diff options
author | Lukas Wunner <lukas@wunner.de> | 2024-09-10 17:30:12 +0300 |
---|---|---|
committer | Herbert Xu <herbert@gondor.apana.org.au> | 2024-10-05 08:22:04 +0300 |
commit | 65c4c93caaf1a9fca2855942e338530967162d25 (patch) | |
tree | 3aba77dcafa73b58f82f79bbf0ef645a1174da5e /include/crypto/sig.h | |
parent | beea320112e5763a053c77effa70a05dbbbd5e91 (diff) | |
download | linux-65c4c93caaf1a9fca2855942e338530967162d25.tar.xz |
crypto: sig - Introduce sig_alg backend
Commit 6cb8815f41a9 ("crypto: sig - Add interface for sign/verify")
began a transition of asymmetric sign/verify operations from
crypto_akcipher to a new crypto_sig frontend.
Internally, the crypto_sig frontend still uses akcipher_alg as backend,
however:
"The link between sig and akcipher is meant to be temporary. The
plan is to create a new low-level API for sig and then migrate
the signature code over to that from akcipher."
https://lore.kernel.org/r/ZrG6w9wsb-iiLZIF@gondor.apana.org.au/
"having a separate alg for sig is definitely where we want to
be since there is very little that the two types actually share."
https://lore.kernel.org/r/ZrHlpz4qnre0zWJO@gondor.apana.org.au/
Take the next step of that migration and augment the crypto_sig frontend
with a sig_alg backend to which all algorithms can be moved.
During the migration, there will briefly be signature algorithms that
are still based on crypto_akcipher, whilst others are already based on
crypto_sig. Allow for that by building a fork into crypto_sig_*() API
calls (i.e. crypto_sig_maxsize() and friends) such that one of the two
backends is selected based on the transform's cra_type.
Signed-off-by: Lukas Wunner <lukas@wunner.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Diffstat (limited to 'include/crypto/sig.h')
-rw-r--r-- | include/crypto/sig.h | 61 |
1 files changed, 61 insertions, 0 deletions
diff --git a/include/crypto/sig.h b/include/crypto/sig.h index d25186bb2be3..f0f52a7c5ae7 100644 --- a/include/crypto/sig.h +++ b/include/crypto/sig.h @@ -20,6 +20,52 @@ struct crypto_sig { }; /** + * struct sig_alg - generic public key signature algorithm + * + * @sign: Function performs a sign operation as defined by public key + * algorithm. Optional. + * @verify: Function performs a complete verify operation as defined by + * public key algorithm, returning verification status. Optional. + * @set_pub_key: Function invokes the algorithm specific set public key + * function, which knows how to decode and interpret + * the BER encoded public key and parameters. Mandatory. + * @set_priv_key: Function invokes the algorithm specific set private key + * function, which knows how to decode and interpret + * the BER encoded private key and parameters. Optional. + * @max_size: Function returns key size. Mandatory. + * @init: Initialize the cryptographic transformation object. + * This function is used to initialize the cryptographic + * transformation object. This function is called only once at + * the instantiation time, right after the transformation context + * was allocated. In case the cryptographic hardware has some + * special requirements which need to be handled by software, this + * function shall check for the precise requirement of the + * transformation and put any software fallbacks in place. + * @exit: Deinitialize the cryptographic transformation object. This is a + * counterpart to @init, used to remove various changes set in + * @init. + * + * @base: Common crypto API algorithm data structure + */ +struct sig_alg { + int (*sign)(struct crypto_sig *tfm, + const void *src, unsigned int slen, + void *dst, unsigned int dlen); + int (*verify)(struct crypto_sig *tfm, + const void *src, unsigned int slen, + const void *digest, unsigned int dlen); + int (*set_pub_key)(struct crypto_sig *tfm, + const void *key, unsigned int keylen); + int (*set_priv_key)(struct crypto_sig *tfm, + const void *key, unsigned int keylen); + unsigned int (*max_size)(struct crypto_sig *tfm); + int (*init)(struct crypto_sig *tfm); + void (*exit)(struct crypto_sig *tfm); + + struct crypto_alg base; +}; + +/** * DOC: Generic Public Key Signature API * * The Public Key Signature API is used with the algorithms of type @@ -47,6 +93,21 @@ static inline struct crypto_tfm *crypto_sig_tfm(struct crypto_sig *tfm) return &tfm->base; } +static inline struct crypto_sig *__crypto_sig_tfm(struct crypto_tfm *tfm) +{ + return container_of(tfm, struct crypto_sig, base); +} + +static inline struct sig_alg *__crypto_sig_alg(struct crypto_alg *alg) +{ + return container_of(alg, struct sig_alg, base); +} + +static inline struct sig_alg *crypto_sig_alg(struct crypto_sig *tfm) +{ + return __crypto_sig_alg(crypto_sig_tfm(tfm)->__crt_alg); +} + /** * crypto_free_sig() - free signature tfm handle * |