diff options
author | Casey Schaufler <casey@schaufler-ca.com> | 2015-05-03 01:11:14 +0300 |
---|---|---|
committer | James Morris <james.l.morris@oracle.com> | 2015-05-12 08:00:25 +0300 |
commit | 346033a28fb16b83dac2a74d8025ff8ee64a2c9b (patch) | |
tree | a37a42ddfe56ec2c50b643d6c24263104008c24b /include | |
parent | fe7bb272ee72b5cc377e02b556d0d718d12bbede (diff) | |
download | linux-346033a28fb16b83dac2a74d8025ff8ee64a2c9b.tar.xz |
LSM: Remove a comment from security.h
Remove the large comment describing the content of the
security_operations structure from security.h. This
wasn't done in the previous (2/7) patch because it
would have exceeded the mail list size limits.
Signed-off-by: Casey Schaufler <casey@schaufler-ca.com>
Acked-by: John Johansen <john.johansen@canonical.com>
Acked-by: Kees Cook <keescook@chromium.org>
Acked-by: Paul Moore <paul@paul-moore.com>
Acked-by: Stephen Smalley <sds@tycho.nsa.gov>
Acked-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Signed-off-by: James Morris <james.l.morris@oracle.com>
Diffstat (limited to 'include')
-rw-r--r-- | include/linux/security.h | 1270 |
1 files changed, 0 insertions, 1270 deletions
diff --git a/include/linux/security.h b/include/linux/security.h index f3d42c636f27..a2a100e7ac6e 100644 --- a/include/linux/security.h +++ b/include/linux/security.h @@ -186,1276 +186,6 @@ static inline void security_free_mnt_opts(struct security_mnt_opts *opts) opts->num_mnt_opts = 0; } -/** - * struct security_operations - main security structure - * - * Security module identifier. - * - * @name: - * A string that acts as a unique identifier for the LSM with max number - * of characters = SECURITY_NAME_MAX. - * - * Security hooks for program execution operations. - * - * @bprm_set_creds: - * Save security information in the bprm->security field, typically based - * on information about the bprm->file, for later use by the apply_creds - * hook. This hook may also optionally check permissions (e.g. for - * transitions between security domains). - * This hook may be called multiple times during a single execve, e.g. for - * interpreters. The hook can tell whether it has already been called by - * checking to see if @bprm->security is non-NULL. If so, then the hook - * may decide either to retain the security information saved earlier or - * to replace it. - * @bprm contains the linux_binprm structure. - * Return 0 if the hook is successful and permission is granted. - * @bprm_check_security: - * This hook mediates the point when a search for a binary handler will - * begin. It allows a check the @bprm->security value which is set in the - * preceding set_creds call. The primary difference from set_creds is - * that the argv list and envp list are reliably available in @bprm. This - * hook may be called multiple times during a single execve; and in each - * pass set_creds is called first. - * @bprm contains the linux_binprm structure. - * Return 0 if the hook is successful and permission is granted. - * @bprm_committing_creds: - * Prepare to install the new security attributes of a process being - * transformed by an execve operation, based on the old credentials - * pointed to by @current->cred and the information set in @bprm->cred by - * the bprm_set_creds hook. @bprm points to the linux_binprm structure. - * This hook is a good place to perform state changes on the process such - * as closing open file descriptors to which access will no longer be - * granted when the attributes are changed. This is called immediately - * before commit_creds(). - * @bprm_committed_creds: - * Tidy up after the installation of the new security attributes of a - * process being transformed by an execve operation. The new credentials - * have, by this point, been set to @current->cred. @bprm points to the - * linux_binprm structure. This hook is a good place to perform state - * changes on the process such as clearing out non-inheritable signal - * state. This is called immediately after commit_creds(). - * @bprm_secureexec: - * Return a boolean value (0 or 1) indicating whether a "secure exec" - * is required. The flag is passed in the auxiliary table - * on the initial stack to the ELF interpreter to indicate whether libc - * should enable secure mode. - * @bprm contains the linux_binprm structure. - * - * Security hooks for filesystem operations. - * - * @sb_alloc_security: - * Allocate and attach a security structure to the sb->s_security field. - * The s_security field is initialized to NULL when the structure is - * allocated. - * @sb contains the super_block structure to be modified. - * Return 0 if operation was successful. - * @sb_free_security: - * Deallocate and clear the sb->s_security field. - * @sb contains the super_block structure to be modified. - * @sb_statfs: - * Check permission before obtaining filesystem statistics for the @mnt - * mountpoint. - * @dentry is a handle on the superblock for the filesystem. - * Return 0 if permission is granted. - * @sb_mount: - * Check permission before an object specified by @dev_name is mounted on - * the mount point named by @nd. For an ordinary mount, @dev_name - * identifies a device if the file system type requires a device. For a - * remount (@flags & MS_REMOUNT), @dev_name is irrelevant. For a - * loopback/bind mount (@flags & MS_BIND), @dev_name identifies the - * pathname of the object being mounted. - * @dev_name contains the name for object being mounted. - * @path contains the path for mount point object. - * @type contains the filesystem type. - * @flags contains the mount flags. - * @data contains the filesystem-specific data. - * Return 0 if permission is granted. - * @sb_copy_data: - * Allow mount option data to be copied prior to parsing by the filesystem, - * so that the security module can extract security-specific mount - * options cleanly (a filesystem may modify the data e.g. with strsep()). - * This also allows the original mount data to be stripped of security- - * specific options to avoid having to make filesystems aware of them. - * @type the type of filesystem being mounted. - * @orig the original mount data copied from userspace. - * @copy copied data which will be passed to the security module. - * Returns 0 if the copy was successful. - * @sb_remount: - * Extracts security system specific mount options and verifies no changes - * are being made to those options. - * @sb superblock being remounted - * @data contains the filesystem-specific data. - * Return 0 if permission is granted. - * @sb_umount: - * Check permission before the @mnt file system is unmounted. - * @mnt contains the mounted file system. - * @flags contains the unmount flags, e.g. MNT_FORCE. - * Return 0 if permission is granted. - * @sb_pivotroot: - * Check permission before pivoting the root filesystem. - * @old_path contains the path for the new location of the current root (put_old). - * @new_path contains the path for the new root (new_root). - * Return 0 if permission is granted. - * @sb_set_mnt_opts: - * Set the security relevant mount options used for a superblock - * @sb the superblock to set security mount options for - * @opts binary data structure containing all lsm mount data - * @sb_clone_mnt_opts: - * Copy all security options from a given superblock to another - * @oldsb old superblock which contain information to clone - * @newsb new superblock which needs filled in - * @sb_parse_opts_str: - * Parse a string of security data filling in the opts structure - * @options string containing all mount options known by the LSM - * @opts binary data structure usable by the LSM - * @dentry_init_security: - * Compute a context for a dentry as the inode is not yet available - * since NFSv4 has no label backed by an EA anyway. - * @dentry dentry to use in calculating the context. - * @mode mode used to determine resource type. - * @name name of the last path component used to create file - * @ctx pointer to place the pointer to the resulting context in. - * @ctxlen point to place the length of the resulting context. - * - * - * Security hooks for inode operations. - * - * @inode_alloc_security: - * Allocate and attach a security structure to @inode->i_security. The - * i_security field is initialized to NULL when the inode structure is - * allocated. - * @inode contains the inode structure. - * Return 0 if operation was successful. - * @inode_free_security: - * @inode contains the inode structure. - * Deallocate the inode security structure and set @inode->i_security to - * NULL. - * @inode_init_security: - * Obtain the security attribute name suffix and value to set on a newly - * created inode and set up the incore security field for the new inode. - * This hook is called by the fs code as part of the inode creation - * transaction and provides for atomic labeling of the inode, unlike - * the post_create/mkdir/... hooks called by the VFS. The hook function - * is expected to allocate the name and value via kmalloc, with the caller - * being responsible for calling kfree after using them. - * If the security module does not use security attributes or does - * not wish to put a security attribute on this particular inode, - * then it should return -EOPNOTSUPP to skip this processing. - * @inode contains the inode structure of the newly created inode. - * @dir contains the inode structure of the parent directory. - * @qstr contains the last path component of the new object - * @name will be set to the allocated name suffix (e.g. selinux). - * @value will be set to the allocated attribute value. - * @len will be set to the length of the value. - * Returns 0 if @name and @value have been successfully set, - * -EOPNOTSUPP if no security attribute is needed, or - * -ENOMEM on memory allocation failure. - * @inode_create: - * Check permission to create a regular file. - * @dir contains inode structure of the parent of the new file. - * @dentry contains the dentry structure for the file to be created. - * @mode contains the file mode of the file to be created. - * Return 0 if permission is granted. - * @inode_link: - * Check permission before creating a new hard link to a file. - * @old_dentry contains the dentry structure for an existing link to the file. - * @dir contains the inode structure of the parent directory of the new link. - * @new_dentry contains the dentry structure for the new link. - * Return 0 if permission is granted. - * @path_link: - * Check permission before creating a new hard link to a file. - * @old_dentry contains the dentry structure for an existing link - * to the file. - * @new_dir contains the path structure of the parent directory of - * the new link. - * @new_dentry contains the dentry structure for the new link. - * Return 0 if permission is granted. - * @inode_unlink: - * Check the permission to remove a hard link to a file. - * @dir contains the inode structure of parent directory of the file. - * @dentry contains the dentry structure for file to be unlinked. - * Return 0 if permission is granted. - * @path_unlink: - * Check the permission to remove a hard link to a file. - * @dir contains the path structure of parent directory of the file. - * @dentry contains the dentry structure for file to be unlinked. - * Return 0 if permission is granted. - * @inode_symlink: - * Check the permission to create a symbolic link to a file. - * @dir contains the inode structure of parent directory of the symbolic link. - * @dentry contains the dentry structure of the symbolic link. - * @old_name contains the pathname of file. - * Return 0 if permission is granted. - * @path_symlink: - * Check the permission to create a symbolic link to a file. - * @dir contains the path structure of parent directory of - * the symbolic link. - * @dentry contains the dentry structure of the symbolic link. - * @old_name contains the pathname of file. - * Return 0 if permission is granted. - * @inode_mkdir: - * Check permissions to create a new directory in the existing directory - * associated with inode structure @dir. - * @dir contains the inode structure of parent of the directory to be created. - * @dentry contains the dentry structure of new directory. - * @mode contains the mode of new directory. - * Return 0 if permission is granted. - * @path_mkdir: - * Check permissions to create a new directory in the existing directory - * associated with path structure @path. - * @dir contains the path structure of parent of the directory - * to be created. - * @dentry contains the dentry structure of new directory. - * @mode contains the mode of new directory. - * Return 0 if permission is granted. - * @inode_rmdir: - * Check the permission to remove a directory. - * @dir contains the inode structure of parent of the directory to be removed. - * @dentry contains the dentry structure of directory to be removed. - * Return 0 if permission is granted. - * @path_rmdir: - * Check the permission to remove a directory. - * @dir contains the path structure of parent of the directory to be - * removed. - * @dentry contains the dentry structure of directory to be removed. - * Return 0 if permission is granted. - * @inode_mknod: - * Check permissions when creating a special file (or a socket or a fifo - * file created via the mknod system call). Note that if mknod operation - * is being done for a regular file, then the create hook will be called - * and not this hook. - * @dir contains the inode structure of parent of the new file. - * @dentry contains the dentry structure of the new file. - * @mode contains the mode of the new file. - * @dev contains the device number. - * Return 0 if permission is granted. - * @path_mknod: - * Check permissions when creating a file. Note that this hook is called - * even if mknod operation is being done for a regular file. - * @dir contains the path structure of parent of the new file. - * @dentry contains the dentry structure of the new file. - * @mode contains the mode of the new file. - * @dev contains the undecoded device number. Use new_decode_dev() to get - * the decoded device number. - * Return 0 if permission is granted. - * @inode_rename: - * Check for permission to rename a file or directory. - * @old_dir contains the inode structure for parent of the old link. - * @old_dentry contains the dentry structure of the old link. - * @new_dir contains the inode structure for parent of the new link. - * @new_dentry contains the dentry structure of the new link. - * Return 0 if permission is granted. - * @path_rename: - * Check for permission to rename a file or directory. - * @old_dir contains the path structure for parent of the old link. - * @old_dentry contains the dentry structure of the old link. - * @new_dir contains the path structure for parent of the new link. - * @new_dentry contains the dentry structure of the new link. - * Return 0 if permission is granted. - * @path_chmod: - * Check for permission to change DAC's permission of a file or directory. - * @dentry contains the dentry structure. - * @mnt contains the vfsmnt structure. - * @mode contains DAC's mode. - * Return 0 if permission is granted. - * @path_chown: - * Check for permission to change owner/group of a file or directory. - * @path contains the path structure. - * @uid contains new owner's ID. - * @gid contains new group's ID. - * Return 0 if permission is granted. - * @path_chroot: - * Check for permission to change root directory. - * @path contains the path structure. - * Return 0 if permission is granted. - * @inode_readlink: - * Check the permission to read the symbolic link. - * @dentry contains the dentry structure for the file link. - * Return 0 if permission is granted. - * @inode_follow_link: - * Check permission to follow a symbolic link when looking up a pathname. - * @dentry contains the dentry structure for the link. - * @nd contains the nameidata structure for the parent directory. - * Return 0 if permission is granted. - * @inode_permission: - * Check permission before accessing an inode. This hook is called by the - * existing Linux permission function, so a security module can use it to - * provide additional checking for existing Linux permission checks. - * Notice that this hook is called when a file is opened (as well as many - * other operations), whereas the file_security_ops permission hook is - * called when the actual read/write operations are performed. - * @inode contains the inode structure to check. - * @mask contains the permission mask. - * Return 0 if permission is granted. - * @inode_setattr: - * Check permission before setting file attributes. Note that the kernel - * call to notify_change is performed from several locations, whenever - * file attributes change (such as when a file is truncated, chown/chmod - * operations, transferring disk quotas, etc). - * @dentry contains the dentry structure for the file. - * @attr is the iattr structure containing the new file attributes. - * Return 0 if permission is granted. - * @path_truncate: - * Check permission before truncating a file. - * @path contains the path structure for the file. - * Return 0 if permission is granted. - * @inode_getattr: - * Check permission before obtaining file attributes. - * @mnt is the vfsmount where the dentry was looked up - * @dentry contains the dentry structure for the file. - * Return 0 if permission is granted. - * @inode_setxattr: - * Check permission before setting the extended attributes - * @value identified by @name for @dentry. - * Return 0 if permission is granted. - * @inode_post_setxattr: - * Update inode security field after successful setxattr operation. - * @value identified by @name for @dentry. - * @inode_getxattr: - * Check permission before obtaining the extended attributes - * identified by @name for @dentry. - * Return 0 if permission is granted. - * @inode_listxattr: - * Check permission before obtaining the list of extended attribute - * names for @dentry. - * Return 0 if permission is granted. - * @inode_removexattr: - * Check permission before removing the extended attribute - * identified by @name for @dentry. - * Return 0 if permission is granted. - * @inode_getsecurity: - * Retrieve a copy of the extended attribute representation of the - * security label associated with @name for @inode via @buffer. Note that - * @name is the remainder of the attribute name after the security prefix - * has been removed. @alloc is used to specify of the call should return a - * value via the buffer or just the value length Return size of buffer on - * success. - * @inode_setsecurity: - * Set the security label associated with @name for @inode from the - * extended attribute value @value. @size indicates the size of the - * @value in bytes. @flags may be XATTR_CREATE, XATTR_REPLACE, or 0. - * Note that @name is the remainder of the attribute name after the - * security. prefix has been removed. - * Return 0 on success. - * @inode_listsecurity: - * Copy the extended attribute names for the security labels - * associated with @inode into @buffer. The maximum size of @buffer - * is specified by @buffer_size. @buffer may be NULL to request - * the size of the buffer required. - * Returns number of bytes used/required on success. - * @inode_need_killpriv: - * Called when an inode has been changed. - * @dentry is the dentry being changed. - * Return <0 on error to abort the inode change operation. - * Return 0 if inode_killpriv does not need to be called. - * Return >0 if inode_killpriv does need to be called. - * @inode_killpriv: - * The setuid bit is being removed. Remove similar security labels. - * Called with the dentry->d_inode->i_mutex held. - * @dentry is the dentry being changed. - * Return 0 on success. If error is returned, then the operation - * causing setuid bit removal is failed. - * @inode_getsecid: - * Get the secid associated with the node. - * @inode contains a pointer to the inode. - * @secid contains a pointer to the location where result will be saved. - * In case of failure, @secid will be set to zero. - * - * Security hooks for file operations - * - * @file_permission: - * Check file permissions before accessing an open file. This hook is - * called by various operations that read or write files. A security - * module can use this hook to perform additional checking on these - * operations, e.g. to revalidate permissions on use to support privilege - * bracketing or policy changes. Notice that this hook is used when the - * actual read/write operations are performed, whereas the - * inode_security_ops hook is called when a file is opened (as well as - * many other operations). - * Caveat: Although this hook can be used to revalidate permissions for - * various system call operations that read or write files, it does not - * address the revalidation of permissions for memory-mapped files. - * Security modules must handle this separately if they need such - * revalidation. - * @file contains the file structure being accessed. - * @mask contains the requested permissions. - * Return 0 if permission is granted. - * @file_alloc_security: - * Allocate and attach a security structure to the file->f_security field. - * The security field is initialized to NULL when the structure is first - * created. - * @file contains the file structure to secure. - * Return 0 if the hook is successful and permission is granted. - * @file_free_security: - * Deallocate and free any security structures stored in file->f_security. - * @file contains the file structure being modified. - * @file_ioctl: - * @file contains the file structure. - * @cmd contains the operation to perform. - * @arg contains the operational arguments. - * Check permission for an ioctl operation on @file. Note that @arg - * sometimes represents a user space pointer; in other cases, it may be a - * simple integer value. When @arg represents a user space pointer, it - * should never be used by the security module. - * Return 0 if permission is granted. - * @mmap_addr : - * Check permissions for a mmap operation at @addr. - * @addr contains virtual address that will be used for the operation. - * Return 0 if permission is granted. - * @mmap_file : - * Check permissions for a mmap operation. The @file may be NULL, e.g. - * if mapping anonymous memory. - * @file contains the file structure for file to map (may be NULL). - * @reqprot contains the protection requested by the application. - * @prot contains the protection that will be applied by the kernel. - * @flags contains the operational flags. - * Return 0 if permission is granted. - * @file_mprotect: - * Check permissions before changing memory access permissions. - * @vma contains the memory region to modify. - * @reqprot contains the protection requested by the application. - * @prot contains the protection that will be applied by the kernel. - * Return 0 if permission is granted. - * @file_lock: - * Check permission before performing file locking operations. - * Note: this hook mediates both flock and fcntl style locks. - * @file contains the file structure. - * @cmd contains the posix-translated lock operation to perform - * (e.g. F_RDLCK, F_WRLCK). - * Return 0 if permission is granted. - * @file_fcntl: - * Check permission before allowing the file operation specified by @cmd - * from being performed on the file @file. Note that @arg sometimes - * represents a user space pointer; in other cases, it may be a simple - * integer value. When @arg represents a user space pointer, it should - * never be used by the security module. - * @file contains the file structure. - * @cmd contains the operation to be performed. - * @arg contains the operational arguments. - * Return 0 if permission is granted. - * @file_set_fowner: - * Save owner security information (typically from current->security) in - * file->f_security for later use by the send_sigiotask hook. - * @file contains the file structure to update. - * Return 0 on success. - * @file_send_sigiotask: - * Check permission for the file owner @fown to send SIGIO or SIGURG to the - * process @tsk. Note that this hook is sometimes called from interrupt. - * Note that the fown_struct, @fown, is never outside the context of a - * struct file, so the file structure (and associated security information) - * can always be obtained: - * container_of(fown, struct file, f_owner) - * @tsk contains the structure of task receiving signal. - * @fown contains the file owner information. - * @sig is the signal that will be sent. When 0, kernel sends SIGIO. - * Return 0 if permission is granted. - * @file_receive: - * This hook allows security modules to control the ability of a process - * to receive an open file descriptor via socket IPC. - * @file contains the file structure being received. - * Return 0 if permission is granted. - * @file_open - * Save open-time permission checking state for later use upon - * file_permission, and recheck access if anything has changed - * since inode_permission. - * - * Security hooks for task operations. - * - * @task_create: - * Check permission before creating a child process. See the clone(2) - * manual page for definitions of the @clone_flags. - * @clone_flags contains the flags indicating what should be shared. - * Return 0 if permission is granted. - * @task_free: - * @task task being freed - * Handle release of task-related resources. (Note that this can be called - * from interrupt context.) - * @cred_alloc_blank: - * @cred points to the credentials. - * @gfp indicates the atomicity of any memory allocations. - * Only allocate sufficient memory and attach to @cred such that - * cred_transfer() will not get ENOMEM. - * @cred_free: - * @cred points to the credentials. - * Deallocate and clear the cred->security field in a set of credentials. - * @cred_prepare: - * @new points to the new credentials. - * @old points to the original credentials. - * @gfp indicates the atomicity of any memory allocations. - * Prepare a new set of credentials by copying the data from the old set. - * @cred_transfer: - * @new points to the new credentials. - * @old points to the original credentials. - * Transfer data from original creds to new creds - * @kernel_act_as: - * Set the credentials for a kernel service to act as (subjective context). - * @new points to the credentials to be modified. - * @secid specifies the security ID to be set - * The current task must be the one that nominated @secid. - * Return 0 if successful. - * @kernel_create_files_as: - * Set the file creation context in a set of credentials to be the same as - * the objective context of the specified inode. - * @new points to the credentials to be modified. - * @inode points to the inode to use as a reference. - * The current task must be the one that nominated @inode. - * Return 0 if successful. - * @kernel_fw_from_file: - * Load firmware from userspace (not called for built-in firmware). - * @file contains the file structure pointing to the file containing - * the firmware to load. This argument will be NULL if the firmware - * was loaded via the uevent-triggered blob-based interface exposed - * by CONFIG_FW_LOADER_USER_HELPER. - * @buf pointer to buffer containing firmware contents. - * @size length of the firmware contents. - * Return 0 if permission is granted. - * @kernel_module_request: - * Ability to trigger the kernel to automatically upcall to userspace for - * userspace to load a kernel module with the given name. - * @kmod_name name of the module requested by the kernel - * Return 0 if successful. - * @kernel_module_from_file: - * Load a kernel module from userspace. - * @file contains the file structure pointing to the file containing - * the kernel module to load. If the module is being loaded from a blob, - * this argument will be NULL. - * Return 0 if permission is granted. - * @task_fix_setuid: - * Update the module's state after setting one or more of the user - * identity attributes of the current process. The @flags parameter - * indicates which of the set*uid system calls invoked this hook. If - * @new is the set of credentials that will be installed. Modifications - * should be made to this rather than to @current->cred. - * @old is the set of credentials that are being replaces - * @flags contains one of the LSM_SETID_* values. - * Return 0 on success. - * @task_setpgid: - * Check permission before setting the process group identifier of the - * process @p to @pgid. - * @p contains the task_struct for process being modified. - * @pgid contains the new pgid. - * Return 0 if permission is granted. - * @task_getpgid: - * Check permission before getting the process group identifier of the - * process @p. - * @p contains the task_struct for the process. - * Return 0 if permission is granted. - * @task_getsid: - * Check permission before getting the session identifier of the process - * @p. - * @p contains the task_struct for the process. - * Return 0 if permission is granted. - * @task_getsecid: - * Retrieve the security identifier of the process @p. - * @p contains the task_struct for the process and place is into @secid. - * In case of failure, @secid will be set to zero. - * - * @task_setnice: - * Check permission before setting the nice value of @p to @nice. - * @p contains the task_struct of process. - * @nice contains the new nice value. - * Return 0 if permission is granted. - * @task_setioprio - * Check permission before setting the ioprio value of @p to @ioprio. - * @p contains the task_struct of process. - * @ioprio contains the new ioprio value - * Return 0 if permission is granted. - * @task_getioprio - * Check permission before getting the ioprio value of @p. - * @p contains the task_struct of process. - * Return 0 if permission is granted. - * @task_setrlimit: - * Check permission before setting the resource limits of the current - * process for @resource to @new_rlim. The old resource limit values can - * be examined by dereferencing (current->signal->rlim + resource). - * @resource contains the resource whose limit is being set. - * @new_rlim contains the new limits for @resource. - * Return 0 if permission is granted. - * @task_setscheduler: - * Check permission before setting scheduling policy and/or parameters of - * process @p based on @policy and @lp. - * @p contains the task_struct for process. - * @policy contains the scheduling policy. - * @lp contains the scheduling parameters. - * Return 0 if permission is granted. - * @task_getscheduler: - * Check permission before obtaining scheduling information for process - * @p. - * @p contains the task_struct for process. - * Return 0 if permission is granted. - * @task_movememory - * Check permission before moving memory owned by process @p. - * @p contains the task_struct for process. - * Return 0 if permission is granted. - * @task_kill: - * Check permission before sending signal @sig to @p. @info can be NULL, - * the constant 1, or a pointer to a siginfo structure. If @info is 1 or - * SI_FROMKERNEL(info) is true, then the signal should be viewed as coming - * from the kernel and should typically be permitted. - * SIGIO signals are handled separately by the send_sigiotask hook in - * file_security_ops. - * @p contains the task_struct for process. - * @info contains the signal information. - * @sig contains the signal value. - * @secid contains the sid of the process where the signal originated - * Return 0 if permission is granted. - * @task_wait: - * Check permission before allowing a process to reap a child process @p - * and collect its status information. - * @p contains the task_struct for process. - * Return 0 if permission is granted. - * @task_prctl: - * Check permission before performing a process control operation on the - * current process. - * @option contains the operation. - * @arg2 contains a argument. - * @arg3 contains a argument. - * @arg4 contains a argument. - * @arg5 contains a argument. - * Return -ENOSYS if no-one wanted to handle this op, any other value to - * cause prctl() to return immediately with that value. - * @task_to_inode: - * Set the security attributes for an inode based on an associated task's - * security attributes, e.g. for /proc/pid inodes. - * @p contains the task_struct for the task. - * @inode contains the inode structure for the inode. - * - * Security hooks for Netlink messaging. - * - * @netlink_send: - * Save security information for a netlink message so that permission - * checking can be performed when the message is processed. The security - * information can be saved using the eff_cap field of the - * netlink_skb_parms structure. Also may be used to provide fine - * grained control over message transmission. - * @sk associated sock of task sending the message. - * @skb contains the sk_buff structure for the netlink message. - * Return 0 if the information was successfully saved and message - * is allowed to be transmitted. - * - * Security hooks for Unix domain networking. - * - * @unix_stream_connect: - * Check permissions before establishing a Unix domain stream connection - * between @sock and @other. - * @sock contains the sock structure. - * @other contains the peer sock structure. - * @newsk contains the new sock structure. - * Return 0 if permission is granted. - * @unix_may_send: - * Check permissions before connecting or sending datagrams from @sock to - * @other. - * @sock contains the socket structure. - * @other contains the peer socket structure. - * Return 0 if permission is granted. - * - * The @unix_stream_connect and @unix_may_send hooks were necessary because - * Linux provides an alternative to the conventional file name space for Unix - * domain sockets. Whereas binding and connecting to sockets in the file name - * space is mediated by the typical file permissions (and caught by the mknod - * and permission hooks in inode_security_ops), binding and connecting to - * sockets in the abstract name space is completely unmediated. Sufficient - * control of Unix domain sockets in the abstract name space isn't possible - * using only the socket layer hooks, since we need to know the actual target - * socket, which is not looked up until we are inside the af_unix code. - * - * Security hooks for socket operations. - * - * @socket_create: - * Check permissions prior to creating a new socket. - * @family contains the requested protocol family. - * @type contains the requested communications type. - * @protocol contains the requested protocol. - * @kern set to 1 if a kernel socket. - * Return 0 if permission is granted. - * @socket_post_create: - * This hook allows a module to update or allocate a per-socket security - * structure. Note that the security field was not added directly to the - * socket structure, but rather, the socket security information is stored - * in the associated inode. Typically, the inode alloc_security hook will - * allocate and and attach security information to - * sock->inode->i_security. This hook may be used to update the - * sock->inode->i_security field with additional information that wasn't - * available when the inode was allocated. - * @sock contains the newly created socket structure. - * @family contains the requested protocol family. - * @type contains the requested communications type. - * @protocol contains the requested protocol. - * @kern set to 1 if a kernel socket. - * @socket_bind: - * Check permission before socket protocol layer bind operation is - * performed and the socket @sock is bound to the address specified in the - * @address parameter. - * @sock contains the socket structure. - * @address contains the address to bind to. - * @addrlen contains the length of address. - * Return 0 if permission is granted. - * @socket_connect: - * Check permission before socket protocol layer connect operation - * attempts to connect socket @sock to a remote address, @address. - * @sock contains the socket structure. - * @address contains the address of remote endpoint. - * @addrlen contains the length of address. - * Return 0 if permission is granted. - * @socket_listen: - * Check permission before socket protocol layer listen operation. - * @sock contains the socket structure. - * @backlog contains the maximum length for the pending connection queue. - * Return 0 if permission is granted. - * @socket_accept: - * Check permission before accepting a new connection. Note that the new - * socket, @newsock, has been created and some information copied to it, - * but the accept operation has not actually been performed. - * @sock contains the listening socket structure. - * @newsock contains the newly created server socket for connection. - * Return 0 if permission is granted. - * @socket_sendmsg: - * Check permission before transmitting a message to another socket. - * @sock contains the socket structure. - * @msg contains the message to be transmitted. - * @size contains the size of message. - * Return 0 if permission is granted. - * @socket_recvmsg: - * Check permission before receiving a message from a socket. - * @sock contains the socket structure. - * @msg contains the message structure. - * @size contains the size of message structure. - * @flags contains the operational flags. - * Return 0 if permission is granted. - * @socket_getsockname: - * Check permission before the local address (name) of the socket object - * @sock is retrieved. - * @sock contains the socket structure. - * Return 0 if permission is granted. - * @socket_getpeername: - * Check permission before the remote address (name) of a socket object - * @sock is retrieved. - * @sock contains the socket structure. - * Return 0 if permission is granted. - * @socket_getsockopt: - * Check permissions before retrieving the options associated with socket - * @sock. - * @sock contains the socket structure. - * @level contains the protocol level to retrieve option from. - * @optname contains the name of option to retrieve. - * Return 0 if permission is granted. - * @socket_setsockopt: - * Check permissions before setting the options associated with socket - * @sock. - * @sock contains the socket structure. - * @level contains the protocol level to set options for. - * @optname contains the name of the option to set. - * Return 0 if permission is granted. - * @socket_shutdown: - * Checks permission before all or part of a connection on the socket - * @sock is shut down. - * @sock contains the socket structure. - * @how contains the flag indicating how future sends and receives are handled. - * Return 0 if permission is granted. - * @socket_sock_rcv_skb: - * Check permissions on incoming network packets. This hook is distinct - * from Netfilter's IP input hooks since it is the first time that the - * incoming sk_buff @skb has been associated with a particular socket, @sk. - * Must not sleep inside this hook because some callers hold spinlocks. - * @sk contains the sock (not socket) associated with the incoming sk_buff. - * @skb contains the incoming network data. - * @socket_getpeersec_stream: - * This hook allows the security module to provide peer socket security - * state for unix or connected tcp sockets to userspace via getsockopt - * SO_GETPEERSEC. For tcp sockets this can be meaningful if the - * socket is associated with an ipsec SA. - * @sock is the local socket. - * @optval userspace memory where the security state is to be copied. - * @optlen userspace int where the module should copy the actual length - * of the security state. - * @len as input is the maximum length to copy to userspace provided - * by the caller. - * Return 0 if all is well, otherwise, typical getsockopt return - * values. - * @socket_getpeersec_dgram: - * This hook allows the security module to provide peer socket security - * state for udp sockets on a per-packet basis to userspace via - * getsockopt SO_GETPEERSEC. The application must first have indicated - * the IP_PASSSEC option via getsockopt. It can then retrieve the - * security state returned by this hook for a packet via the SCM_SECURITY - * ancillary message type. - * @skb is the skbuff for the packet being queried - * @secdata is a pointer to a buffer in which to copy the security data - * @seclen is the maximum length for @secdata - * Return 0 on success, error on failure. - * @sk_alloc_security: - * Allocate and attach a security structure to the sk->sk_security field, - * which is used to copy security attributes between local stream sockets. - * @sk_free_security: - * Deallocate security structure. - * @sk_clone_security: - * Clone/copy security structure. - * @sk_getsecid: - * Retrieve the LSM-specific secid for the sock to enable caching of network - * authorizations. - * @sock_graft: - * Sets the socket's isec sid to the sock's sid. - * @inet_conn_request: - * Sets the openreq's sid to socket's sid with MLS portion taken from peer sid. - * @inet_csk_clone: - * Sets the new child socket's sid to the openreq sid. - * @inet_conn_established: - * Sets the connection's peersid to the secmark on skb. - * @secmark_relabel_packet: - * check if the process should be allowed to relabel packets to the given secid - * @security_secmark_refcount_inc - * tells the LSM to increment the number of secmark labeling rules loaded - * @security_secmark_refcount_dec - * tells the LSM to decrement the number of secmark labeling rules loaded - * @req_classify_flow: - * Sets the flow's sid to the openreq sid. - * @tun_dev_alloc_security: - * This hook allows a module to allocate a security structure for a TUN - * device. - * @security pointer to a security structure pointer. - * Returns a zero on success, negative values on failure. - * @tun_dev_free_security: - * This hook allows a module to free the security structure for a TUN - * device. - * @security pointer to the TUN device's security structure - * @tun_dev_create: - * Check permissions prior to creating a new TUN device. - * @tun_dev_attach_queue: - * Check permissions prior to attaching to a TUN device queue. - * @security pointer to the TUN device's security structure. - * @tun_dev_attach: - * This hook can be used by the module to update any security state - * associated with the TUN device's sock structure. - * @sk contains the existing sock structure. - * @security pointer to the TUN device's security structure. - * @tun_dev_open: - * This hook can be used by the module to update any security state - * associated with the TUN device's security structure. - * @security pointer to the TUN devices's security structure. - * @skb_owned_by: - * This hook sets the packet's owning sock. - * @skb is the packet. - * @sk the sock which owns the packet. - * - * Security hooks for XFRM operations. - * - * @xfrm_policy_alloc_security: - * @ctxp is a pointer to the xfrm_sec_ctx being added to Security Policy - * Database used by the XFRM system. - * @sec_ctx contains the security context information being provided by - * the user-level policy update program (e.g., setkey). - * Allocate a security structure to the xp->security field; the security - * field is initialized to NULL when the xfrm_policy is allocated. - * Return 0 if operation was successful (memory to allocate, legal context) - * @gfp is to specify the context for the allocation - * @xfrm_policy_clone_security: - * @old_ctx contains an existing xfrm_sec_ctx. - * @new_ctxp contains a new xfrm_sec_ctx being cloned from old. - * Allocate a security structure in new_ctxp that contains the - * information from the old_ctx structure. - * Return 0 if operation was successful (memory to allocate). - * @xfrm_policy_free_security: - * @ctx contains the xfrm_sec_ctx - * Deallocate xp->security. - * @xfrm_policy_delete_security: - * @ctx contains the xfrm_sec_ctx. - * Authorize deletion of xp->security. - * @xfrm_state_alloc: - * @x contains the xfrm_state being added to the Security Association - * Database by the XFRM system. - * @sec_ctx contains the security context information being provided by - * the user-level SA generation program (e.g., setkey or racoon). - * Allocate a security structure to the x->security field; the security - * field is initialized to NULL when the xfrm_state is allocated. Set the - * context to correspond to sec_ctx. Return 0 if operation was successful - * (memory to allocate, legal context). - * @xfrm_state_alloc_acquire: - * @x contains the xfrm_state being added to the Security Association - * Database by the XFRM system. - * @polsec contains the policy's security context. - * @secid contains the secid from which to take the mls portion of the - * context. - * Allocate a security structure to the x->security field; the security - * field is initialized to NULL when the xfrm_state is allocated. Set the - * context to correspond to secid. Return 0 if operation was successful - * (memory to allocate, legal context). - * @xfrm_state_free_security: - * @x contains the xfrm_state. - * Deallocate x->security. - * @xfrm_state_delete_security: - * @x contains the xfrm_state. - * Authorize deletion of x->security. - * @xfrm_policy_lookup: - * @ctx contains the xfrm_sec_ctx for which the access control is being - * checked. - * @fl_secid contains the flow security label that is used to authorize - * access to the policy xp. - * @dir contains the direction of the flow (input or output). - * Check permission when a flow selects a xfrm_policy for processing - * XFRMs on a packet. The hook is called when selecting either a - * per-socket policy or a generic xfrm policy. - * Return 0 if permission is granted, -ESRCH otherwise, or -errno - * on other errors. - * @xfrm_state_pol_flow_match: - * @x contains the state to match. - * @xp contains the policy to check for a match. - * @fl contains the flow to check for a match. - * Return 1 if there is a match. - * @xfrm_decode_session: - * @skb points to skb to decode. - * @secid points to the flow key secid to set. - * @ckall says if all xfrms used should be checked for same secid. - * Return 0 if ckall is zero or all xfrms used have the same secid. - * - * Security hooks affecting all Key Management operations - * - * @key_alloc: - * Permit allocation of a key and assign security data. Note that key does - * not have a serial number assigned at this point. - * @key points to the key. - * @flags is the allocation flags - * Return 0 if permission is granted, -ve error otherwise. - * @key_free: - * Notification of destruction; free security data. - * @key points to the key. - * No return value. - * @key_permission: - * See whether a specific operational right is granted to a process on a - * key. - * @key_ref refers to the key (key pointer + possession attribute bit). - * @cred points to the credentials to provide the context against which to - * evaluate the security data on the key. - * @perm describes the combination of permissions required of this key. - * Return 0 if permission is granted, -ve error otherwise. - * @key_getsecurity: - * Get a textual representation of the security context attached to a key - * for the purposes of honouring KEYCTL_GETSECURITY. This function - * allocates the storage for the NUL-terminated string and the caller - * should free it. - * @key points to the key to be queried. - * @_buffer points to a pointer that should be set to point to the - * resulting string (if no label or an error occurs). - * Return the length of the string (including terminating NUL) or -ve if - * an error. - * May also return 0 (and a NULL buffer pointer) if there is no label. - * - * Security hooks affecting all System V IPC operations. - * - * @ipc_permission: - * Check permissions for access to IPC - * @ipcp contains the kernel IPC permission structure - * @flag contains the desired (requested) permission set - * Return 0 if permission is granted. - * @ipc_getsecid: - * Get the secid associated with the ipc object. - * @ipcp contains the kernel IPC permission structure. - * @secid contains a pointer to the location where result will be saved. - * In case of failure, @secid will be set to zero. - * - * Security hooks for individual messages held in System V IPC message queues - * @msg_msg_alloc_security: - * Allocate and attach a security structure to the msg->security field. - * The security field is initialized to NULL when the structure is first - * created. - * @msg contains the message structure to be modified. - * Return 0 if operation was successful and permission is granted. - * @msg_msg_free_security: - * Deallocate the security structure for this message. - * @msg contains the message structure to be modified. - * - * Security hooks for System V IPC Message Queues - * - * @msg_queue_alloc_security: - * Allocate and attach a security structure to the - * msq->q_perm.security field. The security field is initialized to - * NULL when the structure is first created. - * @msq contains the message queue structure to be modified. - * Return 0 if operation was successful and permission is granted. - * @msg_queue_free_security: - * Deallocate security structure for this message queue. - * @msq contains the message queue structure to be modified. - * @msg_queue_associate: - * Check permission when a message queue is requested through the - * msgget system call. This hook is only called when returning the - * message queue identifier for an existing message queue, not when a - * new message queue is created. - * @msq contains the message queue to act upon. - * @msqflg contains the operation control flags. - * Return 0 if permission is granted. - * @msg_queue_msgctl: - * Check permission when a message control operation specified by @cmd - * is to be performed on the message queue @msq. - * The @msq may be NULL, e.g. for IPC_INFO or MSG_INFO. - * @msq contains the message queue to act upon. May be NULL. - * @cmd contains the operation to be performed. - * Return 0 if permission is granted. - * @msg_queue_msgsnd: - * Check permission before a message, @msg, is enqueued on the message - * queue, @msq. - * @msq contains the message queue to send message to. - * @msg contains the message to be enqueued. - * @msqflg contains operational flags. - * Return 0 if permission is granted. - * @msg_queue_msgrcv: - * Check permission before a message, @msg, is removed from the message - * queue, @msq. The @target task structure contains a pointer to the - * process that will be receiving the message (not equal to the current - * process when inline receives are being performed). - * @msq contains the message queue to retrieve message from. - * @msg contains the message destination. - * @target contains the task structure for recipient process. - * @type contains the type of message requested. - * @mode contains the operational flags. - * Return 0 if permission is granted. - * - * Security hooks for System V Shared Memory Segments - * - * @shm_alloc_security: - * Allocate and attach a security structure to the shp->shm_perm.security - * field. The security field is initialized to NULL when the structure is - * first created. - * @shp contains the shared memory structure to be modified. - * Return 0 if operation was successful and permission is granted. - * @shm_free_security: - * Deallocate the security struct for this memory segment. - * @shp contains the shared memory structure to be modified. - * @shm_associate: - * Check permission when a shared memory region is requested through the - * shmget system call. This hook is only called when returning the shared - * memory region identifier for an existing region, not when a new shared - * memory region is created. - * @shp contains the shared memory structure to be modified. - * @shmflg contains the operation control flags. - * Return 0 if permission is granted. - * @shm_shmctl: - * Check permission when a shared memory control operation specified by - * @cmd is to be performed on the shared memory region @shp. - * The @shp may be NULL, e.g. for IPC_INFO or SHM_INFO. - * @shp contains shared memory structure to be modified. - * @cmd contains the operation to be performed. - * Return 0 if permission is granted. - * @shm_shmat: - * Check permissions prior to allowing the shmat system call to attach the - * shared memory segment @shp to the data segment of the calling process. - * The attaching address is specified by @shmaddr. - * @shp contains the shared memory structure to be modified. - * @shmaddr contains the address to attach memory region to. - * @shmflg contains the operational flags. - * Return 0 if permission is granted. - * - * Security hooks for System V Semaphores - * - * @sem_alloc_security: - * Allocate and attach a security structure to the sma->sem_perm.security - * field. The security field is initialized to NULL when the structure is - * first created. - * @sma contains the semaphore structure - * Return 0 if operation was successful and permission is granted. - * @sem_free_security: - * deallocate security struct for this semaphore - * @sma contains the semaphore structure. - * @sem_associate: - * Check permission when a semaphore is requested through the semget - * system call. This hook is only called when returning the semaphore - * identifier for an existing semaphore, not when a new one must be - * created. - * @sma contains the semaphore structure. - * @semflg contains the operation control flags. - * Return 0 if permission is granted. - * @sem_semctl: - * Check permission when a semaphore operation specified by @cmd is to be - * performed on the semaphore @sma. The @sma may be NULL, e.g. for - * IPC_INFO or SEM_INFO. - * @sma contains the semaphore structure. May be NULL. - * @cmd contains the operation to be performed. - * Return 0 if permission is granted. - * @sem_semop - * Check permissions before performing operations on members of the - * semaphore set @sma. If the @alter flag is nonzero, the semaphore set - * may be modified. - * @sma contains the semaphore structure. - * @sops contains the operations to perform. - * @nsops contains the number of operations to perform. - * @alter contains the flag indicating whether changes are to be made. - * Return 0 if permission is granted. - * - * @binder_set_context_mgr - * Check whether @mgr is allowed to be the binder context manager. - * @mgr contains the task_struct for the task being registered. - * Return 0 if permission is granted. - * @binder_transaction - * Check whether @from is allowed to invoke a binder transaction call - * to @to. - * @from contains the task_struct for the sending task. - * @to contains the task_struct for the receiving task. - * @binder_transfer_binder - * Check whether @from is allowed to transfer a binder reference to @to. - * @from contains the task_struct for the sending task. - * @to contains the task_struct for the receiving task. - * @binder_transfer_file - * Check whether @from is allowed to transfer @file to @to. - * @from contains the task_struct for the sending task. - * @file contains the struct file being transferred. - * @to contains the task_struct for the receiving task. - * - * @ptrace_access_check: - * Check permission before allowing the current process to trace the - * @child process. - * Security modules may also want to perform a process tracing check - * during an execve in the set_security or apply_creds hooks of - * tracing check during an execve in the bprm_set_creds hook of - * binprm_security_ops if the process is being traced and its security - * attributes would be changed by the execve. - * @child contains the task_struct structure for the target process. - * @mode contains the PTRACE_MODE flags indicating the form of access. - * Return 0 if permission is granted. - * @ptrace_traceme: - * Check that the @parent process has sufficient permission to trace the - * current process before allowing the current process to present itself - * to the @parent process for tracing. - * @parent contains the task_struct structure for debugger process. - * Return 0 if permission is granted. - * @capget: - * Get the @effective, @inheritable, and @permitted capability sets for - * the @target process. The hook may also perform permission checking to - * determine if the current process is allowed to see the capability sets - * of the @target process. - * @target contains the task_struct structure for target process. - * @effective contains the effective capability set. - * @inheritable contains the inheritable capability set. - * @permitted contains the permitted capability set. - * Return 0 if the capability sets were successfully obtained. - * @capset: - * Set the @effective, @inheritable, and @permitted capability sets for - * the current process. - * @new contains the new credentials structure for target process. - * @old contains the current credentials structure for target process. - * @effective contains the effective capability set. - * @inheritable contains the inheritable capability set. - * @permitted contains the permitted capability set. - * Return 0 and update @new if permission is granted. - * @capable: - * Check whether the @tsk process has the @cap capability in the indicated - * credentials. - * @cred contains the credentials to use. - * @ns contains the user namespace we want the capability in - * @cap contains the capability <include/linux/capability.h>. - * @audit: Whether to write an audit message or not - * Return 0 if the capability is granted for @tsk. - * @syslog: - * Check permission before accessing the kernel message ring or changing - * logging to the console. - * See the syslog(2) manual page for an explanation of the @type values. - * @type contains the type of action. - * @from_file indicates the context of action (if it came from /proc). - * Return 0 if permission is granted. - * @settime: - * Check permission to change the system time. - * struct timespec and timezone are defined in include/linux/time.h - * @ts contains new time - * @tz contains new timezone - * Return 0 if permission is granted. - * @vm_enough_memory: - * Check permissions for allocating a new virtual mapping. - * @mm contains the mm struct it is being added to. - * @pages contains the number of pages. - * Return 0 if permission is granted. - * - * @ismaclabel: - * Check if the extended attribute specified by @name - * represents a MAC label. Returns 1 if name is a MAC - * attribute otherwise returns 0. - * @name full extended attribute name to check against - * LSM as a MAC label. - * - * @secid_to_secctx: - * Convert secid to security context. If secdata is NULL the length of - * the result will be returned in seclen, but no secdata will be returned. - * This does mean that the length could change between calls to check the - * length and the next call which actually allocates and returns the secdata. - * @secid contains the security ID. - * @secdata contains the pointer that stores the converted security context. - * @seclen pointer which contains the length of the data - * @secctx_to_secid: - * Convert security context to secid. - * @secid contains the pointer to the generated security ID. - * @secdata contains the security context. - * - * @release_secctx: - * Release the security context. - * @secdata contains the security context. - * @seclen contains the length of the security context. - * - * Security hooks for Audit - * - * @audit_rule_init: - * Allocate and initialize an LSM audit rule structure. - * @field contains the required Audit action. Fields flags are defined in include/linux/audit.h - * @op contains the operator the rule uses. - * @rulestr contains the context where the rule will be applied to. - * @lsmrule contains a pointer to receive the result. - * Return 0 if @lsmrule has been successfully set, - * -EINVAL in case of an invalid rule. - * - * @audit_rule_known: - * Specifies whether given @rule contains any fields related to current LSM. - * @rule contains the audit rule of interest. - * Return 1 in case of relation found, 0 otherwise. - * - * @audit_rule_match: - * Determine if given @secid matches a rule previously approved - * by @audit_rule_known. - * @secid contains the security id in question. - * @field contains the field which relates to current LSM. - * @op contains the operator that will be used for matching. - * @rule points to the audit rule that will be checked against. - * @actx points to the audit context associated with the check. - * Return 1 if secid matches the rule, 0 if it does not, -ERRNO on failure. - * - * @audit_rule_free: - * Deallocate the LSM audit rule structure previously allocated by - * audit_rule_init. - * @rule contains the allocated rule - * - * @inode_notifysecctx: - * Notify the security module of what the security context of an inode - * should be. Initializes the incore security context managed by the - * security module for this inode. Example usage: NFS client invokes - * this hook to initialize the security context in its incore inode to the - * value provided by the server for the file when the server returned the - * file's attributes to the client. - * - * Must be called with inode->i_mutex locked. - * - * @inode we wish to set the security context of. - * @ctx contains the string which we wish to set in the inode. - * @ctxlen contains the length of @ctx. - * - * @inode_setsecctx: - * Change the security context of an inode. Updates the - * incore security context managed by the security module and invokes the - * fs code as needed (via __vfs_setxattr_noperm) to update any backing - * xattrs that represent the context. Example usage: NFS server invokes - * this hook to change the security context in its incore inode and on the - * backing filesystem to a value provided by the client on a SETATTR - * operation. - * - * Must be called with inode->i_mutex locked. - * - * @dentry contains the inode we wish to set the security context of. - * @ctx contains the string which we wish to set in the inode. - * @ctxlen contains the length of @ctx. - * - * @inode_getsecctx: - * On success, returns 0 and fills out @ctx and @ctxlen with the security - * context for the given @inode. - * - * @inode we wish to get the security context of. - * @ctx is a pointer in which to place the allocated security context. - * @ctxlen points to the place to put the length of @ctx. - * This is the main security structure. - */ - /* prototypes */ extern int security_init(void); |