diff options
author | Andrii Nakryiko <andrii@kernel.org> | 2024-01-24 05:21:00 +0300 |
---|---|---|
committer | Alexei Starovoitov <ast@kernel.org> | 2024-01-25 03:21:01 +0300 |
commit | 35f96de04127d332a5c5e8a155d31f452f88c76d (patch) | |
tree | 20e268d6358835f0caf0cf82e47e95746c92b465 /tools/include | |
parent | 6fe01d3cbb924a72493eb3f4722dfcfd1c194234 (diff) | |
download | linux-35f96de04127d332a5c5e8a155d31f452f88c76d.tar.xz |
bpf: Introduce BPF token object
Add new kind of BPF kernel object, BPF token. BPF token is meant to
allow delegating privileged BPF functionality, like loading a BPF
program or creating a BPF map, from privileged process to a *trusted*
unprivileged process, all while having a good amount of control over which
privileged operations could be performed using provided BPF token.
This is achieved through mounting BPF FS instance with extra delegation
mount options, which determine what operations are delegatable, and also
constraining it to the owning user namespace (as mentioned in the
previous patch).
BPF token itself is just a derivative from BPF FS and can be created
through a new bpf() syscall command, BPF_TOKEN_CREATE, which accepts BPF
FS FD, which can be attained through open() API by opening BPF FS mount
point. Currently, BPF token "inherits" delegated command, map types,
prog type, and attach type bit sets from BPF FS as is. In the future,
having an BPF token as a separate object with its own FD, we can allow
to further restrict BPF token's allowable set of things either at the
creation time or after the fact, allowing the process to guard itself
further from unintentionally trying to load undesired kind of BPF
programs. But for now we keep things simple and just copy bit sets as is.
When BPF token is created from BPF FS mount, we take reference to the
BPF super block's owning user namespace, and then use that namespace for
checking all the {CAP_BPF, CAP_PERFMON, CAP_NET_ADMIN, CAP_SYS_ADMIN}
capabilities that are normally only checked against init userns (using
capable()), but now we check them using ns_capable() instead (if BPF
token is provided). See bpf_token_capable() for details.
Such setup means that BPF token in itself is not sufficient to grant BPF
functionality. User namespaced process has to *also* have necessary
combination of capabilities inside that user namespace. So while
previously CAP_BPF was useless when granted within user namespace, now
it gains a meaning and allows container managers and sys admins to have
a flexible control over which processes can and need to use BPF
functionality within the user namespace (i.e., container in practice).
And BPF FS delegation mount options and derived BPF tokens serve as
a per-container "flag" to grant overall ability to use bpf() (plus further
restrict on which parts of bpf() syscalls are treated as namespaced).
Note also, BPF_TOKEN_CREATE command itself requires ns_capable(CAP_BPF)
within the BPF FS owning user namespace, rounding up the ns_capable()
story of BPF token. Also creating BPF token in init user namespace is
currently not supported, given BPF token doesn't have any effect in init
user namespace anyways.
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Christian Brauner <brauner@kernel.org>
Link: https://lore.kernel.org/bpf/20240124022127.2379740-4-andrii@kernel.org
Diffstat (limited to 'tools/include')
-rw-r--r-- | tools/include/uapi/linux/bpf.h | 37 |
1 files changed, 37 insertions, 0 deletions
diff --git a/tools/include/uapi/linux/bpf.h b/tools/include/uapi/linux/bpf.h index 1fef6d5a1330..b9dc0cca172c 100644 --- a/tools/include/uapi/linux/bpf.h +++ b/tools/include/uapi/linux/bpf.h @@ -847,6 +847,36 @@ union bpf_iter_link_info { * Returns zero on success. On error, -1 is returned and *errno* * is set appropriately. * + * BPF_TOKEN_CREATE + * Description + * Create BPF token with embedded information about what + * BPF-related functionality it allows: + * - a set of allowed bpf() syscall commands; + * - a set of allowed BPF map types to be created with + * BPF_MAP_CREATE command, if BPF_MAP_CREATE itself is allowed; + * - a set of allowed BPF program types and BPF program attach + * types to be loaded with BPF_PROG_LOAD command, if + * BPF_PROG_LOAD itself is allowed. + * + * BPF token is created (derived) from an instance of BPF FS, + * assuming it has necessary delegation mount options specified. + * This BPF token can be passed as an extra parameter to various + * bpf() syscall commands to grant BPF subsystem functionality to + * unprivileged processes. + * + * When created, BPF token is "associated" with the owning + * user namespace of BPF FS instance (super block) that it was + * derived from, and subsequent BPF operations performed with + * BPF token would be performing capabilities checks (i.e., + * CAP_BPF, CAP_PERFMON, CAP_NET_ADMIN, CAP_SYS_ADMIN) within + * that user namespace. Without BPF token, such capabilities + * have to be granted in init user namespace, making bpf() + * syscall incompatible with user namespace, for the most part. + * + * Return + * A new file descriptor (a nonnegative integer), or -1 if an + * error occurred (in which case, *errno* is set appropriately). + * * NOTES * eBPF objects (maps and programs) can be shared between processes. * @@ -901,6 +931,8 @@ enum bpf_cmd { BPF_ITER_CREATE, BPF_LINK_DETACH, BPF_PROG_BIND_MAP, + BPF_TOKEN_CREATE, + __MAX_BPF_CMD, }; enum bpf_map_type { @@ -1722,6 +1754,11 @@ union bpf_attr { __u32 flags; /* extra flags */ } prog_bind_map; + struct { /* struct used by BPF_TOKEN_CREATE command */ + __u32 flags; + __u32 bpffs_fd; + } token_create; + } __attribute__((aligned(8))); /* The description below is an attempt at providing documentation to eBPF |