kn);
return ret;
}
+
+void mon_event_read(struct rmid_read *rr, struct rdt_domain *d,
+ struct rdtgroup *rdtgrp, int evtid, int first)
+{
+ /*
+ * setup the parameters to send to the IPI to read the data.
+ */
+ rr->rgrp = rdtgrp;
+ rr->evtid = evtid;
+ rr->d = d;
+ rr->val = 0;
+ rr->first = first;
+
+ smp_call_function_any(&d->cpu_mask, mon_event_count, rr, 1);
+}
+
+int rdtgroup_mondata_show(struct seq_file *m, void *arg)
+{
+ struct kernfs_open_file *of = m->private;
+ u32 resid, evtid, domid;
+ struct rdtgroup *rdtgrp;
+ struct rdt_resource *r;
+ union mon_data_bits md;
+ struct rdt_domain *d;
+ struct rmid_read rr;
+ int ret = 0;
+
+ rdtgrp = rdtgroup_kn_lock_live(of->kn);
+
+ md.priv = of->kn->priv;
+ resid = md.u.rid;
+ domid = md.u.domid;
+ evtid = md.u.evtid;
+
+ r = &rdt_resources_all[resid];
+ d = rdt_find_domain(r, domid, NULL);
+ if (!d) {
+ ret = -ENOENT;
+ goto out;
+ }
+
+ mon_event_read(&rr, d, rdtgrp, evtid, false);
+
+ if (rr.val & RMID_VAL_ERROR)
+ seq_puts(m, "Error\n");
+ else if (rr.val & RMID_VAL_UNAVAIL)
+ seq_puts(m, "Unavailable\n");
+ else
+ seq_printf(m, "%llu\n", rr.val * r->mon_scale);
+
+out:
+ rdtgroup_kn_unlock(of->kn);
+ return ret;
+}
diff --git a/arch/x86/kernel/cpu/intel_rdt_monitor.c b/arch/x86/kernel/cpu/intel_rdt_monitor.c
new file mode 100644
index 000000000000..30827510094b
--- /dev/null
+++ b/arch/x86/kernel/cpu/intel_rdt_monitor.c
@@ -0,0 +1,499 @@
+/*
+ * Resource Director Technology(RDT)
+ * - Monitoring code
+ *
+ * Copyright (C) 2017 Intel Corporation
+ *
+ * Author:
+ * Vikas Shivappa <vikas.shivappa@intel.com>
+ *
+ * This replaces the cqm.c based on perf but we reuse a lot of
+ * code and datastructures originally from Peter Zijlstra and Matt Fleming.
+ *
+ * This program is free software; you can redistribute it and/or modify it
+ * under the terms and conditions of the GNU General Public License,
+ * version 2, as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
+ * more details.
+ *
+ * More information about RDT be found in the Intel (R) x86 Architecture
+ * Software Developer Manual June 2016, volume 3, section 17.17.
+ */
+
+#include <linux/module.h>
+#include <linux/slab.h>
+#include <asm/cpu_device_id.h>
+#include "intel_rdt.h"
+
+#define MSR_IA32_QM_CTR 0x0c8e
+#define MSR_IA32_QM_EVTSEL 0x0c8d
+
+struct rmid_entry {
+ u32 rmid;
+ int busy;
+ struct list_head list;
+};
+
+/**
+ * @rmid_free_lru A least recently used list of free RMIDs
+ * These RMIDs are guaranteed to have an occupancy less than the
+ * threshold occupancy
+ */
+static LIST_HEAD(rmid_free_lru);
+
+/**
+ * @rmid_limbo_count count of currently unused but (potentially)
+ * dirty RMIDs.
+ * This counts RMIDs that no one is currently using but that
+ * may have a occupancy value > intel_cqm_threshold. User can change
+ * the threshold occupancy value.
+ */
+unsigned int rmid_limbo_count;
+
+/**
+ * @rmid_entry - The entry in the limbo and free lists.
+ */
+static struct rmid_entry *rmid_ptrs;
+
+/*
+ * Global boolean for rdt_monitor which is true if any
+ * resource monitoring is enabled.
+ */
+bool rdt_mon_capable;
+
+/*
+ * Global to indicate which monitoring events are enabled.
+ */
+unsigned int rdt_mon_features;
+
+/*
+ * This is the threshold cache occupancy at which we will consider an
+ * RMID available for re-allocation.
+ */
+unsigned int intel_cqm_threshold;
+
+static inline struct rmid_entry *__rmid_entry(u32 rmid)
+{
+ struct rmid_entry *entry;
+
+ entry = &rmid_ptrs[rmid];
+ WARN_ON(entry->rmid != rmid);
+
+ return entry;
+}
+
+static u64 __rmid_read(u32 rmid, u32 eventid)
+{
+ u64 val;
+
+ /*
+ * As per the SDM, when IA32_QM_EVTSEL.EvtID (bits 7:0) is configured
+ * with a valid event code for supported resource type and the bits
+ * IA32_QM_EVTSEL.RMID (bits 41:32) are configured with valid RMID,
+ * IA32_QM_CTR.data (bits 61:0) reports the monitored data.
+ * IA32_QM_CTR.Error (bit 63) and IA32_QM_CTR.Unavailable (bit 62)
+ * are error bits.
+ */
+ wrmsr(MSR_IA32_QM_EVTSEL, eventid, rmid);
+ rdmsrl(MSR_IA32_QM_CTR, val);
+
+ return val;
+}
+
+static bool rmid_dirty(struct rmid_entry *entry)
+{
+ u64 val = __rmid_read(entry->rmid, QOS_L3_OCCUP_EVENT_ID);
+
+ return val >= intel_cqm_threshold;
+}
+
+/*
+ * Check the RMIDs that are marked as busy for this domain. If the
+ * reported LLC occupancy is below the threshold clear the busy bit and
+ * decrement the count. If the busy count gets to zero on an RMID, we
+ * free the RMID
+ */
+void __check_limbo(struct rdt_domain *d, bool force_free)
+{
+ struct rmid_entry *entry;
+ struct rdt_resource *r;
+ u32 crmid = 1, nrmid;
+
+ r = &rdt_resources_all[RDT_RESOURCE_L3];
+
+ /*
+ * Skip RMID 0 and start from RMID 1 and check all the RMIDs that
+ * are marked as busy for occupancy < threshold. If the occupancy
+ * is less than the threshold decrement the busy counter of the
+ * RMID and move it to the free list when the counter reaches 0.
+ */
+ for (;;) {
+ nrmid = find_next_bit(d->rmid_busy_llc, r->num_rmid, crmid);
+ if (nrmid >= r->num_rmid)
+ break;
+
+ entry = __rmid_entry(nrmid);
+ if (force_free || !rmid_dirty(entry)) {
+ clear_bit(entry->rmid, d->rmid_busy_llc);
+ if (!--entry->busy) {
+ rmid_limbo_count--;
+ list_add_tail(&entry->list, &rmid_free_lru);
+ }
+ }
+ crmid = nrmid + 1;
+ }
+}
+
+bool has_busy_rmid(struct rdt_resource *r, struct rdt_domain *d)
+{
+ return find_first_bit(d->rmid_busy_llc, r->num_rmid) != r->num_rmid;
+}
+
+/*
+ * As of now the RMIDs allocation is global.
+ * However we keep track of which packages the RMIDs
+ * are used to optimize the limbo list management.
+ */
+int alloc_rmid(void)
+{
+ struct rmid_entry *entry;
+
+ lockdep_assert_held(&rdtgroup_mutex);
+
+ if (list_empty(&rmid_free_lru))
+ return rmid_limbo_count ? -EBUSY : -ENOSPC;
+
+ entry = list_first_entry(&rmid_free_lru,
+ struct rmid_entry, list);
+ list_del(&entry->list);
+
+ return entry->rmid;
+}
+
+static void add_rmid_to_limbo(struct rmid_entry *entry)
+{
+ struct rdt_resource *r;
+ struct rdt_domain *d;
+ int cpu;
+ u64 val;
+
+ r = &rdt_resources_all[RDT_RESOURCE_L3];
+
+ entry->busy = 0;
+ cpu = get_cpu();
+ list_for_each_entry(d, &r->domains, list) {
+ if (cpumask_test_cpu(cpu, &d->cpu_mask)) {
+ val = __rmid_read(entry->rmid, QOS_L3_OCCUP_EVENT_ID);
+ if (val <= intel_cqm_threshold)
+ continue;
+ }
+
+ /*
+ * For the first limbo RMID in the domain,
+ * setup up the limbo worker.
+ */
+ if (!has_busy_rmid(r, d))
+ cqm_setup_limbo_handler(d, CQM_LIMBOCHECK_INTERVAL);
+ set_bit(entry->rmid, d->rmid_busy_llc);
+ entry->busy++;
+ }
+ put_cpu();
+
+ if (entry->busy)
+ rmid_limbo_count++;
+ else
+ list_add_tail(&entry->list, &rmid_free_lru);
+}
+
+void free_rmid(u32 rmid)
+{
+ struct rmid_entry *entry;
+
+ if (!rmid)
+ return;
+
+ lockdep_assert_held(&rdtgroup_mutex);
+
+ entry = __rmid_entry(rmid);
+
+ if (is_llc_occupancy_enabled())
+ add_rmid_to_limbo(entry);
+ else
+ list_add_tail(&entry->list, &rmid_free_lru);
+}
+
+static int __mon_event_count(u32 rmid, struct rmid_read *rr)
+{
+ u64 chunks, shift, tval;
+ struct mbm_state *m;
+
+ tval = __rmid_read(rmid, rr->evtid);
+ if (tval & (RMID_VAL_ERROR | RMID_VAL_UNAVAIL)) {
+ rr->val = tval;
+ return -EINVAL;
+ }
+ switch (rr->evtid) {
+ case QOS_L3_OCCUP_EVENT_ID:
+ rr->val += tval;
+ return 0;
+ case QOS_L3_MBM_TOTAL_EVENT_ID:
+ m = &rr->d->mbm_total[rmid];
+ break;
+ case QOS_L3_MBM_LOCAL_EVENT_ID:
+ m = &rr->d->mbm_local[rmid];
+ break;
+ default:
+ /*
+ * Code would never reach here because
+ * an invalid event id would fail the __rmid_read.
+ */
+ return -EINVAL;
+ }
+
+ if (rr->first) {
+ m->prev_msr = tval;
+ m->chunks = 0;
+ return 0;
+ }
+
+ shift = 64 - MBM_CNTR_WIDTH;
+ chunks = (tval << shift) - (m->prev_msr << shift);
+ chunks >>= shift;
+ m->chunks += chunks;
+ m->prev_msr = tval;
+
+ rr->val += m->chunks;
+ return 0;
+}
+
+/*
+ * This is called via IPI to read the CQM/MBM counters
+ * on a domain.
+ */
+void mon_event_count(void *info)
+{
+ struct rdtgroup *rdtgrp, *entry;
+ struct rmid_read *rr = info;
+ struct list_head *head;
+
+ rdtgrp = rr->rgrp;
+
+ if (__mon_event_count(rdtgrp->mon.rmid, rr))
+ return;
+
+ /*
+ * For Ctrl groups read data from child monitor groups.
+ */
+ head = &rdtgrp->mon.crdtgrp_list;
+
+ if (rdtgrp->type == RDTCTRL_GROUP) {
+ list_for_each_entry(entry, head, mon.crdtgrp_list) {
+ if (__mon_event_count(entry->mon.rmid, rr))
+ return;
+ }
+ }
+}
+
+static void mbm_update(struct rdt_domain *d, int rmid)
+{
+ struct rmid_read rr;
+
+ rr.first = false;
+ rr.d = d;
+
+ /*
+ * This is protected from concurrent reads from user
+ * as both the user and we hold the global mutex.
+ */
+ if (is_mbm_total_enabled()) {
+ rr.evtid = QOS_L3_MBM_TOTAL_EVENT_ID;
+ __mon_event_count(rmid, &rr);
+ }
+ if (is_mbm_local_enabled()) {
+ rr.evtid = QOS_L3_MBM_LOCAL_EVENT_ID;
+ __mon_event_count(rmid, &rr);
+ }
+}
+
+/*
+ * Handler to scan the limbo list and move the RMIDs
+ * to free list whose occupancy < threshold_occupancy.
+ */
+void cqm_handle_limbo(struct work_struct *work)
+{
+ unsigned long delay = msecs_to_jiffies(CQM_LIMBOCHECK_INTERVAL);
+ int cpu = smp_processor_id();
+ struct rdt_resource *r;
+ struct rdt_domain *d;
+
+ mutex_lock(&rdtgroup_mutex);
+
+ r = &rdt_resources_all[RDT_RESOURCE_L3];
+ d = get_domain_from_cpu(cpu, r);
+
+ if (!d) {
+ pr_warn_once("Failure to get domain for limbo worker\n");
+ goto out_unlock;
+ }
+
+ __check_limbo(d, false);
+
+ if (has_busy_rmid(r, d))
+ schedule_delayed_work_on(cpu, &d->cqm_limbo, delay);
+
+out_unlock:
+ mutex_unlock(&rdtgroup_mutex);
+}
+
+void cqm_setup_limbo_handler(struct rdt_domain *dom, unsigned long delay_ms)
+{
+ unsigned long delay = msecs_to_jiffies(delay_ms);
+ struct rdt_resource *r;
+ int cpu;
+
+ r = &rdt_resources_all[RDT_RESOURCE_L3];
+
+ cpu = cpumask_any(&dom->cpu_mask);
+ dom->cqm_work_cpu = cpu;
+
+ schedule_delayed_work_on(cpu, &dom->cqm_limbo, delay);
+}
+
+void mbm_handle_overflow(struct work_struct *work)
+{
+ unsigned long delay = msecs_to_jiffies(MBM_OVERFLOW_INTERVAL);
+ struct rdtgroup *prgrp, *crgrp;
+ int cpu = smp_processor_id();
+ struct list_head *head;
+ struct rdt_domain *d;
+
+ mutex_lock(&rdtgroup_mutex);
+
+ if (!static_branch_likely(&rdt_enable_key))
+ goto out_unlock;
+
+ d = get_domain_from_cpu(cpu, &rdt_resources_all[RDT_RESOURCE_L3]);
+ if (!d)
+ goto out_unlock;
+
+ list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) {
+ mbm_update(d, prgrp->mon.rmid);
+
+ head = &prgrp->mon.crdtgrp_list;
+ list_for_each_entry(crgrp, head, mon.crdtgrp_list)
+ mbm_update(d, crgrp->mon.rmid);
+ }
+
+ schedule_delayed_work_on(cpu, &d->mbm_over, delay);
+
+out_unlock:
+ mutex_unlock(&rdtgroup_mutex);
+}
+
+void mbm_setup_overflow_handler(struct rdt_domain *dom, unsigned long delay_ms)
+{
+ unsigned long delay = msecs_to_jiffies(delay_ms);
+ int cpu;
+
+ if (!static_branch_likely(&rdt_enable_key))
+ return;
+ cpu = cpumask_any(&dom->cpu_mask);
+ dom->mbm_work_cpu = cpu;
+ schedule_delayed_work_on(cpu, &dom->mbm_over, delay);
+}
+
+static int dom_data_init(struct rdt_resource *r)
+{
+ struct rmid_entry *entry = NULL;
+ int i, nr_rmids;
+
+ nr_rmids = r->num_rmid;
+ rmid_ptrs = kcalloc(nr_rmids, sizeof(struct rmid_entry), GFP_KERNEL);
+ if (!rmid_ptrs)
+ return -ENOMEM;
+
+ for (i = 0; i < nr_rmids; i++) {
+ entry = &rmid_ptrs[i];
+ INIT_LIST_HEAD(&entry->list);
+
+ entry->rmid = i;
+ list_add_tail(&entry->list, &rmid_free_lru);
+ }
+
+ /*
+ * RMID 0 is special and is always allocated. It's used for all
+ * tasks that are not monitored.
+ */
+ entry = __rmid_entry(0);
+ list_del(&entry->list);
+
+ return 0;
+}
+
+static struct mon_evt llc_occupancy_event = {
+ .name = "llc_occupancy",
+ .evtid = QOS_L3_OCCUP_EVENT_ID,
+};
+
+static struct mon_evt mbm_total_event = {
+ .name = "mbm_total_bytes",
+ .evtid = QOS_L3_MBM_TOTAL_EVENT_ID,
+};
+
+static struct mon_evt mbm_local_event = {
+ .name = "mbm_local_bytes",
+ .evtid = QOS_L3_MBM_LOCAL_EVENT_ID,
+};
+
+/*
+ * Initialize the event list for the resource.
+ *
+ * Note that MBM events are also part of RDT_RESOURCE_L3 resource
+ * because as per the SDM the total and local memory bandwidth
+ * are enumerated as part of L3 monitoring.
+ */
+static void l3_mon_evt_init(struct rdt_resource *r)
+{
+ INIT_LIST_HEAD(&r->evt_list);
+
+ if (is_llc_occupancy_enabled())
+ list_add_tail(&llc_occupancy_event.list, &r->evt_list);
+ if (is_mbm_total_enabled())
+ list_add_tail(&mbm_total_event.list, &r->evt_list);
+ if (is_mbm_local_enabled())
+ list_add_tail(&mbm_local_event.list, &r->evt_list);
+}
+
+int rdt_get_mon_l3_config(struct rdt_resource *r)
+{
+ int ret;
+
+ r->mon_scale = boot_cpu_data.x86_cache_occ_scale;
+ r->num_rmid = boot_cpu_data.x86_cache_max_rmid + 1;
+
+ /*
+ * A reasonable upper limit on the max threshold is the number
+ * of lines tagged per RMID if all RMIDs have the same number of
+ * lines tagged in the LLC.
+ *
+ * For a 35MB LLC and 56 RMIDs, this is ~1.8% of the LLC.
+ */
+ intel_cqm_threshold = boot_cpu_data.x86_cache_size * 1024 / r->num_rmid;
+
+ /* h/w works in units of "boot_cpu_data.x86_cache_occ_scale" */
+ intel_cqm_threshold /= r->mon_scale;
+
+ ret = dom_data_init(r);
+ if (ret)
+ return ret;
+
+ l3_mon_evt_init(r);
+
+ r->mon_capable = true;
+ r->mon_enabled = true;
+
+ return 0;
+}
diff --git a/arch/x86/kernel/cpu/intel_rdt_rdtgroup.c b/arch/x86/kernel/cpu/intel_rdt_rdtgroup.c
index 9257bd9dc664..a869d4a073c5 100644
--- a/arch/x86/kernel/cpu/intel_rdt_rdtgroup.c
+++ b/arch/x86/kernel/cpu/intel_rdt_rdtgroup.c
@@ -32,17 +32,25 @@
#include <uapi/linux/magic.h>
-#include <asm/intel_rdt.h>
-#include <asm/intel_rdt_common.h>
+#include <asm/intel_rdt_sched.h>
+#include "intel_rdt.h"
DEFINE_STATIC_KEY_FALSE(rdt_enable_key);
-struct kernfs_root *rdt_root;
+DEFINE_STATIC_KEY_FALSE(rdt_mon_enable_key);
+DEFINE_STATIC_KEY_FALSE(rdt_alloc_enable_key);
+static struct kernfs_root *rdt_root;
struct rdtgroup rdtgroup_default;
LIST_HEAD(rdt_all_groups);
/* Kernel fs node for "info" directory under root */
static struct kernfs_node *kn_info;
+/* Kernel fs node for "mon_groups" directory under root */
+static struct kernfs_node *kn_mongrp;
+
+/* Kernel fs node for "mon_data" directory under root */
+static struct kernfs_node *kn_mondata;
+
/*
* Trivial allocator for CLOSIDs. Since h/w only supports a small number,
* we can keep a bitmap of free CLOSIDs in a single integer.
@@ -66,7 +74,7 @@ static void closid_init(void)
int rdt_min_closid = 32;
/* Compute rdt_min_closid across all resources */
- for_each_enabled_rdt_resource(r)
+ for_each_alloc_enabled_rdt_resource(r)
rdt_min_closid = min(rdt_min_closid, r->num_closid);
closid_free_map = BIT_MASK(rdt_min_closid) - 1;
@@ -75,9 +83,9 @@ static void closid_init(void)
closid_free_map &= ~1;
}
-int closid_alloc(void)
+static int closid_alloc(void)
{
- int closid = ffs(closid_free_map);
+ u32 closid = ffs(closid_free_map);
if (closid == 0)
return -ENOSPC;
@@ -125,28 +133,6 @@ static int rdtgroup_add_file(struct kernfs_node *parent_kn, struct rftype *rft)
return 0;
}
-static int rdtgroup_add_files(struct kernfs_node *kn, struct rftype *rfts,
- int len)
-{
- struct rftype *rft;
- int ret;
-
- lockdep_assert_held(&rdtgroup_mutex);
-
- for (rft = rfts; rft < rfts + len; rft++) {
- ret = rdtgroup_add_file(kn, rft);
- if (ret)
- goto error;
- }
-
- return 0;
-error:
- pr_warn("Failed to add %s, err=%d\n", rft->name, ret);
- while (--rft >= rfts)
- kernfs_remove_by_name(kn, rft->name);
- return ret;
-}
-
static int rdtgroup_seqfile_show(struct seq_file *m, void *arg)
{
struct kernfs_open_file *of = m->private;
@@ -174,6 +160,11 @@ static struct kernfs_ops rdtgroup_kf_single_ops = {
.seq_show = rdtgroup_seqfile_show,
};
+static struct kernfs_ops kf_mondata_ops = {
+ .atomic_write_len = PAGE_SIZE,
+ .seq_show = rdtgroup_mondata_show,
+};
+
static bool is_cpu_list(struct kernfs_open_file *of)
{
struct rftype *rft = of->kn->priv;
@@ -203,13 +194,18 @@ static int rdtgroup_cpus_show(struct kernfs_open_file *of,
/*
* This is safe against intel_rdt_sched_in() called from __switch_to()
* because __switch_to() is executed with interrupts disabled. A local call
- * from rdt_update_closid() is proteced against __switch_to() because
+ * from update_closid_rmid() is proteced against __switch_to() because
* preemption is disabled.
*/
-static void rdt_update_cpu_closid(void *closid)
+static void update_cpu_closid_rmid(void *info)
{
- if (closid)
- this_cpu_write(cpu_closid, *(int *)closid);
+ struct rdtgroup *r = info;
+
+ if (r) {
+ this_cpu_write(pqr_state.default_closid, r->closid);
+ this_cpu_write(pqr_state.default_rmid, r->mon.rmid);
+ }
+
/*
* We cannot unconditionally write the MSR because the current
* executing task might have its own closid selected. Just reuse
@@ -221,28 +217,128 @@ static void rdt_update_cpu_closid(void *closid)
/*
* Update the PGR_ASSOC MSR on all cpus in @cpu_mask,
*
- * Per task closids must have been set up before calling this function.
- *
- * The per cpu closids are updated with the smp function call, when @closid
- * is not NULL. If @closid is NULL then all affected percpu closids must
- * have been set up before calling this function.
+ * Per task closids/rmids must have been set up before calling this function.
*/
static void
-rdt_update_closid(const struct cpumask *cpu_mask, int *closid)
+update_closid_rmid(const struct cpumask *cpu_mask, struct rdtgroup *r)
{
int cpu = get_cpu();
if (cpumask_test_cpu(cpu, cpu_mask))
- rdt_update_cpu_closid(closid);
- smp_call_function_many(cpu_mask, rdt_update_cpu_closid, closid, 1);
+ update_cpu_closid_rmid(r);
+ smp_call_function_many(cpu_mask, update_cpu_closid_rmid, r, 1);
put_cpu();
}
+static int cpus_mon_write(struct rdtgroup *rdtgrp, cpumask_var_t newmask,
+ cpumask_var_t tmpmask)
+{
+ struct rdtgroup *prgrp = rdtgrp->mon.parent, *crgrp;
+ struct list_head *head;
+
+ /* Check whether cpus belong to parent ctrl group */
+ cpumask_andnot(tmpmask, newmask, &prgrp->cpu_mask);
+ if (cpumask_weight(tmpmask))
+ return -EINVAL;
+
+ /* Check whether cpus are dropped from this group */
+ cpumask_andnot(tmpmask, &rdtgrp->cpu_mask, newmask);
+ if (cpumask_weight(tmpmask)) {
+ /* Give any dropped cpus to parent rdtgroup */
+ cpumask_or(&prgrp->cpu_mask, &prgrp->cpu_mask, tmpmask);
+ update_closid_rmid(tmpmask, prgrp);
+ }
+
+ /*
+ * If we added cpus, remove them from previous group that owned them
+ * and update per-cpu rmid
+ */
+ cpumask_andnot(tmpmask, newmask, &rdtgrp->cpu_mask);
+ if (cpumask_weight(tmpmask)) {
+ head = &prgrp->mon.crdtgrp_list;
+ list_for_each_entry(crgrp, head, mon.crdtgrp_list) {
+ if (crgrp == rdtgrp)
+ continue;
+ cpumask_andnot(&crgrp->cpu_mask, &crgrp->cpu_mask,
+ tmpmask);
+ }
+ update_closid_rmid(tmpmask, rdtgrp);
+ }
+
+ /* Done pushing/pulling - update this group with new mask */
+ cpumask_copy(&rdtgrp->cpu_mask, newmask);
+
+ return 0;
+}
+
+static void cpumask_rdtgrp_clear(struct rdtgroup *r, struct cpumask *m)
+{
+ struct rdtgroup *crgrp;
+
+ cpumask_andnot(&r->cpu_mask, &r->cpu_mask, m);
+ /* update the child mon group masks as well*/
+ list_for_each_entry(crgrp, &r->mon.crdtgrp_list, mon.crdtgrp_list)
+ cpumask_and(&crgrp->cpu_mask, &r->cpu_mask, &crgrp->cpu_mask);
+}
+
+static int cpus_ctrl_write(struct rdtgroup *rdtgrp, cpumask_var_t newmask,
+ cpumask_var_t tmpmask, cpumask_var_t tmpmask1)
+{
+ struct rdtgroup *r, *crgrp;
+ struct list_head *head;
+
+ /* Check whether cpus are dropped from this group */
+ cpumask_andnot(tmpmask, &rdtgrp->cpu_mask, newmask);
+ if (cpumask_weight(tmpmask)) {
+ /* Can't drop from default group */
+ if (rdtgrp == &rdtgroup_default)
+ return -EINVAL;
+
+ /* Give any dropped cpus to rdtgroup_default */
+ cpumask_or(&rdtgroup_default.cpu_mask,
+ &rdtgroup_default.cpu_mask, tmpmask);
+ update_closid_rmid(tmpmask, &rdtgroup_default);
+ }
+
+ /*
+ * If we added cpus, remove them from previous group and
+ * the prev group's child groups that owned them
+ * and update per-cpu closid/rmid.
+ */
+ cpumask_andnot(tmpmask, newmask, &rdtgrp->cpu_mask);
+ if (cpumask_weight(tmpmask)) {
+ list_for_each_entry(r, &rdt_all_groups, rdtgroup_list) {
+ if (r == rdtgrp)
+ continue;
+ cpumask_and(tmpmask1, &r->cpu_mask, tmpmask);
+ if (cpumask_weight(tmpmask1))
+ cpumask_rdtgrp_clear(r, tmpmask1);
+ }
+ update_closid_rmid(tmpmask, rdtgrp);
+ }
+
+ /* Done pushing/pulling - update this group with new mask */
+ cpumask_copy(&rdtgrp->cpu_mask, newmask);
+
+ /*
+ * Clear child mon group masks since there is a new parent mask
+ * now and update the rmid for the cpus the child lost.
+ */
+ head = &rdtgrp->mon.crdtgrp_list;
+ list_for_each_entry(crgrp, head, mon.crdtgrp_list) {
+ cpumask_and(tmpmask, &rdtgrp->cpu_mask, &crgrp->cpu_mask);
+ update_closid_rmid(tmpmask, rdtgrp);
+ cpumask_clear(&crgrp->cpu_mask);
+ }
+
+ return 0;
+}
+
static ssize_t rdtgroup_cpus_write(struct kernfs_open_file *of,
char *buf, size_t nbytes, loff_t off)
{
- cpumask_var_t tmpmask, newmask;
- struct rdtgroup *rdtgrp, *r;
+ cpumask_var_t tmpmask, newmask, tmpmask1;
+ struct rdtgroup *rdtgrp;
int ret;
if (!buf)
@@ -254,6 +350,11 @@ static ssize_t rdtgroup_cpus_write(struct kernfs_open_file *of,
free_cpumask_var(tmpmask);
return -ENOMEM;
}
+ if (!zalloc_cpumask_var(&tmpmask1, GFP_KERNEL)) {
+ free_cpumask_var(tmpmask);
+ free_cpumask_var(newmask);
+ return -ENOMEM;
+ }
rdtgrp = rdtgroup_kn_lock_live(of->kn);
if (!rdtgrp) {
@@ -276,41 +377,18 @@ static ssize_t rdtgroup_cpus_write(struct kernfs_open_file *of,
goto unlock;
}
- /* Check whether cpus are dropped from this group */
- cpumask_andnot(tmpmask, &rdtgrp->cpu_mask, newmask);
- if (cpumask_weight(tmpmask)) {
- /* Can't drop from default group */
- if (rdtgrp == &rdtgroup_default) {
- ret = -EINVAL;
- goto unlock;
- }
- /* Give any dropped cpus to rdtgroup_default */
- cpumask_or(&rdtgroup_default.cpu_mask,
- &rdtgroup_default.cpu_mask, tmpmask);
- rdt_update_closid(tmpmask, &rdtgroup_default.closid);
- }
-
- /*
- * If we added cpus, remove them from previous group that owned them
- * and update per-cpu closid
- */
- cpumask_andnot(tmpmask, newmask, &rdtgrp->cpu_mask);
- if (cpumask_weight(tmpmask)) {
- list_for_each_entry(r, &rdt_all_groups, rdtgroup_list) {
- if (r == rdtgrp)
- continue;
- cpumask_andnot(&r->cpu_mask, &r->cpu_mask, tmpmask);
- }
- rdt_update_closid(tmpmask, &rdtgrp->closid);
- }
-
- /* Done pushing/pulling - update this group with new mask */
- cpumask_copy(&rdtgrp->cpu_mask, newmask);
+ if (rdtgrp->type == RDTCTRL_GROUP)
+ ret = cpus_ctrl_write(rdtgrp, newmask, tmpmask, tmpmask1);
+ else if (rdtgrp->type == RDTMON_GROUP)
+ ret = cpus_mon_write(rdtgrp, newmask, tmpmask);
+ else
+ ret = -EINVAL;
unlock:
rdtgroup_kn_unlock(of->kn);
free_cpumask_var(tmpmask);
free_cpumask_var(newmask);
+ free_cpumask_var(tmpmask1);
return ret ?: nbytes;
}
@@ -336,6 +414,7 @@ static void move_myself(struct callback_head *head)
if (atomic_dec_and_test(&rdtgrp->waitcount) &&
(rdtgrp->flags & RDT_DELETED)) {
current->closid = 0;
+ current->rmid = 0;
kfree(rdtgrp);
}
@@ -374,7 +453,20 @@ static int __rdtgroup_move_task(struct task_struct *tsk,
atomic_dec(&rdtgrp->waitcount);
kfree(callback);
} else {
- tsk->closid = rdtgrp->closid;
+ /*
+ * For ctrl_mon groups move both closid and rmid.
+ * For monitor groups, can move the tasks only from
+ * their parent CTRL group.
+ */
+ if (rdtgrp->type == RDTCTRL_GROUP) {
+ tsk->closid = rdtgrp->closid;
+ tsk->rmid = rdtgrp->mon.rmid;
+ } else if (rdtgrp->type == RDTMON_GROUP) {
+ if (rdtgrp->mon.parent->closid == tsk->closid)
+ tsk->rmid = rdtgrp->mon.rmid;
+ else
+ ret = -EINVAL;
+ }
}
return ret;
}
@@ -454,7 +546,8 @@ static void show_rdt_tasks(struct rdtgroup *r, struct seq_file *s)
rcu_read_lock();
for_each_process_thread(p, t) {
- if (t->closid == r->closid)
+ if ((r->type == RDTCTRL_GROUP && t->closid == r->closid) ||
+ (r->type == RDTMON_GROUP && t->rmid == r->mon.rmid))
seq_printf(s, "%d\n", t->pid);
}
rcu_read_unlock();
@@ -476,39 +569,6 @@ static int rdtgroup_tasks_show(struct kernfs_open_file *of,
return ret;
}
-/* Files in each rdtgroup */
-static struct rftype rdtgroup_base_files[] = {
- {
- .name = "cpus",
- .mode = 0644,
- .kf_ops = &rdtgroup_kf_single_ops,
- .write = rdtgroup_cpus_write,
- .seq_show = rdtgroup_cpus_show,
- },
- {
- .name = "cpus_list",
- .mode = 0644,
- .kf_ops = &rdtgroup_kf_single_ops,
- .write = rdtgroup_cpus_write,
- .seq_show = rdtgroup_cpus_show,
- .flags = RFTYPE_FLAGS_CPUS_LIST,
- },
- {
- .name = "tasks",
- .mode = 0644,
- .kf_ops = &rdtgroup_kf_single_ops,
- .write = rdtgroup_tasks_write,
- .seq_show = rdtgroup_tasks_show,
- },
- {
- .name = "schemata",
- .mode = 0644,
- .kf_ops = &rdtgroup_kf_single_ops,
- .write = rdtgroup_schemata_write,
- .seq_show = rdtgroup_schemata_show,
- },
-};
-
static int rdt_num_closids_show(struct kernfs_open_file *of,
struct seq_file *seq, void *v)
{
@@ -536,6 +596,15 @@ static int rdt_min_cbm_bits_show(struct kernfs_open_file *of,
return 0;
}
+static int rdt_shareable_bits_show(struct kernfs_open_file *of,
+ struct seq_file *seq, void *v)
+{
+ struct rdt_resource *r = of->kn->parent->priv;
+
+ seq_printf(seq, "%x\n", r->cache.shareable_bits);
+ return 0;
+}
+
static int rdt_min_bw_show(struct kernfs_open_file *of,
struct seq_file *seq, void *v)
{
@@ -545,6 +614,28 @@ static int rdt_min_bw_show(struct kernfs_open_file *of,
return 0;
}
+static int rdt_num_rmids_show(struct kernfs_open_file *of,
+ struct seq_file *seq, void *v)
+{
+ struct rdt_resource *r = of->kn->parent->priv;
+
+ seq_printf(seq, "%d\n", r->num_rmid);
+
+ return 0;
+}
+
+static int rdt_mon_features_show(struct kernfs_open_file *of,
+ struct seq_file *seq, void *v)
+{
+ struct rdt_resource *r = of->kn->parent->priv;
+ struct mon_evt *mevt;
+
+ list_for_each_entry(mevt, &r->evt_list, list)
+ seq_printf(seq, "%s\n", mevt->name);
+
+ return 0;
+}
+
static int rdt_bw_gran_show(struct kernfs_open_file *of,
struct seq_file *seq, void *v)
{
@@ -563,74 +654,200 @@ static int rdt_delay_linear_show(struct kernfs_open_file *of,
return 0;
}
+static int max_threshold_occ_show(struct kernfs_open_file *of,
+ struct seq_file *seq, void *v)
+{
+ struct rdt_resource *r = of->kn->parent->priv;
+
+ seq_printf(seq, "%u\n", intel_cqm_threshold * r->mon_scale);
+
+ return 0;
+}
+
+static ssize_t max_threshold_occ_write(struct kernfs_open_file *of,
+ char *buf, size_t nbytes, loff_t off)
+{
+ struct rdt_resource *r = of->kn->parent->priv;
+ unsigned int bytes;
+ int ret;
+
+ ret = kstrtouint(buf, 0, &bytes);
+ if (ret)
+ return ret;
+
+ if (bytes > (boot_cpu_data.x86_cache_size * 1024))
+ return -EINVAL;
+
+ intel_cqm_threshold = bytes / r->mon_scale;
+
+ return nbytes;
+}
+
/* rdtgroup information files for one cache resource. */
-static struct rftype res_cache_info_files[] = {
+static struct rftype res_common_files[] = {
{
.name = "num_closids",
.mode = 0444,
.kf_ops = &rdtgroup_kf_single_ops,
.seq_show = rdt_num_closids_show,
+ .fflags = RF_CTRL_INFO,
+ },
+ {
+ .name = "mon_features",
+ .mode = 0444,
+ .kf_ops = &rdtgroup_kf_single_ops,
+ .seq_show = rdt_mon_features_show,
+ .fflags = RF_MON_INFO,
+ },
+ {
+ .name = "num_rmids",
+ .mode = 0444,
+ .kf_ops = &rdtgroup_kf_single_ops,
+ .seq_show = rdt_num_rmids_show,
+ .fflags = RF_MON_INFO,
},
{
.name = "cbm_mask",
.mode = 0444,
.kf_ops = &rdtgroup_kf_single_ops,
.seq_show = rdt_default_ctrl_show,
+ .fflags = RF_CTRL_INFO | RFTYPE_RES_CACHE,
},
{
.name = "min_cbm_bits",
.mode = 0444,
.kf_ops = &rdtgroup_kf_single_ops,
.seq_show = rdt_min_cbm_bits_show,
+ .fflags = RF_CTRL_INFO | RFTYPE_RES_CACHE,
},
-};
-
-/* rdtgroup information files for memory bandwidth. */
-static struct rftype res_mba_info_files[] = {
{
- .name = "num_closids",
+ .name = "shareable_bits",
.mode = 0444,
.kf_ops = &rdtgroup_kf_single_ops,
- .seq_show = rdt_num_closids_show,
+ .seq_show = rdt_shareable_bits_show,
+ .fflags = RF_CTRL_INFO | RFTYPE_RES_CACHE,
},
{
.name = "min_bandwidth",
.mode = 0444,
.kf_ops = &rdtgroup_kf_single_ops,
.seq_show = rdt_min_bw_show,
+ .fflags = RF_CTRL_INFO | RFTYPE_RES_MB,
},
{
.name = "bandwidth_gran",
.mode = 0444,
.kf_ops = &rdtgroup_kf_single_ops,
.seq_show = rdt_bw_gran_show,
+ .fflags = RF_CTRL_INFO | RFTYPE_RES_MB,
},
{
.name = "delay_linear",
.mode = 0444,
.kf_ops = &rdtgroup_kf_single_ops,
.seq_show = rdt_delay_linear_show,
+ .fflags = RF_CTRL_INFO | RFTYPE_RES_MB,
+ },
+ {
+ .name = "max_threshold_occupancy",
+ .mode = 0644,
+ .kf_ops = &rdtgroup_kf_single_ops,
+ .write = max_threshold_occ_write,
+ .seq_show = max_threshold_occ_show,
+ .fflags = RF_MON_INFO | RFTYPE_RES_CACHE,
+ },
+ {
+ .name = "cpus",
+ .mode = 0644,
+ .kf_ops = &rdtgroup_kf_single_ops,
+ .write = rdtgroup_cpus_write,
+ .seq_show = rdtgroup_cpus_show,
+ .fflags = RFTYPE_BASE,
+ },
+ {
+ .name = "cpus_list",
+ .mode = 0644,
+ .kf_ops = &rdtgroup_kf_single_ops,
+ .write = rdtgroup_cpus_write,
+ .seq_show = rdtgroup_cpus_show,
+ .flags = RFTYPE_FLAGS_CPUS_LIST,
+ .fflags = RFTYPE_BASE,
+ },
+ {
+ .name = "tasks",
+ .mode = 0644,
+ .kf_ops = &rdtgroup_kf_single_ops,
+ .write = rdtgroup_tasks_write,
+ .seq_show = rdtgroup_tasks_show,
+ .fflags = RFTYPE_BASE,
+ },
+ {
+ .name = "schemata",
+ .mode = 0644,
+ .kf_ops = &rdtgroup_kf_single_ops,
+ .write = rdtgroup_schemata_write,
+ .seq_show = rdtgroup_schemata_show,
+ .fflags = RF_CTRL_BASE,
},
};
-void rdt_get_mba_infofile(struct rdt_resource *r)
+static int rdtgroup_add_files(struct kernfs_node *kn, unsigned long fflags)
{
- r->info_files = res_mba_info_files;
- r->nr_info_files = ARRAY_SIZE(res_mba_info_files);
+ struct rftype *rfts, *rft;
+ int ret, len;
+
+ rfts = res_common_files;
+ len = ARRAY_SIZE(res_common_files);
+
+ lockdep_assert_held(&rdtgroup_mutex);
+
+ for (rft = rfts; rft < rfts + len; rft++) {
+ if ((fflags & rft->fflags) == rft->fflags) {
+ ret = rdtgroup_add_file(kn, rft);
+ if (ret)
+ goto error;
+ }
+ }
+
+ return 0;
+error:
+ pr_warn("Failed to add %s, err=%d\n", rft->name, ret);
+ while (--rft >= rfts) {
+ if ((fflags & rft->fflags) == rft->fflags)
+ kernfs_remove_by_name(kn, rft->name);
+ }
+ return ret;
}
-void rdt_get_cache_infofile(struct rdt_resource *r)
+static int rdtgroup_mkdir_info_resdir(struct rdt_resource *r, char *name,
+ unsigned long fflags)
{
- r->info_files = res_cache_info_files;
- r->nr_info_files = ARRAY_SIZE(res_cache_info_files);
+ struct kernfs_node *kn_subdir;
+ int ret;
+
+ kn_subdir = kernfs_create_dir(kn_info, name,
+ kn_info->mode, r);
+ if (IS_ERR(kn_subdir))
+ return PTR_ERR(kn_subdir);
+
+ kernfs_get(kn_subdir);
+ ret = rdtgroup_kn_set_ugid(kn_subdir);
+ if (ret)
+ return ret;
+
+ ret = rdtgroup_add_files(kn_subdir, fflags);
+ if (!ret)
+ kernfs_activate(kn_subdir);
+
+ return ret;
}
static int rdtgroup_create_info_dir(struct kernfs_node *parent_kn)
{
- struct kernfs_node *kn_subdir;
- struct rftype *res_info_files;
struct rdt_resource *r;
- int ret, len;
+ unsigned long fflags;
+ char name[32];
+ int ret;
/* create the directory */
kn_info = kernfs_create_dir(parent_kn, "info", parent_kn->mode, NULL);
@@ -638,25 +855,19 @@ static int rdtgroup_create_info_dir(struct kernfs_node *parent_kn)
return PTR_ERR(kn_info);
kernfs_get(kn_info);
- for_each_enabled_rdt_resource(r) {
- kn_subdir = kernfs_create_dir(kn_info, r->name,
- kn_info->mode, r);
- if (IS_ERR(kn_subdir)) {
- ret = PTR_ERR(kn_subdir);
- goto out_destroy;
- }
- kernfs_get(kn_subdir);
- ret = rdtgroup_kn_set_ugid(kn_subdir);
+ for_each_alloc_enabled_rdt_resource(r) {
+ fflags = r->fflags | RF_CTRL_INFO;
+ ret = rdtgroup_mkdir_info_resdir(r, r->name, fflags);
if (ret)
goto out_destroy;
+ }
- res_info_files = r->info_files;
- len = r->nr_info_files;
-
- ret = rdtgroup_add_files(kn_subdir, res_info_files, len);
+ for_each_mon_enabled_rdt_resource(r) {
+ fflags = r->fflags | RF_MON_INFO;
+ sprintf(name, "%s_MON", r->name);
+ ret = rdtgroup_mkdir_info_resdir(r, name, fflags);
if (ret)
goto out_destroy;
- kernfs_activate(kn_subdir);
}
/*
@@ -678,6 +889,39 @@ out_destroy:
return ret;
}
+static int
+mongroup_create_dir(struct kernfs_node *parent_kn, struct rdtgroup *prgrp,
+ char *name, struct kernfs_node **dest_kn)
+{
+ struct kernfs_node *kn;
+ int ret;
+
+ /* create the directory */
+ kn = kernfs_create_dir(parent_kn, name, parent_kn->mode, prgrp);
+ if (IS_ERR(kn))
+ return PTR_ERR(kn);
+
+ if (dest_kn)
+ *dest_kn = kn;
+
+ /*
+ * This extra ref will be put in kernfs_remove() and guarantees
+ * that @rdtgrp->kn is always accessible.
+ */
+ kernfs_get(kn);
+
+ ret = rdtgroup_kn_set_ugid(kn);
+ if (ret)
+ goto out_destroy;
+
+ kernfs_activate(kn);
+
+ return 0;
+
+out_destroy:
+ kernfs_remove(kn);
+ return ret;
+}
static void l3_qos_cfg_update(void *arg)
{
bool *enable = arg;
@@ -718,14 +962,15 @@ static int cdp_enable(void)
struct rdt_resource *r_l3 = &rdt_resources_all[RDT_RESOURCE_L3];
int ret;
- if (!r_l3->capable || !r_l3data->capable || !r_l3code->capable)
+ if (!r_l3->alloc_capable || !r_l3data->alloc_capable ||
+ !r_l3code->alloc_capable)
return -EINVAL;
ret = set_l3_qos_cfg(r_l3, true);
if (!ret) {
- r_l3->enabled = false;
- r_l3data->enabled = true;
- r_l3code->enabled = true;
+ r_l3->alloc_enabled = false;
+ r_l3data->alloc_enabled = true;
+ r_l3code->alloc_enabled = true;
}
return ret;
}
@@ -734,11 +979,11 @@ static void cdp_disable(void)
{
struct rdt_resource *r = &rdt_resources_all[RDT_RESOURCE_L3];
- r->enabled = r->capable;
+ r->alloc_enabled = r->alloc_capable;
- if (rdt_resources_all[RDT_RESOURCE_L3DATA].enabled) {
- rdt_resources_all[RDT_RESOURCE_L3DATA].enabled = false;
- rdt_resources_all[RDT_RESOURCE_L3CODE].enabled = false;
+ if (rdt_resources_all[RDT_RESOURCE_L3DATA].alloc_enabled) {
+ rdt_resources_all[RDT_RESOURCE_L3DATA].alloc_enabled = false;
+ rdt_resources_all[RDT_RESOURCE_L3CODE].alloc_enabled = false;
set_l3_qos_cfg(r, false);
}
}
@@ -823,10 +1068,16 @@ void rdtgroup_kn_unlock(struct kernfs_node *kn)
}
}
+static int mkdir_mondata_all(struct kernfs_node *parent_kn,
+ struct rdtgroup *prgrp,
+ struct kernfs_node **mon_data_kn);
+
static struct dentry *rdt_mount(struct file_system_type *fs_type,
int flags, const char *unused_dev_name,
void *data)
{
+ struct rdt_domain *dom;
+ struct rdt_resource *r;
struct dentry *dentry;
int ret;
@@ -853,15 +1104,54 @@ static struct dentry *rdt_mount(struct file_system_type *fs_type,
goto out_cdp;
}
+ if (rdt_mon_capable) {
+ ret = mongroup_create_dir(rdtgroup_default.kn,
+ NULL, "mon_groups",
+ &kn_mongrp);
+ if (ret) {
+ dentry = ERR_PTR(ret);
+ goto out_info;
+ }
+ kernfs_get(kn_mongrp);
+
+ ret = mkdir_mondata_all(rdtgroup_default.kn,
+ &rdtgroup_default, &kn_mondata);
+ if (ret) {
+ dentry = ERR_PTR(ret);
+ goto out_mongrp;
+ }
+ kernfs_get(kn_mondata);
+ rdtgroup_default.mon.mon_data_kn = kn_mondata;
+ }
+
dentry = kernfs_mount(fs_type, flags, rdt_root,
RDTGROUP_SUPER_MAGIC, NULL);
if (IS_ERR(dentry))
- goto out_destroy;
+ goto out_mondata;
+
+ if (rdt_alloc_capable)
+ static_branch_enable(&rdt_alloc_enable_key);
+ if (rdt_mon_capable)
+ static_branch_enable(&rdt_mon_enable_key);
+
+ if (rdt_alloc_capable || rdt_mon_capable)
+ static_branch_enable(&rdt_enable_key);
+
+ if (is_mbm_enabled()) {
+ r = &rdt_resources_all[RDT_RESOURCE_L3];
+ list_for_each_entry(dom, &r->domains, list)
+ mbm_setup_overflow_handler(dom, MBM_OVERFLOW_INTERVAL);
+ }
- static_branch_enable(&rdt_enable_key);
goto out;
-out_destroy:
+out_mondata:
+ if (rdt_mon_capable)
+ kernfs_remove(kn_mondata);
+out_mongrp:
+ if (rdt_mon_capable)
+ kernfs_remove(kn_mongrp);
+out_info:
kernfs_remove(kn_info);
out_cdp:
cdp_disable();
@@ -909,6 +1199,18 @@ static int reset_all_ctrls(struct rdt_resource *r)
return 0;
}
+static bool is_closid_match(struct task_struct *t, struct rdtgroup *r)
+{
+ return (rdt_alloc_capable &&
+ (r->type == RDTCTRL_GROUP) && (t->closid == r->closid));
+}
+
+static bool is_rmid_match(struct task_struct *t, struct rdtgroup *r)
+{
+ return (rdt_mon_capable &&
+ (r->type == RDTMON_GROUP) && (t->rmid == r->mon.rmid));
+}
+
/*
* Move tasks from one to the other group. If @from is NULL, then all tasks
* in the systems are moved unconditionally (used for teardown).
@@ -924,8 +1226,11 @@ static void rdt_move_group_tasks(struct rdtgroup *from, struct rdtgroup *to,
read_lock(&tasklist_lock);
for_each_process_thread(p, t) {
- if (!from || t->closid == from->closid) {
+ if (!from || is_closid_match(t, from) ||
+ is_rmid_match(t, from)) {
t->closid = to->closid;
+ t->rmid = to->mon.rmid;
+
#ifdef CONFIG_SMP
/*
* This is safe on x86 w/o barriers as the ordering
@@ -944,6 +1249,19 @@ static void rdt_move_group_tasks(struct rdtgroup *from, struct rdtgroup *to,
read_unlock(&tasklist_lock);
}
+static void free_all_child_rdtgrp(struct rdtgroup *rdtgrp)
+{
+ struct rdtgroup *sentry, *stmp;
+ struct list_head *head;
+
+ head = &rdtgrp->mon.crdtgrp_list;
+ list_for_each_entry_safe(sentry, stmp, head, mon.crdtgrp_list) {
+ free_rmid(sentry->mon.rmid);
+ list_del(&sentry->mon.crdtgrp_list);
+ kfree(sentry);
+ }
+}
+
/*
* Forcibly remove all of subdirectories under root.
*/
@@ -955,6 +1273,9 @@ static void rmdir_all_sub(void)
rdt_move_group_tasks(NULL, &rdtgroup_default, NULL);
list_for_each_entry_safe(rdtgrp, tmp, &rdt_all_groups, rdtgroup_list) {
+ /* Free any child rmids */
+ free_all_child_rdtgrp(rdtgrp);
+
/* Remove each rdtgroup other than root */
if (rdtgrp == &rdtgroup_default)
continue;
@@ -967,16 +1288,20 @@ static void rmdir_all_sub(void)
cpumask_or(&rdtgroup_default.cpu_mask,
&rdtgroup_default.cpu_mask, &rdtgrp->cpu_mask);
+ free_rmid(rdtgrp->mon.rmid);
+
kernfs_remove(rdtgrp->kn);
list_del(&rdtgrp->rdtgroup_list);
kfree(rdtgrp);
}
/* Notify online CPUs to update per cpu storage and PQR_ASSOC MSR */
get_online_cpus();
- rdt_update_closid(cpu_online_mask, &rdtgroup_default.closid);
+ update_closid_rmid(cpu_online_mask, &rdtgroup_default);
put_online_cpus();
kernfs_remove(kn_info);
+ kernfs_remove(kn_mongrp);
+ kernfs_remove(kn_mondata);
}
static void rdt_kill_sb(struct super_block *sb)
@@ -986,10 +1311,12 @@ static void rdt_kill_sb(struct super_block *sb)
mutex_lock(&rdtgroup_mutex);
/*Put everything back to default values. */
- for_each_enabled_rdt_resource(r)
+ for_each_alloc_enabled_rdt_resource(r)
reset_all_ctrls(r);
cdp_disable();
rmdir_all_sub();
+ static_branch_disable(&rdt_alloc_enable_key);
+ static_branch_disable(&rdt_mon_enable_key);
static_branch_disable(&rdt_enable_key);
kernfs_kill_sb(sb);
mutex_unlock(&rdtgroup_mutex);
@@ -1001,46 +1328,223 @@ static struct file_system_type rdt_fs_type = {
.kill_sb = rdt_kill_sb,
};
-static int rdtgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
- umode_t mode)
+static int mon_addfile(struct kernfs_node *parent_kn, const char *name,
+ void *priv)
{
- struct rdtgroup *parent, *rdtgrp;
struct kernfs_node *kn;
- int ret, closid;
+ int ret = 0;
- /* Only allow mkdir in the root directory */
- if (parent_kn != rdtgroup_default.kn)
- return -EPERM;
+ kn = __kernfs_create_file(parent_kn, name, 0444, 0,
+ &kf_mondata_ops, priv, NULL, NULL);
+ if (IS_ERR(kn))
+ return PTR_ERR(kn);
- /* Do not accept '\n' to avoid unparsable situation. */
- if (strchr(name, '\n'))
- return -EINVAL;
+ ret = rdtgroup_kn_set_ugid(kn);
+ if (ret) {
+ kernfs_remove(kn);
+ return ret;
+ }
- parent = rdtgroup_kn_lock_live(parent_kn);
- if (!parent) {
- ret = -ENODEV;
- goto out_unlock;
+ return ret;
+}
+
+/*
+ * Remove all subdirectories of mon_data of ctrl_mon groups
+ * and monitor groups with given domain id.
+ */
+void rmdir_mondata_subdir_allrdtgrp(struct rdt_resource *r, unsigned int dom_id)
+{
+ struct rdtgroup *prgrp, *crgrp;
+ char name[32];
+
+ if (!r->mon_enabled)
+ return;
+
+ list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) {
+ sprintf(name, "mon_%s_%02d", r->name, dom_id);
+ kernfs_remove_by_name(prgrp->mon.mon_data_kn, name);
+
+ list_for_each_entry(crgrp, &prgrp->mon.crdtgrp_list, mon.crdtgrp_list)
+ kernfs_remove_by_name(crgrp->mon.mon_data_kn, name);
}
+}
- ret = closid_alloc();
- if (ret < 0)
+static int mkdir_mondata_subdir(struct kernfs_node *parent_kn,
+ struct rdt_domain *d,
+ struct rdt_resource *r, struct rdtgroup *prgrp)
+{
+ union mon_data_bits priv;
+ struct kernfs_node *kn;
+ struct mon_evt *mevt;
+ struct rmid_read rr;
+ char name[32];
+ int ret;
+
+ sprintf(name, "mon_%s_%02d", r->name, d->id);
+ /* create the directory */
+ kn = kernfs_create_dir(parent_kn, name, parent_kn->mode, prgrp);
+ if (IS_ERR(kn))
+ return PTR_ERR(kn);
+
+ /*
+ * This extra ref will be put in kernfs_remove() and guarantees
+ * that kn is always accessible.
+ */
+ kernfs_get(kn);
+ ret = rdtgroup_kn_set_ugid(kn);
+ if (ret)
+ goto out_destroy;
+
+ if (WARN_ON(list_empty(&r->evt_list))) {
+ ret = -EPERM;
+ goto out_destroy;
+ }
+
+ priv.u.rid = r->rid;
+ priv.u.domid = d->id;
+ list_for_each_entry(mevt, &r->evt_list, list) {
+ priv.u.evtid = mevt->evtid;
+ ret = mon_addfile(kn, mevt->name, priv.priv);
+ if (ret)
+ goto out_destroy;
+
+ if (is_mbm_event(mevt->evtid))
+ mon_event_read(&rr, d, prgrp, mevt->evtid, true);
+ }
+ kernfs_activate(kn);
+ return 0;
+
+out_destroy:
+ kernfs_remove(kn);
+ return ret;
+}
+
+/*
+ * Add all subdirectories of mon_data for "ctrl_mon" groups
+ * and "monitor" groups with given domain id.
+ */
+void mkdir_mondata_subdir_allrdtgrp(struct rdt_resource *r,
+ struct rdt_domain *d)
+{
+ struct kernfs_node *parent_kn;
+ struct rdtgroup *prgrp, *crgrp;
+ struct list_head *head;
+
+ if (!r->mon_enabled)
+ return;
+
+ list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) {
+ parent_kn = prgrp->mon.mon_data_kn;
+ mkdir_mondata_subdir(parent_kn, d, r, prgrp);
+
+ head = &prgrp->mon.crdtgrp_list;
+ list_for_each_entry(crgrp, head, mon.crdtgrp_list) {
+ parent_kn = crgrp->mon.mon_data_kn;
+ mkdir_mondata_subdir(parent_kn, d, r, crgrp);
+ }
+ }
+}
+
+static int mkdir_mondata_subdir_alldom(struct kernfs_node *parent_kn,
+ struct rdt_resource *r,
+ struct rdtgroup *prgrp)
+{
+ struct rdt_domain *dom;
+ int ret;
+
+ list_for_each_entry(dom, &r->domains, list) {
+ ret = mkdir_mondata_subdir(parent_kn, dom, r, prgrp);
+ if (ret)
+ return ret;
+ }
+
+ return 0;
+}
+
+/*
+ * This creates a directory mon_data which contains the monitored data.
+ *
+ * mon_data has one directory for each domain whic are named
+ * in the format mon_<domain_name>_<domain_id>. For ex: A mon_data
+ * with L3 domain looks as below:
+ * ./mon_data:
+ * mon_L3_00
+ * mon_L3_01
+ * mon_L3_02
+ * ...
+ *
+ * Each domain directory has one file per event:
+ * ./mon_L3_00/:
+ * llc_occupancy
+ *
+ */
+static int mkdir_mondata_all(struct kernfs_node *parent_kn,
+ struct rdtgroup *prgrp,
+ struct kernfs_node **dest_kn)
+{
+ struct rdt_resource *r;
+ struct kernfs_node *kn;
+ int ret;
+
+ /*
+ * Create the mon_data directory first.
+ */
+ ret = mongroup_create_dir(parent_kn, NULL, "mon_data", &kn);
+ if (ret)
+ return ret;
+
+ if (dest_kn)
+ *dest_kn = kn;
+
+ /*
+ * Create the subdirectories for each domain. Note that all events
+ * in a domain like L3 are grouped into a resource whose domain is L3
+ */
+ for_each_mon_enabled_rdt_resource(r) {
+ ret = mkdir_mondata_subdir_alldom(kn, r, prgrp);
+ if (ret)
+ goto out_destroy;
+ }
+
+ return 0;
+
+out_destroy:
+ kernfs_remove(kn);
+ return ret;
+}
+
+static int mkdir_rdt_prepare(struct kernfs_node *parent_kn,
+ struct kernfs_node *prgrp_kn,
+ const char *name, umode_t mode,
+ enum rdt_group_type rtype, struct rdtgroup **r)
+{
+ struct rdtgroup *prdtgrp, *rdtgrp;
+ struct kernfs_node *kn;
+ uint files = 0;
+ int ret;
+
+ prdtgrp = rdtgroup_kn_lock_live(prgrp_kn);
+ if (!prdtgrp) {
+ ret = -ENODEV;
goto out_unlock;
- closid = ret;
+ }
/* allocate the rdtgroup. */
rdtgrp = kzalloc(sizeof(*rdtgrp), GFP_KERNEL);
if (!rdtgrp) {
ret = -ENOSPC;
- goto out_closid_free;
+ goto out_unlock;
}
- rdtgrp->closid = closid;
- list_add(&rdtgrp->rdtgroup_list, &rdt_all_groups);
+ *r = rdtgrp;
+ rdtgrp->mon.parent = prdtgrp;
+ rdtgrp->type = rtype;
+ INIT_LIST_HEAD(&rdtgrp->mon.crdtgrp_list);
/* kernfs creates the directory for rdtgrp */
- kn = kernfs_create_dir(parent->kn, name, mode, rdtgrp);
+ kn = kernfs_create_dir(parent_kn, name, mode, rdtgrp);
if (IS_ERR(kn)) {
ret = PTR_ERR(kn);
- goto out_cancel_ref;
+ goto out_free_rgrp;
}
rdtgrp->kn = kn;
@@ -1056,43 +1560,211 @@ static int rdtgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
if (ret)
goto out_destroy;
- ret = rdtgroup_add_files(kn, rdtgroup_base_files,
- ARRAY_SIZE(rdtgroup_base_files));
+ files = RFTYPE_BASE | RFTYPE_CTRL;
+ files = RFTYPE_BASE | BIT(RF_CTRLSHIFT + rtype);
+ ret = rdtgroup_add_files(kn, files);
if (ret)
goto out_destroy;
+ if (rdt_mon_capable) {
+ ret = alloc_rmid();
+ if (ret < 0)
+ goto out_destroy;
+ rdtgrp->mon.rmid = ret;
+
+ ret = mkdir_mondata_all(kn, rdtgrp, &rdtgrp->mon.mon_data_kn);
+ if (ret)
+ goto out_idfree;
+ }
kernfs_activate(kn);
- ret = 0;
- goto out_unlock;
+ /*
+ * The caller unlocks the prgrp_kn upon success.
+ */
+ return 0;
+out_idfree:
+ free_rmid(rdtgrp->mon.rmid);
out_destroy:
kernfs_remove(rdtgrp->kn);
-out_cancel_ref:
- list_del(&rdtgrp->rdtgroup_list);
+out_free_rgrp:
kfree(rdtgrp);
-out_closid_free:
- closid_free(closid);
out_unlock:
- rdtgroup_kn_unlock(parent_kn);
+ rdtgroup_kn_unlock(prgrp_kn);
return ret;
}
-static int rdtgroup_rmdir(struct kernfs_node *kn)
+static void mkdir_rdt_prepare_clean(struct rdtgroup *rgrp)
+{
+ kernfs_remove(rgrp->kn);
+ free_rmid(rgrp->mon.rmid);
+ kfree(rgrp);
+}
+
+/*
+ * Create a monitor group under "mon_groups" directory of a control
+ * and monitor group(ctrl_mon). This is a resource group
+ * to monitor a subset of tasks and cpus in its parent ctrl_mon group.
+ */
+static int rdtgroup_mkdir_mon(struct kernfs_node *parent_kn,
+ struct kernfs_node *prgrp_kn,
+ const char *name,
+ umode_t mode)
+{
+ struct rdtgroup *rdtgrp, *prgrp;
+ int ret;
+
+ ret = mkdir_rdt_prepare(parent_kn, prgrp_kn, name, mode, RDTMON_GROUP,
+ &rdtgrp);
+ if (ret)
+ return ret;
+
+ prgrp = rdtgrp->mon.parent;
+ rdtgrp->closid = prgrp->closid;
+
+ /*
+ * Add the rdtgrp to the list of rdtgrps the parent
+ * ctrl_mon group has to track.
+ */
+ list_add_tail(&rdtgrp->mon.crdtgrp_list, &prgrp->mon.crdtgrp_list);
+
+ rdtgroup_kn_unlock(prgrp_kn);
+ return ret;
+}
+
+/*
+ * These are rdtgroups created under the root directory. Can be used
+ * to allocate and monitor resources.
+ */
+static int rdtgroup_mkdir_ctrl_mon(struct kernfs_node *parent_kn,
+ struct kernfs_node *prgrp_kn,
+ const char *name, umode_t mode)
{
- int ret, cpu, closid = rdtgroup_default.closid;
struct rdtgroup *rdtgrp;
- cpumask_var_t tmpmask;
+ struct kernfs_node *kn;
+ u32 closid;
+ int ret;
- if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL))
- return -ENOMEM;
+ ret = mkdir_rdt_prepare(parent_kn, prgrp_kn, name, mode, RDTCTRL_GROUP,
+ &rdtgrp);
+ if (ret)
+ return ret;
- rdtgrp = rdtgroup_kn_lock_live(kn);
- if (!rdtgrp) {
- ret = -EPERM;
- goto out;
+ kn = rdtgrp->kn;
+ ret = closid_alloc();
+ if (ret < 0)
+ goto out_common_fail;
+ closid = ret;
+
+ rdtgrp->closid = closid;
+ list_add(&rdtgrp->rdtgroup_list, &rdt_all_groups);
+
+ if (rdt_mon_capable) {
+ /*
+ * Create an empty mon_groups directory to hold the subset
+ * of tasks and cpus to monitor.
+ */
+ ret = mongroup_create_dir(kn, NULL, "mon_groups", NULL);
+ if (ret)
+ goto out_id_free;
}
+ goto out_unlock;
+
+out_id_free:
+ closid_free(closid);
+ list_del(&rdtgrp->rdtgroup_list);
+out_common_fail:
+ mkdir_rdt_prepare_clean(rdtgrp);
+out_unlock:
+ rdtgroup_kn_unlock(prgrp_kn);
+ return ret;
+}
+
+/*
+ * We allow creating mon groups only with in a directory called "mon_groups"
+ * which is present in every ctrl_mon group. Check if this is a valid
+ * "mon_groups" directory.
+ *
+ * 1. The directory should be named "mon_groups".
+ * 2. The mon group itself should "not" be named "mon_groups".
+ * This makes sure "mon_groups" directory always has a ctrl_mon group
+ * as parent.
+ */
+static bool is_mon_groups(struct kernfs_node *kn, const char *name)
+{
+ return (!strcmp(kn->name, "mon_groups") &&
+ strcmp(name, "mon_groups"));
+}
+
+static int rdtgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
+ umode_t mode)
+{
+ /* Do not accept '\n' to avoid unparsable situation. */
+ if (strchr(name, '\n'))
+ return -EINVAL;
+
+ /*
+ * If the parent directory is the root directory and RDT
+ * allocation is supported, add a control and monitoring
+ * subdirectory
+ */
+ if (rdt_alloc_capable && parent_kn == rdtgroup_default.kn)
+ return rdtgroup_mkdir_ctrl_mon(parent_kn, parent_kn, name, mode);
+
+ /*
+ * If RDT monitoring is supported and the parent directory is a valid
+ * "mon_groups" directory, add a monitoring subdirectory.
+ */
+ if (rdt_mon_capable && is_mon_groups(parent_kn, name))
+ return rdtgroup_mkdir_mon(parent_kn, parent_kn->parent, name, mode);
+
+ return -EPERM;
+}
+
+static int rdtgroup_rmdir_mon(struct kernfs_node *kn, struct rdtgroup *rdtgrp,
+ cpumask_var_t tmpmask)
+{
+ struct rdtgroup *prdtgrp = rdtgrp->mon.parent;
+ int cpu;
+
+ /* Give any tasks back to the parent group */
+ rdt_move_group_tasks(rdtgrp, prdtgrp, tmpmask);
+
+ /* Update per cpu rmid of the moved CPUs first */
+ for_each_cpu(cpu, &rdtgrp->cpu_mask)
+ per_cpu(pqr_state.default_rmid, cpu) = prdtgrp->mon.rmid;
+ /*
+ * Update the MSR on moved CPUs and CPUs which have moved
+ * task running on them.
+ */
+ cpumask_or(tmpmask, tmpmask, &rdtgrp->cpu_mask);
+ update_closid_rmid(tmpmask, NULL);
+
+ rdtgrp->flags = RDT_DELETED;
+ free_rmid(rdtgrp->mon.rmid);
+
+ /*
+ * Remove the rdtgrp from the parent ctrl_mon group's list
+ */
+ WARN_ON(list_empty(&prdtgrp->mon.crdtgrp_list));
+ list_del(&rdtgrp->mon.crdtgrp_list);
+
+ /*
+ * one extra hold on this, will drop when we kfree(rdtgrp)
+ * in rdtgroup_kn_unlock()
+ */
+ kernfs_get(kn);
+ kernfs_remove(rdtgrp->kn);
+
+ return 0;
+}
+
+static int rdtgroup_rmdir_ctrl(struct kernfs_node *kn, struct rdtgroup *rdtgrp,
+ cpumask_var_t tmpmask)
+{
+ int cpu;
+
/* Give any tasks back to the default group */
rdt_move_group_tasks(rdtgrp, &rdtgroup_default, tmpmask);
@@ -1100,18 +1772,28 @@ static int rdtgroup_rmdir(struct kernfs_node *kn)
cpumask_or(&rdtgroup_default.cpu_mask,
&rdtgroup_default.cpu_mask, &rdtgrp->cpu_mask);
- /* Update per cpu closid of the moved CPUs first */
- for_each_cpu(cpu, &rdtgrp->cpu_mask)
- per_cpu(cpu_closid, cpu) = closid;
+ /* Update per cpu closid and rmid of the moved CPUs first */
+ for_each_cpu(cpu, &rdtgrp->cpu_mask) {
+ per_cpu(pqr_state.default_closid, cpu) = rdtgroup_default.closid;
+ per_cpu(pqr_state.default_rmid, cpu) = rdtgroup_default.mon.rmid;
+ }
+
/*
* Update the MSR on moved CPUs and CPUs which have moved
* task running on them.
*/
cpumask_or(tmpmask, tmpmask, &rdtgrp->cpu_mask);
- rdt_update_closid(tmpmask, NULL);
+ update_closid_rmid(tmpmask, NULL);
rdtgrp->flags = RDT_DELETED;
closid_free(rdtgrp->closid);
+ free_rmid(rdtgrp->mon.rmid);
+
+ /*
+ * Free all the child monitor group rmids.
+ */
+ free_all_child_rdtgrp(rdtgrp);
+
list_del(&rdtgrp->rdtgroup_list);
/*
@@ -1120,7 +1802,41 @@ static int rdtgroup_rmdir(struct kernfs_node *kn)
*/
kernfs_get(kn);
kernfs_remove(rdtgrp->kn);
- ret = 0;
+
+ return 0;
+}
+
+static int rdtgroup_rmdir(struct kernfs_node *kn)
+{
+ struct kernfs_node *parent_kn = kn->parent;
+ struct rdtgroup *rdtgrp;
+ cpumask_var_t tmpmask;
+ int ret = 0;
+
+ if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL))
+ return -ENOMEM;
+
+ rdtgrp = rdtgroup_kn_lock_live(kn);
+ if (!rdtgrp) {
+ ret = -EPERM;
+ goto out;
+ }
+
+ /*
+ * If the rdtgroup is a ctrl_mon group and parent directory
+ * is the root directory, remove the ctrl_mon group.
+ *
+ * If the rdtgroup is a mon group and parent directory
+ * is a valid "mon_groups" directory, remove the mon group.
+ */
+ if (rdtgrp->type == RDTCTRL_GROUP && parent_kn == rdtgroup_default.kn)
+ ret = rdtgroup_rmdir_ctrl(kn, rdtgrp, tmpmask);
+ else if (rdtgrp->type == RDTMON_GROUP &&
+ is_mon_groups(parent_kn, kn->name))
+ ret = rdtgroup_rmdir_mon(kn, rdtgrp, tmpmask);
+ else
+ ret = -EPERM;
+
out:
rdtgroup_kn_unlock(kn);
free_cpumask_var(tmpmask);
@@ -1129,7 +1845,7 @@ out:
static int rdtgroup_show_options(struct seq_file *seq, struct kernfs_root *kf)
{
- if (rdt_resources_all[RDT_RESOURCE_L3DATA].enabled)
+ if (rdt_resources_all[RDT_RESOURCE_L3DATA].alloc_enabled)
seq_puts(seq, ",cdp");
return 0;
}
@@ -1153,10 +1869,13 @@ static int __init rdtgroup_setup_root(void)
mutex_lock(&rdtgroup_mutex);
rdtgroup_default.closid = 0;
+ rdtgroup_default.mon.rmid = 0;
+ rdtgroup_default.type = RDTCTRL_GROUP;
+ INIT_LIST_HEAD(&rdtgroup_default.mon.crdtgrp_list);
+
list_add(&rdtgroup_default.rdtgroup_list, &rdt_all_groups);
- ret = rdtgroup_add_files(rdt_root->kn, rdtgroup_base_files,
- ARRAY_SIZE(rdtgroup_base_files));
+ ret = rdtgroup_add_files(rdt_root->kn, RF_CTRL_BASE);
if (ret) {
kernfs_destroy_root(rdt_root);
goto out;
diff --git a/arch/x86/kernel/process_32.c b/arch/x86/kernel/process_32.c
index efc5eeb58292..11966251cd42 100644
--- a/arch/x86/kernel/process_32.c
+++ b/arch/x86/kernel/process_32.c
@@ -56,7 +56,7 @@
#include <asm/debugreg.h>
#include <asm/switch_to.h>
#include <asm/vm86.h>
-#include <asm/intel_rdt.h>
+#include <asm/intel_rdt_sched.h>
#include <asm/proto.h>
void __show_regs(struct pt_regs *regs, int all)
diff --git a/arch/x86/kernel/process_64.c b/arch/x86/kernel/process_64.c
index c85269a76511..302e7b2572d1 100644
--- a/arch/x86/kernel/process_64.c
+++ b/arch/x86/kernel/process_64.c
@@ -52,7 +52,7 @@
#include <asm/switch_to.h>
#include <asm/xen/hypervisor.h>
#include <asm/vdso.h>
-#include <asm/intel_rdt.h>
+#include <asm/intel_rdt_sched.h>
#include <asm/unistd.h>
#ifdef CONFIG_IA32_EMULATION
/* Not included via unistd.h */
diff --git a/include/linux/perf_event.h b/include/linux/perf_event.h
index 718ba163c1b9..8e22f24ded6a 100644
--- a/include/linux/perf_event.h
+++ b/include/linux/perf_event.h
@@ -139,14 +139,6 @@ struct hw_perf_event {
/* for tp_event->class */
struct list_head tp_list;
};
- struct { /* intel_cqm */
- int cqm_state;
- u32 cqm_rmid;
- int is_group_event;
- struct list_head cqm_events_entry;
- struct list_head cqm_groups_entry;
- struct list_head cqm_group_entry;
- };
struct { /* amd_power */
u64 pwr_acc;
u64 ptsc;
@@ -414,11 +406,6 @@ struct pmu {
/*
- * Return the count value for a counter.
- */
- u64 (*count) (struct perf_event *event); /*optional*/
-
- /*
* Set up pmu-private data structures for an AUX area
*/
void *(*setup_aux) (int cpu, void **pages,
@@ -1112,11 +1099,6 @@ static inline void perf_event_task_sched_out(struct task_struct *prev,
__perf_event_task_sched_out(prev, next);
}
-static inline u64 __perf_event_count(struct perf_event *event)
-{
- return local64_read(&event->count) + atomic64_read(&event->child_count);
-}
-
extern void perf_event_mmap(struct vm_area_struct *vma);
extern struct perf_guest_info_callbacks *perf_guest_cbs;
extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
diff --git a/include/linux/sched.h b/include/linux/sched.h
index 9ba42c663fba..68b38335d33c 100644
--- a/include/linux/sched.h
+++ b/include/linux/sched.h
@@ -909,8 +909,9 @@ struct task_struct {
/* cg_list protected by css_set_lock and tsk->alloc_lock: */
struct list_head cg_list;
#endif
-#ifdef CONFIG_INTEL_RDT_A
- int closid;
+#ifdef CONFIG_INTEL_RDT
+ u32 closid;
+ u32 rmid;
#endif
#ifdef CONFIG_FUTEX
struct robust_list_head __user *robust_list;
diff --git a/kernel/events/core.c b/kernel/events/core.c
index ce64f3fed5c6..294f1927f944 100644
--- a/kernel/events/core.c
+++ b/kernel/events/core.c
@@ -3673,10 +3673,7 @@ unlock:
static inline u64 perf_event_count(struct perf_event *event)
{
- if (event->pmu->count)
- return event->pmu->count(event);
-
- return __perf_event_count(event);
+ return local64_read(&event->count) + atomic64_read(&event->child_count);
}
/*
@@ -3707,15 +3704,6 @@ int perf_event_read_local(struct perf_event *event, u64 *value)
goto out;
}
- /*
- * It must not have a pmu::count method, those are not
- * NMI safe.
- */
- if (event->pmu->count) {
- ret = -EOPNOTSUPP;
- goto out;
- }
-
/* If this is a per-task event, it must be for current */
if ((event->attach_state & PERF_ATTACH_TASK) &&
event->hw.target != current) {