summaryrefslogtreecommitdiff
path: root/include
diff options
context:
space:
mode:
authorThomas Gleixner <tglx@linutronix.de>2021-09-18 15:42:35 +0300
committerDavid S. Miller <davem@davemloft.net>2021-09-19 14:48:06 +0300
commit2dcb96bacce36021c2f3eaae0cef607b5bb71ede (patch)
tree3e0c86c3e91ab3f3c383c8ee971c0a8b7bd25e8b /include
parent48e6d083b3aa006052db687fb26eeceef1d325b6 (diff)
downloadlinux-2dcb96bacce36021c2f3eaae0cef607b5bb71ede.tar.xz
net: core: Correct the sock::sk_lock.owned lockdep annotations
lock_sock_fast() and lock_sock_nested() contain lockdep annotations for the sock::sk_lock.owned 'mutex'. sock::sk_lock.owned is not a regular mutex. It is just lockdep wise equivalent. In fact it's an open coded trivial mutex implementation with some interesting features. sock::sk_lock.slock is a regular spinlock protecting the 'mutex' representation sock::sk_lock.owned which is a plain boolean. If 'owned' is true, then some other task holds the 'mutex', otherwise it is uncontended. As this locking construct is obviously endangered by lock ordering issues as any other locking primitive it got lockdep annotated via a dedicated dependency map sock::sk_lock.dep_map which has to be updated at the lock and unlock sites. lock_sock_nested() is a straight forward 'mutex' lock operation: might_sleep(); spin_lock_bh(sock::sk_lock.slock) while (!try_lock(sock::sk_lock.owned)) { spin_unlock_bh(sock::sk_lock.slock); wait_for_release(); spin_lock_bh(sock::sk_lock.slock); } The lockdep annotation for sock::sk_lock.owned is for unknown reasons _after_ the lock has been acquired, i.e. after the code block above and after releasing sock::sk_lock.slock, but inside the bottom halves disabled region: spin_unlock(sock::sk_lock.slock); mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_); local_bh_enable(); The placement after the unlock is obvious because otherwise the mutex_acquire() would nest into the spin lock held region. But that's from the lockdep perspective still the wrong place: 1) The mutex_acquire() is issued _after_ the successful acquisition which is pointless because in a dead lock scenario this point is never reached which means that if the deadlock is the first instance of exposing the wrong lock order lockdep does not have a chance to detect it. 2) It only works because lockdep is rather lax on the context from which the mutex_acquire() is issued. Acquiring a mutex inside a bottom halves and therefore non-preemptible region is obviously invalid, except for a trylock which is clearly not the case here. This 'works' stops working on RT enabled kernels where the bottom halves serialization is done via a local lock, which exposes this misplacement because the 'mutex' and the local lock nest the wrong way around and lockdep complains rightfully about a lock inversion. The placement is wrong since the initial commit a5b5bb9a053a ("[PATCH] lockdep: annotate sk_locks") which introduced this. Fix it by moving the mutex_acquire() in front of the actual lock acquisition, which is what the regular mutex_lock() operation does as well. lock_sock_fast() is not that straight forward. It looks at the first glance like a convoluted trylock operation: spin_lock_bh(sock::sk_lock.slock) if (!sock::sk_lock.owned) return false; while (!try_lock(sock::sk_lock.owned)) { spin_unlock_bh(sock::sk_lock.slock); wait_for_release(); spin_lock_bh(sock::sk_lock.slock); } spin_unlock(sock::sk_lock.slock); mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_); local_bh_enable(); return true; But that's not the case: lock_sock_fast() is an interesting optimization for short critical sections which can run with bottom halves disabled and sock::sk_lock.slock held. This allows to shortcut the 'mutex' operation in the non contended case by preventing other lockers to acquire sock::sk_lock.owned because they are blocked on sock::sk_lock.slock, which in turn avoids the overhead of doing the heavy processing in release_sock() including waking up wait queue waiters. In the contended case, i.e. when sock::sk_lock.owned == true the behavior is the same as lock_sock_nested(). Semantically this shortcut means, that the task acquired the 'mutex' even if it does not touch the sock::sk_lock.owned field in the non-contended case. Not telling lockdep about this shortcut acquisition is hiding potential lock ordering violations in the fast path. As a consequence the same reasoning as for the above lock_sock_nested() case vs. the placement of the lockdep annotation applies. The current placement of the lockdep annotation was just copied from the original lock_sock(), now renamed to lock_sock_nested(), implementation. Fix this by moving the mutex_acquire() in front of the actual lock acquisition and adding the corresponding mutex_release() into unlock_sock_fast(). Also document the fast path return case with a comment. Reported-by: Sebastian Siewior <bigeasy@linutronix.de> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: netdev@vger.kernel.org Cc: "David S. Miller" <davem@davemloft.net> Cc: Jakub Kicinski <kuba@kernel.org> Cc: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
Diffstat (limited to 'include')
-rw-r--r--include/net/sock.h1
1 files changed, 1 insertions, 0 deletions
diff --git a/include/net/sock.h b/include/net/sock.h
index 66a9a90f9558..c005c3c750e8 100644
--- a/include/net/sock.h
+++ b/include/net/sock.h
@@ -1640,6 +1640,7 @@ static inline void unlock_sock_fast(struct sock *sk, bool slow)
release_sock(sk);
__release(&sk->sk_lock.slock);
} else {
+ mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
spin_unlock_bh(&sk->sk_lock.slock);
}
}