summaryrefslogtreecommitdiff
path: root/include/uapi/linux/btf.h
diff options
context:
space:
mode:
authorAlexei Starovoitov <ast@kernel.org>2020-01-10 09:41:20 +0300
committerDaniel Borkmann <daniel@iogearbox.net>2020-01-10 19:20:07 +0300
commit51c39bb1d5d105a02e29aa7960f0a395086e6342 (patch)
tree74321d27fc8f03f12ac201aef205686d28ab91bd /include/uapi/linux/btf.h
parent2d3eb67f64ec317bbfe340cfcc8325d40a6ff317 (diff)
downloadlinux-51c39bb1d5d105a02e29aa7960f0a395086e6342.tar.xz
bpf: Introduce function-by-function verification
New llvm and old llvm with libbpf help produce BTF that distinguish global and static functions. Unlike arguments of static function the arguments of global functions cannot be removed or optimized away by llvm. The compiler has to use exactly the arguments specified in a function prototype. The argument type information allows the verifier validate each global function independently. For now only supported argument types are pointer to context and scalars. In the future pointers to structures, sizes, pointer to packet data can be supported as well. Consider the following example: static int f1(int ...) { ... } int f3(int b); int f2(int a) { f1(a) + f3(a); } int f3(int b) { ... } int main(...) { f1(...) + f2(...) + f3(...); } The verifier will start its safety checks from the first global function f2(). It will recursively descend into f1() because it's static. Then it will check that arguments match for the f3() invocation inside f2(). It will not descend into f3(). It will finish f2() that has to be successfully verified for all possible values of 'a'. Then it will proceed with f3(). That function also has to be safe for all possible values of 'b'. Then it will start subprog 0 (which is main() function). It will recursively descend into f1() and will skip full check of f2() and f3(), since they are global. The order of processing global functions doesn't affect safety, since all global functions must be proven safe based on their arguments only. Such function by function verification can drastically improve speed of the verification and reduce complexity. Note that the stack limit of 512 still applies to the call chain regardless whether functions were static or global. The nested level of 8 also still applies. The same recursion prevention checks are in place as well. The type information and static/global kind is preserved after the verification hence in the above example global function f2() and f3() can be replaced later by equivalent functions with the same types that are loaded and verified later without affecting safety of this main() program. Such replacement (re-linking) of global functions is a subject of future patches. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Song Liu <songliubraving@fb.com> Link: https://lore.kernel.org/bpf/20200110064124.1760511-3-ast@kernel.org
Diffstat (limited to 'include/uapi/linux/btf.h')
-rw-r--r--include/uapi/linux/btf.h6
1 files changed, 6 insertions, 0 deletions
diff --git a/include/uapi/linux/btf.h b/include/uapi/linux/btf.h
index 1a2898c482ee..5a667107ad2c 100644
--- a/include/uapi/linux/btf.h
+++ b/include/uapi/linux/btf.h
@@ -146,6 +146,12 @@ enum {
BTF_VAR_GLOBAL_EXTERN = 2,
};
+enum btf_func_linkage {
+ BTF_FUNC_STATIC = 0,
+ BTF_FUNC_GLOBAL = 1,
+ BTF_FUNC_EXTERN = 2,
+};
+
/* BTF_KIND_VAR is followed by a single "struct btf_var" to describe
* additional information related to the variable such as its linkage.
*/