diff options
author | Linus Torvalds <torvalds@linux-foundation.org> | 2022-08-06 02:32:45 +0300 |
---|---|---|
committer | Linus Torvalds <torvalds@linux-foundation.org> | 2022-08-06 02:32:45 +0300 |
commit | 6614a3c3164a5df2b54abb0b3559f51041cf705b (patch) | |
tree | 1c25c23d9efed988705287fc2ccb78e0e76e311d /mm/memory-failure.c | |
parent | 74cae210a335d159f2eb822e261adee905b6951a (diff) | |
parent | 360614c01f81f48a89d8b13f8fa69c3ae0a1f5c7 (diff) | |
download | linux-6614a3c3164a5df2b54abb0b3559f51041cf705b.tar.xz |
Merge tag 'mm-stable-2022-08-03' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull MM updates from Andrew Morton:
"Most of the MM queue. A few things are still pending.
Liam's maple tree rework didn't make it. This has resulted in a few
other minor patch series being held over for next time.
Multi-gen LRU still isn't merged as we were waiting for mapletree to
stabilize. The current plan is to merge MGLRU into -mm soon and to
later reintroduce mapletree, with a view to hopefully getting both
into 6.1-rc1.
Summary:
- The usual batches of cleanups from Baoquan He, Muchun Song, Miaohe
Lin, Yang Shi, Anshuman Khandual and Mike Rapoport
- Some kmemleak fixes from Patrick Wang and Waiman Long
- DAMON updates from SeongJae Park
- memcg debug/visibility work from Roman Gushchin
- vmalloc speedup from Uladzislau Rezki
- more folio conversion work from Matthew Wilcox
- enhancements for coherent device memory mapping from Alex Sierra
- addition of shared pages tracking and CoW support for fsdax, from
Shiyang Ruan
- hugetlb optimizations from Mike Kravetz
- Mel Gorman has contributed some pagealloc changes to improve
latency and realtime behaviour.
- mprotect soft-dirty checking has been improved by Peter Xu
- Many other singleton patches all over the place"
[ XFS merge from hell as per Darrick Wong in
https://lore.kernel.org/all/YshKnxb4VwXycPO8@magnolia/ ]
* tag 'mm-stable-2022-08-03' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (282 commits)
tools/testing/selftests/vm/hmm-tests.c: fix build
mm: Kconfig: fix typo
mm: memory-failure: convert to pr_fmt()
mm: use is_zone_movable_page() helper
hugetlbfs: fix inaccurate comment in hugetlbfs_statfs()
hugetlbfs: cleanup some comments in inode.c
hugetlbfs: remove unneeded header file
hugetlbfs: remove unneeded hugetlbfs_ops forward declaration
hugetlbfs: use helper macro SZ_1{K,M}
mm: cleanup is_highmem()
mm/hmm: add a test for cross device private faults
selftests: add soft-dirty into run_vmtests.sh
selftests: soft-dirty: add test for mprotect
mm/mprotect: fix soft-dirty check in can_change_pte_writable()
mm: memcontrol: fix potential oom_lock recursion deadlock
mm/gup.c: fix formatting in check_and_migrate_movable_page()
xfs: fail dax mount if reflink is enabled on a partition
mm/memcontrol.c: remove the redundant updating of stats_flush_threshold
userfaultfd: don't fail on unrecognized features
hugetlb_cgroup: fix wrong hugetlb cgroup numa stat
...
Diffstat (limited to 'mm/memory-failure.c')
-rw-r--r-- | mm/memory-failure.c | 330 |
1 files changed, 221 insertions, 109 deletions
diff --git a/mm/memory-failure.c b/mm/memory-failure.c index b864c2eff641..9a7a228ad04a 100644 --- a/mm/memory-failure.c +++ b/mm/memory-failure.c @@ -33,6 +33,9 @@ * are rare we hope to get away with this. This avoids impacting the core * VM. */ + +#define pr_fmt(fmt) "Memory failure: " fmt + #include <linux/kernel.h> #include <linux/mm.h> #include <linux/page-flags.h> @@ -252,7 +255,7 @@ static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags) short addr_lsb = tk->size_shift; int ret = 0; - pr_err("Memory failure: %#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n", + pr_err("%#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n", pfn, t->comm, t->pid); if ((flags & MF_ACTION_REQUIRED) && (t == current)) @@ -270,7 +273,7 @@ static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags) ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr, addr_lsb, t); /* synchronous? */ if (ret < 0) - pr_info("Memory failure: Error sending signal to %s:%d: %d\n", + pr_info("Error sending signal to %s:%d: %d\n", t->comm, t->pid, ret); return ret; } @@ -297,10 +300,9 @@ void shake_page(struct page *p) } EXPORT_SYMBOL_GPL(shake_page); -static unsigned long dev_pagemap_mapping_shift(struct page *page, - struct vm_area_struct *vma) +static unsigned long dev_pagemap_mapping_shift(struct vm_area_struct *vma, + unsigned long address) { - unsigned long address = vma_address(page, vma); unsigned long ret = 0; pgd_t *pgd; p4d_t *p4d; @@ -340,23 +342,33 @@ static unsigned long dev_pagemap_mapping_shift(struct page *page, /* * Schedule a process for later kill. * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM. + * + * Notice: @fsdax_pgoff is used only when @p is a fsdax page. + * In other cases, such as anonymous and file-backend page, the address to be + * killed can be caculated by @p itself. */ static void add_to_kill(struct task_struct *tsk, struct page *p, - struct vm_area_struct *vma, - struct list_head *to_kill) + pgoff_t fsdax_pgoff, struct vm_area_struct *vma, + struct list_head *to_kill) { struct to_kill *tk; tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC); if (!tk) { - pr_err("Memory failure: Out of memory while machine check handling\n"); + pr_err("Out of memory while machine check handling\n"); return; } tk->addr = page_address_in_vma(p, vma); - if (is_zone_device_page(p)) - tk->size_shift = dev_pagemap_mapping_shift(p, vma); - else + if (is_zone_device_page(p)) { + /* + * Since page->mapping is not used for fsdax, we need + * calculate the address based on the vma. + */ + if (p->pgmap->type == MEMORY_DEVICE_FS_DAX) + tk->addr = vma_pgoff_address(fsdax_pgoff, 1, vma); + tk->size_shift = dev_pagemap_mapping_shift(vma, tk->addr); + } else tk->size_shift = page_shift(compound_head(p)); /* @@ -370,7 +382,7 @@ static void add_to_kill(struct task_struct *tsk, struct page *p, * has a mapping for the page. */ if (tk->addr == -EFAULT) { - pr_info("Memory failure: Unable to find user space address %lx in %s\n", + pr_info("Unable to find user space address %lx in %s\n", page_to_pfn(p), tsk->comm); } else if (tk->size_shift == 0) { kfree(tk); @@ -403,7 +415,7 @@ static void kill_procs(struct list_head *to_kill, int forcekill, bool fail, * signal and then access the memory. Just kill it. */ if (fail || tk->addr == -EFAULT) { - pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n", + pr_err("%#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n", pfn, tk->tsk->comm, tk->tsk->pid); do_send_sig_info(SIGKILL, SEND_SIG_PRIV, tk->tsk, PIDTYPE_PID); @@ -416,7 +428,7 @@ static void kill_procs(struct list_head *to_kill, int forcekill, bool fail, * process anyways. */ else if (kill_proc(tk, pfn, flags) < 0) - pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n", + pr_err("%#lx: Cannot send advisory machine check signal to %s:%d\n", pfn, tk->tsk->comm, tk->tsk->pid); } put_task_struct(tk->tsk); @@ -505,7 +517,7 @@ static void collect_procs_anon(struct page *page, struct list_head *to_kill, if (!page_mapped_in_vma(page, vma)) continue; if (vma->vm_mm == t->mm) - add_to_kill(t, page, vma, to_kill); + add_to_kill(t, page, 0, vma, to_kill); } } read_unlock(&tasklist_lock); @@ -541,12 +553,40 @@ static void collect_procs_file(struct page *page, struct list_head *to_kill, * to be informed of all such data corruptions. */ if (vma->vm_mm == t->mm) - add_to_kill(t, page, vma, to_kill); + add_to_kill(t, page, 0, vma, to_kill); + } + } + read_unlock(&tasklist_lock); + i_mmap_unlock_read(mapping); +} + +#ifdef CONFIG_FS_DAX +/* + * Collect processes when the error hit a fsdax page. + */ +static void collect_procs_fsdax(struct page *page, + struct address_space *mapping, pgoff_t pgoff, + struct list_head *to_kill) +{ + struct vm_area_struct *vma; + struct task_struct *tsk; + + i_mmap_lock_read(mapping); + read_lock(&tasklist_lock); + for_each_process(tsk) { + struct task_struct *t = task_early_kill(tsk, true); + + if (!t) + continue; + vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) { + if (vma->vm_mm == t->mm) + add_to_kill(t, page, pgoff, vma, to_kill); } } read_unlock(&tasklist_lock); i_mmap_unlock_read(mapping); } +#endif /* CONFIG_FS_DAX */ /* * Collect the processes who have the corrupted page mapped to kill. @@ -779,12 +819,10 @@ static int truncate_error_page(struct page *p, unsigned long pfn, int err = mapping->a_ops->error_remove_page(mapping, p); if (err != 0) { - pr_info("Memory failure: %#lx: Failed to punch page: %d\n", - pfn, err); + pr_info("%#lx: Failed to punch page: %d\n", pfn, err); } else if (page_has_private(p) && !try_to_release_page(p, GFP_NOIO)) { - pr_info("Memory failure: %#lx: failed to release buffers\n", - pfn); + pr_info("%#lx: failed to release buffers\n", pfn); } else { ret = MF_RECOVERED; } @@ -796,8 +834,7 @@ static int truncate_error_page(struct page *p, unsigned long pfn, if (invalidate_inode_page(p)) ret = MF_RECOVERED; else - pr_info("Memory failure: %#lx: Failed to invalidate\n", - pfn); + pr_info("%#lx: Failed to invalidate\n", pfn); } return ret; @@ -827,7 +864,7 @@ static bool has_extra_refcount(struct page_state *ps, struct page *p, count -= 1; if (count > 0) { - pr_err("Memory failure: %#lx: %s still referenced by %d users\n", + pr_err("%#lx: %s still referenced by %d users\n", page_to_pfn(p), action_page_types[ps->type], count); return true; } @@ -851,7 +888,7 @@ static int me_kernel(struct page_state *ps, struct page *p) */ static int me_unknown(struct page_state *ps, struct page *p) { - pr_err("Memory failure: %#lx: Unknown page state\n", page_to_pfn(p)); + pr_err("%#lx: Unknown page state\n", page_to_pfn(p)); unlock_page(p); return MF_FAILED; } @@ -1007,12 +1044,13 @@ static int me_swapcache_dirty(struct page_state *ps, struct page *p) static int me_swapcache_clean(struct page_state *ps, struct page *p) { + struct folio *folio = page_folio(p); int ret; - delete_from_swap_cache(p); + delete_from_swap_cache(folio); ret = delete_from_lru_cache(p) ? MF_FAILED : MF_RECOVERED; - unlock_page(p); + folio_unlock(folio); if (has_extra_refcount(ps, p, false)) ret = MF_FAILED; @@ -1135,7 +1173,7 @@ static void action_result(unsigned long pfn, enum mf_action_page_type type, trace_memory_failure_event(pfn, type, result); num_poisoned_pages_inc(); - pr_err("Memory failure: %#lx: recovery action for %s: %s\n", + pr_err("%#lx: recovery action for %s: %s\n", pfn, action_page_types[type], action_name[result]); } @@ -1210,8 +1248,7 @@ static int __get_hwpoison_page(struct page *page, unsigned long flags) if (head == compound_head(page)) return 1; - pr_info("Memory failure: %#lx cannot catch tail\n", - page_to_pfn(page)); + pr_info("%#lx cannot catch tail\n", page_to_pfn(page)); put_page(head); } @@ -1274,7 +1311,7 @@ try_again: } out: if (ret == -EIO) - pr_err("Memory failure: %#lx: unhandlable page.\n", page_to_pfn(p)); + pr_err("%#lx: unhandlable page.\n", page_to_pfn(p)); return ret; } @@ -1373,13 +1410,12 @@ static bool hwpoison_user_mappings(struct page *p, unsigned long pfn, return true; if (PageKsm(p)) { - pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn); + pr_err("%#lx: can't handle KSM pages.\n", pfn); return false; } if (PageSwapCache(p)) { - pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n", - pfn); + pr_err("%#lx: keeping poisoned page in swap cache\n", pfn); ttu |= TTU_IGNORE_HWPOISON; } @@ -1397,7 +1433,7 @@ static bool hwpoison_user_mappings(struct page *p, unsigned long pfn, } else { kill = 0; ttu |= TTU_IGNORE_HWPOISON; - pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n", + pr_info("%#lx: corrupted page was clean: dropped without side effects\n", pfn); } } @@ -1426,14 +1462,14 @@ static bool hwpoison_user_mappings(struct page *p, unsigned long pfn, try_to_unmap(folio, ttu|TTU_RMAP_LOCKED); i_mmap_unlock_write(mapping); } else - pr_info("Memory failure: %#lx: could not lock mapping for mapped huge page\n", pfn); + pr_info("%#lx: could not lock mapping for mapped huge page\n", pfn); } else { try_to_unmap(folio, ttu); } unmap_success = !page_mapped(hpage); if (!unmap_success) - pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n", + pr_err("%#lx: failed to unmap page (mapcount=%d)\n", pfn, page_mapcount(hpage)); /* @@ -1498,6 +1534,134 @@ static int try_to_split_thp_page(struct page *page, const char *msg) return 0; } +static void unmap_and_kill(struct list_head *to_kill, unsigned long pfn, + struct address_space *mapping, pgoff_t index, int flags) +{ + struct to_kill *tk; + unsigned long size = 0; + + list_for_each_entry(tk, to_kill, nd) + if (tk->size_shift) + size = max(size, 1UL << tk->size_shift); + + if (size) { + /* + * Unmap the largest mapping to avoid breaking up device-dax + * mappings which are constant size. The actual size of the + * mapping being torn down is communicated in siginfo, see + * kill_proc() + */ + loff_t start = (index << PAGE_SHIFT) & ~(size - 1); + + unmap_mapping_range(mapping, start, size, 0); + } + + kill_procs(to_kill, flags & MF_MUST_KILL, false, pfn, flags); +} + +static int mf_generic_kill_procs(unsigned long long pfn, int flags, + struct dev_pagemap *pgmap) +{ + struct page *page = pfn_to_page(pfn); + LIST_HEAD(to_kill); + dax_entry_t cookie; + int rc = 0; + + /* + * Pages instantiated by device-dax (not filesystem-dax) + * may be compound pages. + */ + page = compound_head(page); + + /* + * Prevent the inode from being freed while we are interrogating + * the address_space, typically this would be handled by + * lock_page(), but dax pages do not use the page lock. This + * also prevents changes to the mapping of this pfn until + * poison signaling is complete. + */ + cookie = dax_lock_page(page); + if (!cookie) + return -EBUSY; + + if (hwpoison_filter(page)) { + rc = -EOPNOTSUPP; + goto unlock; + } + + switch (pgmap->type) { + case MEMORY_DEVICE_PRIVATE: + case MEMORY_DEVICE_COHERENT: + /* + * TODO: Handle device pages which may need coordination + * with device-side memory. + */ + rc = -ENXIO; + goto unlock; + default: + break; + } + + /* + * Use this flag as an indication that the dax page has been + * remapped UC to prevent speculative consumption of poison. + */ + SetPageHWPoison(page); + + /* + * Unlike System-RAM there is no possibility to swap in a + * different physical page at a given virtual address, so all + * userspace consumption of ZONE_DEVICE memory necessitates + * SIGBUS (i.e. MF_MUST_KILL) + */ + flags |= MF_ACTION_REQUIRED | MF_MUST_KILL; + collect_procs(page, &to_kill, true); + + unmap_and_kill(&to_kill, pfn, page->mapping, page->index, flags); +unlock: + dax_unlock_page(page, cookie); + return rc; +} + +#ifdef CONFIG_FS_DAX +/** + * mf_dax_kill_procs - Collect and kill processes who are using this file range + * @mapping: address_space of the file in use + * @index: start pgoff of the range within the file + * @count: length of the range, in unit of PAGE_SIZE + * @mf_flags: memory failure flags + */ +int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index, + unsigned long count, int mf_flags) +{ + LIST_HEAD(to_kill); + dax_entry_t cookie; + struct page *page; + size_t end = index + count; + + mf_flags |= MF_ACTION_REQUIRED | MF_MUST_KILL; + + for (; index < end; index++) { + page = NULL; + cookie = dax_lock_mapping_entry(mapping, index, &page); + if (!cookie) + return -EBUSY; + if (!page) + goto unlock; + + SetPageHWPoison(page); + + collect_procs_fsdax(page, mapping, index, &to_kill); + unmap_and_kill(&to_kill, page_to_pfn(page), mapping, + index, mf_flags); +unlock: + dax_unlock_mapping_entry(mapping, index, cookie); + } + return 0; +} +EXPORT_SYMBOL_GPL(mf_dax_kill_procs); +#endif /* CONFIG_FS_DAX */ + /* * Called from hugetlb code with hugetlb_lock held. * @@ -1566,7 +1730,7 @@ retry: *hugetlb = 0; return 0; } else if (res == -EHWPOISON) { - pr_err("Memory failure: %#lx: already hardware poisoned\n", pfn); + pr_err("%#lx: already hardware poisoned\n", pfn); if (flags & MF_ACTION_REQUIRED) { head = compound_head(p); res = kill_accessing_process(current, page_to_pfn(head), flags); @@ -1633,23 +1797,20 @@ out: unlock_page(head); return res; } + #else static inline int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb) { return 0; } -#endif + +#endif /* CONFIG_HUGETLB_PAGE */ static int memory_failure_dev_pagemap(unsigned long pfn, int flags, struct dev_pagemap *pgmap) { struct page *page = pfn_to_page(pfn); - unsigned long size = 0; - struct to_kill *tk; - LIST_HEAD(tokill); - int rc = -EBUSY; - loff_t start; - dax_entry_t cookie; + int rc = -ENXIO; if (flags & MF_COUNT_INCREASED) /* @@ -1658,73 +1819,24 @@ static int memory_failure_dev_pagemap(unsigned long pfn, int flags, put_page(page); /* device metadata space is not recoverable */ - if (!pgmap_pfn_valid(pgmap, pfn)) { - rc = -ENXIO; + if (!pgmap_pfn_valid(pgmap, pfn)) goto out; - } /* - * Pages instantiated by device-dax (not filesystem-dax) - * may be compound pages. + * Call driver's implementation to handle the memory failure, otherwise + * fall back to generic handler. */ - page = compound_head(page); - - /* - * Prevent the inode from being freed while we are interrogating - * the address_space, typically this would be handled by - * lock_page(), but dax pages do not use the page lock. This - * also prevents changes to the mapping of this pfn until - * poison signaling is complete. - */ - cookie = dax_lock_page(page); - if (!cookie) - goto out; - - if (hwpoison_filter(page)) { - rc = -EOPNOTSUPP; - goto unlock; - } - - if (pgmap->type == MEMORY_DEVICE_PRIVATE) { + if (pgmap->ops->memory_failure) { + rc = pgmap->ops->memory_failure(pgmap, pfn, 1, flags); /* - * TODO: Handle HMM pages which may need coordination - * with device-side memory. + * Fall back to generic handler too if operation is not + * supported inside the driver/device/filesystem. */ - goto unlock; + if (rc != -EOPNOTSUPP) + goto out; } - /* - * Use this flag as an indication that the dax page has been - * remapped UC to prevent speculative consumption of poison. - */ - SetPageHWPoison(page); - - /* - * Unlike System-RAM there is no possibility to swap in a - * different physical page at a given virtual address, so all - * userspace consumption of ZONE_DEVICE memory necessitates - * SIGBUS (i.e. MF_MUST_KILL) - */ - flags |= MF_ACTION_REQUIRED | MF_MUST_KILL; - collect_procs(page, &tokill, true); - - list_for_each_entry(tk, &tokill, nd) - if (tk->size_shift) - size = max(size, 1UL << tk->size_shift); - if (size) { - /* - * Unmap the largest mapping to avoid breaking up - * device-dax mappings which are constant size. The - * actual size of the mapping being torn down is - * communicated in siginfo, see kill_proc() - */ - start = (page->index << PAGE_SHIFT) & ~(size - 1); - unmap_mapping_range(page->mapping, start, size, 0); - } - kill_procs(&tokill, true, false, pfn, flags); - rc = 0; -unlock: - dax_unlock_page(page, cookie); + rc = mf_generic_kill_procs(pfn, flags, pgmap); out: /* drop pgmap ref acquired in caller */ put_dev_pagemap(pgmap); @@ -1787,8 +1899,7 @@ int memory_failure(unsigned long pfn, int flags) goto unlock_mutex; } } - pr_err("Memory failure: %#lx: memory outside kernel control\n", - pfn); + pr_err("%#lx: memory outside kernel control\n", pfn); res = -ENXIO; goto unlock_mutex; } @@ -1799,8 +1910,7 @@ try_again: goto unlock_mutex; if (TestSetPageHWPoison(p)) { - pr_err("Memory failure: %#lx: already hardware poisoned\n", - pfn); + pr_err("%#lx: already hardware poisoned\n", pfn); res = -EHWPOISON; if (flags & MF_ACTION_REQUIRED) res = kill_accessing_process(current, pfn, flags); @@ -2016,7 +2126,7 @@ void memory_failure_queue(unsigned long pfn, int flags) if (kfifo_put(&mf_cpu->fifo, entry)) schedule_work_on(smp_processor_id(), &mf_cpu->work); else - pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n", + pr_err("buffer overflow when queuing memory failure at %#lx\n", pfn); spin_unlock_irqrestore(&mf_cpu->lock, proc_flags); put_cpu_var(memory_failure_cpu); @@ -2073,6 +2183,8 @@ static int __init memory_failure_init(void) } core_initcall(memory_failure_init); +#undef pr_fmt +#define pr_fmt(fmt) "" fmt #define unpoison_pr_info(fmt, pfn, rs) \ ({ \ if (__ratelimit(rs)) \ @@ -2178,7 +2290,7 @@ static bool isolate_page(struct page *page, struct list_head *pagelist) bool lru = PageLRU(page); if (PageHuge(page)) { - isolated = isolate_huge_page(page, pagelist); + isolated = !isolate_hugetlb(page, pagelist); } else { if (lru) isolated = !isolate_lru_page(page); |