diff options
author | Andrea Arcangeli <aarcange@redhat.com> | 2017-03-10 03:17:11 +0300 |
---|---|---|
committer | Linus Torvalds <torvalds@linux-foundation.org> | 2017-03-10 04:01:10 +0300 |
commit | 70ccb92fdd90b35bb6f9200093d4ffd6cb38156b (patch) | |
tree | 1a010b4c126bf64c0a740f648b96050d4b122d68 /mm | |
parent | 7eb76d457fd758d396bc2e65cb0ace5aae614149 (diff) | |
download | linux-70ccb92fdd90b35bb6f9200093d4ffd6cb38156b.tar.xz |
userfaultfd: non-cooperative: userfaultfd_remove revalidate vma in MADV_DONTNEED
userfaultfd_remove() has to be execute before zapping the pagetables or
UFFDIO_COPY could keep filling pages after zap_page_range returned,
which would result in non zero data after a MADV_DONTNEED.
However userfaultfd_remove() may have to release the mmap_sem. This was
handled correctly in MADV_REMOVE, but MADV_DONTNEED accessed a
potentially stale vma (the very vma passed to zap_page_range(vma, ...)).
The fix consists in revalidating the vma in case userfaultfd_remove()
had to release the mmap_sem.
This also optimizes away an unnecessary down_read/up_read in the
MADV_REMOVE case if UFFD_EVENT_FORK had to be delivered.
It all remains zero runtime cost in case CONFIG_USERFAULTFD=n as
userfaultfd_remove() will be defined as "true" at build time.
Link: http://lkml.kernel.org/r/20170302173738.18994-3-aarcange@redhat.com
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: "Dr. David Alan Gilbert" <dgilbert@redhat.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Pavel Emelyanov <xemul@parallels.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Diffstat (limited to 'mm')
-rw-r--r-- | mm/madvise.c | 44 |
1 files changed, 41 insertions, 3 deletions
diff --git a/mm/madvise.c b/mm/madvise.c index dc5927c812d3..7a2abf0127ae 100644 --- a/mm/madvise.c +++ b/mm/madvise.c @@ -513,7 +513,43 @@ static long madvise_dontneed(struct vm_area_struct *vma, if (!can_madv_dontneed_vma(vma)) return -EINVAL; - userfaultfd_remove(vma, prev, start, end); + if (!userfaultfd_remove(vma, start, end)) { + *prev = NULL; /* mmap_sem has been dropped, prev is stale */ + + down_read(¤t->mm->mmap_sem); + vma = find_vma(current->mm, start); + if (!vma) + return -ENOMEM; + if (start < vma->vm_start) { + /* + * This "vma" under revalidation is the one + * with the lowest vma->vm_start where start + * is also < vma->vm_end. If start < + * vma->vm_start it means an hole materialized + * in the user address space within the + * virtual range passed to MADV_DONTNEED. + */ + return -ENOMEM; + } + if (!can_madv_dontneed_vma(vma)) + return -EINVAL; + if (end > vma->vm_end) { + /* + * Don't fail if end > vma->vm_end. If the old + * vma was splitted while the mmap_sem was + * released the effect of the concurrent + * operation may not cause MADV_DONTNEED to + * have an undefined result. There may be an + * adjacent next vma that we'll walk + * next. userfaultfd_remove() will generate an + * UFFD_EVENT_REMOVE repetition on the + * end-vma->vm_end range, but the manager can + * handle a repetition fine. + */ + end = vma->vm_end; + } + VM_WARN_ON(start >= end); + } zap_page_range(vma, start, end - start); return 0; } @@ -554,8 +590,10 @@ static long madvise_remove(struct vm_area_struct *vma, * mmap_sem. */ get_file(f); - userfaultfd_remove(vma, prev, start, end); - up_read(¤t->mm->mmap_sem); + if (userfaultfd_remove(vma, start, end)) { + /* mmap_sem was not released by userfaultfd_remove() */ + up_read(¤t->mm->mmap_sem); + } error = vfs_fallocate(f, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE, offset, end - start); |