summaryrefslogtreecommitdiff
path: root/include/linux
diff options
context:
space:
mode:
authorThomas Gleixner <tglx@linutronix.de>2020-05-08 15:58:28 +0300
committerThomas Gleixner <tglx@linutronix.de>2020-05-08 15:58:28 +0300
commit97a9474aeb789183a1d0712e66a4283860279ac9 (patch)
tree4cd94285ef4a8e81c8d2e28f7dc9923cb60014e4 /include/linux
parent3b02a051d25d9600e9d403ad3043aed7de00160e (diff)
parent50a19ad4b1ec531eb550183cb5d4ab9f25a56bf8 (diff)
downloadlinux-97a9474aeb789183a1d0712e66a4283860279ac9.tar.xz
Merge branch 'kcsan-for-tip' of git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/linux-rcu into locking/kcsan
Pull KCSAN updates from Paul McKenney.
Diffstat (limited to 'include/linux')
-rw-r--r--include/linux/compiler.h4
-rw-r--r--include/linux/kcsan-checks.h261
-rw-r--r--include/linux/kcsan.h19
3 files changed, 225 insertions, 59 deletions
diff --git a/include/linux/compiler.h b/include/linux/compiler.h
index 491c0a2128b7..cce2c92567b5 100644
--- a/include/linux/compiler.h
+++ b/include/linux/compiler.h
@@ -326,9 +326,9 @@ unsigned long read_word_at_a_time(const void *addr)
#define data_race(expr) \
({ \
typeof(({ expr; })) __val; \
- kcsan_nestable_atomic_begin(); \
+ kcsan_disable_current(); \
__val = ({ expr; }); \
- kcsan_nestable_atomic_end(); \
+ kcsan_enable_current(); \
__val; \
})
#else
diff --git a/include/linux/kcsan-checks.h b/include/linux/kcsan-checks.h
index 8f9f6e2191dc..7b0b9c44f5f3 100644
--- a/include/linux/kcsan-checks.h
+++ b/include/linux/kcsan-checks.h
@@ -3,6 +3,8 @@
#ifndef _LINUX_KCSAN_CHECKS_H
#define _LINUX_KCSAN_CHECKS_H
+/* Note: Only include what is already included by compiler.h. */
+#include <linux/compiler_attributes.h>
#include <linux/types.h>
/*
@@ -12,10 +14,12 @@
* WRITE : write access;
* ATOMIC: access is atomic;
* ASSERT: access is not a regular access, but an assertion;
+ * SCOPED: access is a scoped access;
*/
#define KCSAN_ACCESS_WRITE 0x1
#define KCSAN_ACCESS_ATOMIC 0x2
#define KCSAN_ACCESS_ASSERT 0x4
+#define KCSAN_ACCESS_SCOPED 0x8
/*
* __kcsan_*: Always calls into the runtime when KCSAN is enabled. This may be used
@@ -26,13 +30,28 @@
/**
* __kcsan_check_access - check generic access for races
*
- * @ptr address of access
- * @size size of access
- * @type access type modifier
+ * @ptr: address of access
+ * @size: size of access
+ * @type: access type modifier
*/
void __kcsan_check_access(const volatile void *ptr, size_t size, int type);
/**
+ * kcsan_disable_current - disable KCSAN for the current context
+ *
+ * Supports nesting.
+ */
+void kcsan_disable_current(void);
+
+/**
+ * kcsan_enable_current - re-enable KCSAN for the current context
+ *
+ * Supports nesting.
+ */
+void kcsan_enable_current(void);
+void kcsan_enable_current_nowarn(void); /* Safe in uaccess regions. */
+
+/**
* kcsan_nestable_atomic_begin - begin nestable atomic region
*
* Accesses within the atomic region may appear to race with other accesses but
@@ -64,7 +83,7 @@ void kcsan_flat_atomic_end(void);
* Force treating the next n memory accesses for the current context as atomic
* operations.
*
- * @n number of following memory accesses to treat as atomic.
+ * @n: number of following memory accesses to treat as atomic.
*/
void kcsan_atomic_next(int n);
@@ -74,15 +93,64 @@ void kcsan_atomic_next(int n);
* Set the access mask for all accesses for the current context if non-zero.
* Only value changes to bits set in the mask will be reported.
*
- * @mask bitmask
+ * @mask: bitmask
*/
void kcsan_set_access_mask(unsigned long mask);
+/* Scoped access information. */
+struct kcsan_scoped_access {
+ struct list_head list;
+ const volatile void *ptr;
+ size_t size;
+ int type;
+};
+/*
+ * Automatically call kcsan_end_scoped_access() when kcsan_scoped_access goes
+ * out of scope; relies on attribute "cleanup", which is supported by all
+ * compilers that support KCSAN.
+ */
+#define __kcsan_cleanup_scoped \
+ __maybe_unused __attribute__((__cleanup__(kcsan_end_scoped_access)))
+
+/**
+ * kcsan_begin_scoped_access - begin scoped access
+ *
+ * Begin scoped access and initialize @sa, which will cause KCSAN to
+ * continuously check the memory range in the current thread until
+ * kcsan_end_scoped_access() is called for @sa.
+ *
+ * Scoped accesses are implemented by appending @sa to an internal list for the
+ * current execution context, and then checked on every call into the KCSAN
+ * runtime.
+ *
+ * @ptr: address of access
+ * @size: size of access
+ * @type: access type modifier
+ * @sa: struct kcsan_scoped_access to use for the scope of the access
+ */
+struct kcsan_scoped_access *
+kcsan_begin_scoped_access(const volatile void *ptr, size_t size, int type,
+ struct kcsan_scoped_access *sa);
+
+/**
+ * kcsan_end_scoped_access - end scoped access
+ *
+ * End a scoped access, which will stop KCSAN checking the memory range.
+ * Requires that kcsan_begin_scoped_access() was previously called once for @sa.
+ *
+ * @sa: a previously initialized struct kcsan_scoped_access
+ */
+void kcsan_end_scoped_access(struct kcsan_scoped_access *sa);
+
+
#else /* CONFIG_KCSAN */
static inline void __kcsan_check_access(const volatile void *ptr, size_t size,
int type) { }
+static inline void kcsan_disable_current(void) { }
+static inline void kcsan_enable_current(void) { }
+static inline void kcsan_enable_current_nowarn(void) { }
static inline void kcsan_nestable_atomic_begin(void) { }
static inline void kcsan_nestable_atomic_end(void) { }
static inline void kcsan_flat_atomic_begin(void) { }
@@ -90,32 +158,48 @@ static inline void kcsan_flat_atomic_end(void) { }
static inline void kcsan_atomic_next(int n) { }
static inline void kcsan_set_access_mask(unsigned long mask) { }
+struct kcsan_scoped_access { };
+#define __kcsan_cleanup_scoped __maybe_unused
+static inline struct kcsan_scoped_access *
+kcsan_begin_scoped_access(const volatile void *ptr, size_t size, int type,
+ struct kcsan_scoped_access *sa) { return sa; }
+static inline void kcsan_end_scoped_access(struct kcsan_scoped_access *sa) { }
+
#endif /* CONFIG_KCSAN */
+#ifdef __SANITIZE_THREAD__
/*
- * kcsan_*: Only calls into the runtime when the particular compilation unit has
- * KCSAN instrumentation enabled. May be used in header files.
+ * Only calls into the runtime when the particular compilation unit has KCSAN
+ * instrumentation enabled. May be used in header files.
*/
-#ifdef __SANITIZE_THREAD__
#define kcsan_check_access __kcsan_check_access
+
+/*
+ * Only use these to disable KCSAN for accesses in the current compilation unit;
+ * calls into libraries may still perform KCSAN checks.
+ */
+#define __kcsan_disable_current kcsan_disable_current
+#define __kcsan_enable_current kcsan_enable_current_nowarn
#else
static inline void kcsan_check_access(const volatile void *ptr, size_t size,
int type) { }
+static inline void __kcsan_enable_current(void) { }
+static inline void __kcsan_disable_current(void) { }
#endif
/**
* __kcsan_check_read - check regular read access for races
*
- * @ptr address of access
- * @size size of access
+ * @ptr: address of access
+ * @size: size of access
*/
#define __kcsan_check_read(ptr, size) __kcsan_check_access(ptr, size, 0)
/**
* __kcsan_check_write - check regular write access for races
*
- * @ptr address of access
- * @size size of access
+ * @ptr: address of access
+ * @size: size of access
*/
#define __kcsan_check_write(ptr, size) \
__kcsan_check_access(ptr, size, KCSAN_ACCESS_WRITE)
@@ -123,16 +207,16 @@ static inline void kcsan_check_access(const volatile void *ptr, size_t size,
/**
* kcsan_check_read - check regular read access for races
*
- * @ptr address of access
- * @size size of access
+ * @ptr: address of access
+ * @size: size of access
*/
#define kcsan_check_read(ptr, size) kcsan_check_access(ptr, size, 0)
/**
* kcsan_check_write - check regular write access for races
*
- * @ptr address of access
- * @size size of access
+ * @ptr: address of access
+ * @size: size of access
*/
#define kcsan_check_write(ptr, size) \
kcsan_check_access(ptr, size, KCSAN_ACCESS_WRITE)
@@ -158,18 +242,82 @@ static inline void kcsan_check_access(const volatile void *ptr, size_t size,
* allowed. This assertion can be used to specify properties of concurrent code,
* where violation cannot be detected as a normal data race.
*
- * For example, if a per-CPU variable is only meant to be written by a single
- * CPU, but may be read from other CPUs; in this case, reads and writes must be
- * marked properly, however, if an off-CPU WRITE_ONCE() races with the owning
- * CPU's WRITE_ONCE(), would not constitute a data race but could be a harmful
- * race condition. Using this macro allows specifying this property in the code
- * and catch such bugs.
+ * For example, if we only have a single writer, but multiple concurrent
+ * readers, to avoid data races, all these accesses must be marked; even
+ * concurrent marked writes racing with the single writer are bugs.
+ * Unfortunately, due to being marked, they are no longer data races. For cases
+ * like these, we can use the macro as follows:
+ *
+ * .. code-block:: c
*
- * @var variable to assert on
+ * void writer(void) {
+ * spin_lock(&update_foo_lock);
+ * ASSERT_EXCLUSIVE_WRITER(shared_foo);
+ * WRITE_ONCE(shared_foo, ...);
+ * spin_unlock(&update_foo_lock);
+ * }
+ * void reader(void) {
+ * // update_foo_lock does not need to be held!
+ * ... = READ_ONCE(shared_foo);
+ * }
+ *
+ * Note: ASSERT_EXCLUSIVE_WRITER_SCOPED(), if applicable, performs more thorough
+ * checking if a clear scope where no concurrent writes are expected exists.
+ *
+ * @var: variable to assert on
*/
#define ASSERT_EXCLUSIVE_WRITER(var) \
__kcsan_check_access(&(var), sizeof(var), KCSAN_ACCESS_ASSERT)
+/*
+ * Helper macros for implementation of for ASSERT_EXCLUSIVE_*_SCOPED(). @id is
+ * expected to be unique for the scope in which instances of kcsan_scoped_access
+ * are declared.
+ */
+#define __kcsan_scoped_name(c, suffix) __kcsan_scoped_##c##suffix
+#define __ASSERT_EXCLUSIVE_SCOPED(var, type, id) \
+ struct kcsan_scoped_access __kcsan_scoped_name(id, _) \
+ __kcsan_cleanup_scoped; \
+ struct kcsan_scoped_access *__kcsan_scoped_name(id, _dummy_p) \
+ __maybe_unused = kcsan_begin_scoped_access( \
+ &(var), sizeof(var), KCSAN_ACCESS_SCOPED | (type), \
+ &__kcsan_scoped_name(id, _))
+
+/**
+ * ASSERT_EXCLUSIVE_WRITER_SCOPED - assert no concurrent writes to @var in scope
+ *
+ * Scoped variant of ASSERT_EXCLUSIVE_WRITER().
+ *
+ * Assert that there are no concurrent writes to @var for the duration of the
+ * scope in which it is introduced. This provides a better way to fully cover
+ * the enclosing scope, compared to multiple ASSERT_EXCLUSIVE_WRITER(), and
+ * increases the likelihood for KCSAN to detect racing accesses.
+ *
+ * For example, it allows finding race-condition bugs that only occur due to
+ * state changes within the scope itself:
+ *
+ * .. code-block:: c
+ *
+ * void writer(void) {
+ * spin_lock(&update_foo_lock);
+ * {
+ * ASSERT_EXCLUSIVE_WRITER_SCOPED(shared_foo);
+ * WRITE_ONCE(shared_foo, 42);
+ * ...
+ * // shared_foo should still be 42 here!
+ * }
+ * spin_unlock(&update_foo_lock);
+ * }
+ * void buggy(void) {
+ * if (READ_ONCE(shared_foo) == 42)
+ * WRITE_ONCE(shared_foo, 1); // bug!
+ * }
+ *
+ * @var: variable to assert on
+ */
+#define ASSERT_EXCLUSIVE_WRITER_SCOPED(var) \
+ __ASSERT_EXCLUSIVE_SCOPED(var, KCSAN_ACCESS_ASSERT, __COUNTER__)
+
/**
* ASSERT_EXCLUSIVE_ACCESS - assert no concurrent accesses to @var
*
@@ -177,30 +325,55 @@ static inline void kcsan_check_access(const volatile void *ptr, size_t size,
* writers). This assertion can be used to specify properties of concurrent
* code, where violation cannot be detected as a normal data race.
*
- * For example, in a reference-counting algorithm where exclusive access is
- * expected after the refcount reaches 0. We can check that this property
- * actually holds as follows:
+ * For example, where exclusive access is expected after determining no other
+ * users of an object are left, but the object is not actually freed. We can
+ * check that this property actually holds as follows:
+ *
+ * .. code-block:: c
*
* if (refcount_dec_and_test(&obj->refcnt)) {
* ASSERT_EXCLUSIVE_ACCESS(*obj);
- * safely_dispose_of(obj);
+ * do_some_cleanup(obj);
+ * release_for_reuse(obj);
* }
*
- * @var variable to assert on
+ * Note: ASSERT_EXCLUSIVE_ACCESS_SCOPED(), if applicable, performs more thorough
+ * checking if a clear scope where no concurrent accesses are expected exists.
+ *
+ * Note: For cases where the object is freed, `KASAN <kasan.html>`_ is a better
+ * fit to detect use-after-free bugs.
+ *
+ * @var: variable to assert on
*/
#define ASSERT_EXCLUSIVE_ACCESS(var) \
__kcsan_check_access(&(var), sizeof(var), KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT)
/**
+ * ASSERT_EXCLUSIVE_ACCESS_SCOPED - assert no concurrent accesses to @var in scope
+ *
+ * Scoped variant of ASSERT_EXCLUSIVE_ACCESS().
+ *
+ * Assert that there are no concurrent accesses to @var (no readers nor writers)
+ * for the entire duration of the scope in which it is introduced. This provides
+ * a better way to fully cover the enclosing scope, compared to multiple
+ * ASSERT_EXCLUSIVE_ACCESS(), and increases the likelihood for KCSAN to detect
+ * racing accesses.
+ *
+ * @var: variable to assert on
+ */
+#define ASSERT_EXCLUSIVE_ACCESS_SCOPED(var) \
+ __ASSERT_EXCLUSIVE_SCOPED(var, KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT, __COUNTER__)
+
+/**
* ASSERT_EXCLUSIVE_BITS - assert no concurrent writes to subset of bits in @var
*
- * Bit-granular variant of ASSERT_EXCLUSIVE_WRITER(var).
+ * Bit-granular variant of ASSERT_EXCLUSIVE_WRITER().
*
* Assert that there are no concurrent writes to a subset of bits in @var;
* concurrent readers are permitted. This assertion captures more detailed
* bit-level properties, compared to the other (word granularity) assertions.
* Only the bits set in @mask are checked for concurrent modifications, while
- * ignoring the remaining bits, i.e. concurrent writes (or reads) to ~@mask bits
+ * ignoring the remaining bits, i.e. concurrent writes (or reads) to ~mask bits
* are ignored.
*
* Use this for variables, where some bits must not be modified concurrently,
@@ -210,17 +383,21 @@ static inline void kcsan_check_access(const volatile void *ptr, size_t size,
* but other bits may still be modified concurrently. A reader may wish to
* assert that this is true as follows:
*
+ * .. code-block:: c
+ *
* ASSERT_EXCLUSIVE_BITS(flags, READ_ONLY_MASK);
* foo = (READ_ONCE(flags) & READ_ONLY_MASK) >> READ_ONLY_SHIFT;
*
- * Note: The access that immediately follows ASSERT_EXCLUSIVE_BITS() is
- * assumed to access the masked bits only, and KCSAN optimistically assumes it
- * is therefore safe, even in the presence of data races, and marking it with
- * READ_ONCE() is optional from KCSAN's point-of-view. We caution, however,
- * that it may still be advisable to do so, since we cannot reason about all
- * compiler optimizations when it comes to bit manipulations (on the reader
- * and writer side). If you are sure nothing can go wrong, we can write the
- * above simply as:
+ * Note: The access that immediately follows ASSERT_EXCLUSIVE_BITS() is assumed
+ * to access the masked bits only, and KCSAN optimistically assumes it is
+ * therefore safe, even in the presence of data races, and marking it with
+ * READ_ONCE() is optional from KCSAN's point-of-view. We caution, however, that
+ * it may still be advisable to do so, since we cannot reason about all compiler
+ * optimizations when it comes to bit manipulations (on the reader and writer
+ * side). If you are sure nothing can go wrong, we can write the above simply
+ * as:
+ *
+ * .. code-block:: c
*
* ASSERT_EXCLUSIVE_BITS(flags, READ_ONLY_MASK);
* foo = (flags & READ_ONLY_MASK) >> READ_ONLY_SHIFT;
@@ -230,15 +407,17 @@ static inline void kcsan_check_access(const volatile void *ptr, size_t size,
* be modified concurrently. Writers, where other bits may change concurrently,
* could use the assertion as follows:
*
+ * .. code-block:: c
+ *
* spin_lock(&foo_lock);
* ASSERT_EXCLUSIVE_BITS(flags, FOO_MASK);
- * old_flags = READ_ONCE(flags);
+ * old_flags = flags;
* new_flags = (old_flags & ~FOO_MASK) | (new_foo << FOO_SHIFT);
* if (cmpxchg(&flags, old_flags, new_flags) != old_flags) { ... }
* spin_unlock(&foo_lock);
*
- * @var variable to assert on
- * @mask only check for modifications to bits set in @mask
+ * @var: variable to assert on
+ * @mask: only check for modifications to bits set in @mask
*/
#define ASSERT_EXCLUSIVE_BITS(var, mask) \
do { \
diff --git a/include/linux/kcsan.h b/include/linux/kcsan.h
index 3b84606e1e67..53340d8789f9 100644
--- a/include/linux/kcsan.h
+++ b/include/linux/kcsan.h
@@ -40,6 +40,9 @@ struct kcsan_ctx {
* Access mask for all accesses if non-zero.
*/
unsigned long access_mask;
+
+ /* List of scoped accesses. */
+ struct list_head scoped_accesses;
};
/**
@@ -47,25 +50,9 @@ struct kcsan_ctx {
*/
void kcsan_init(void);
-/**
- * kcsan_disable_current - disable KCSAN for the current context
- *
- * Supports nesting.
- */
-void kcsan_disable_current(void);
-
-/**
- * kcsan_enable_current - re-enable KCSAN for the current context
- *
- * Supports nesting.
- */
-void kcsan_enable_current(void);
-
#else /* CONFIG_KCSAN */
static inline void kcsan_init(void) { }
-static inline void kcsan_disable_current(void) { }
-static inline void kcsan_enable_current(void) { }
#endif /* CONFIG_KCSAN */