summaryrefslogtreecommitdiff
path: root/lib/math
diff options
context:
space:
mode:
authorOleg Nesterov <oleg@redhat.com>2020-05-19 20:25:06 +0300
committerPeter Zijlstra <peterz@infradead.org>2020-06-15 15:10:00 +0300
commit3dc167ba5729ddd2d8e3fa1841653792c295d3f1 (patch)
treed3348dfe2edc313740bfd0b348d91d36726f9cc1 /lib/math
parentb3a9e3b9622ae10064826dccb4f7a52bd88c7407 (diff)
downloadlinux-3dc167ba5729ddd2d8e3fa1841653792c295d3f1.tar.xz
sched/cputime: Improve cputime_adjust()
People report that utime and stime from /proc/<pid>/stat become very wrong when the numbers are big enough, especially if you watch these counters incrementally. Specifically, the current implementation of: stime*rtime/total, results in a saw-tooth function on top of the desired line, where the teeth grow in size the larger the values become. IOW, it has a relative error. The result is that, when watching incrementally as time progresses (for large values), we'll see periods of pure stime or utime increase, irrespective of the actual ratio we're striving for. Replace scale_stime() with a math64.h helper: mul_u64_u64_div_u64() that is far more accurate. This also allows architectures to override the implementation -- for instance they can opt for the old algorithm if this new one turns out to be too expensive for them. Signed-off-by: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20200519172506.GA317395@hirez.programming.kicks-ass.net
Diffstat (limited to 'lib/math')
-rw-r--r--lib/math/div64.c41
1 files changed, 41 insertions, 0 deletions
diff --git a/lib/math/div64.c b/lib/math/div64.c
index 368ca7fd0d82..3952a07130d8 100644
--- a/lib/math/div64.c
+++ b/lib/math/div64.c
@@ -190,3 +190,44 @@ u32 iter_div_u64_rem(u64 dividend, u32 divisor, u64 *remainder)
return __iter_div_u64_rem(dividend, divisor, remainder);
}
EXPORT_SYMBOL(iter_div_u64_rem);
+
+#ifndef mul_u64_u64_div_u64
+u64 mul_u64_u64_div_u64(u64 a, u64 b, u64 c)
+{
+ u64 res = 0, div, rem;
+ int shift;
+
+ /* can a * b overflow ? */
+ if (ilog2(a) + ilog2(b) > 62) {
+ /*
+ * (b * a) / c is equal to
+ *
+ * (b / c) * a +
+ * (b % c) * a / c
+ *
+ * if nothing overflows. Can the 1st multiplication
+ * overflow? Yes, but we do not care: this can only
+ * happen if the end result can't fit in u64 anyway.
+ *
+ * So the code below does
+ *
+ * res = (b / c) * a;
+ * b = b % c;
+ */
+ div = div64_u64_rem(b, c, &rem);
+ res = div * a;
+ b = rem;
+
+ shift = ilog2(a) + ilog2(b) - 62;
+ if (shift > 0) {
+ /* drop precision */
+ b >>= shift;
+ c >>= shift;
+ if (!c)
+ return res;
+ }
+ }
+
+ return res + div64_u64(a * b, c);
+}
+#endif