diff options
author | Jiri Kosina <jkosina@suse.cz> | 2011-09-15 17:08:05 +0400 |
---|---|---|
committer | Jiri Kosina <jkosina@suse.cz> | 2011-09-15 17:08:18 +0400 |
commit | e060c38434b2caa78efe7cedaff4191040b65a15 (patch) | |
tree | 407361230bf6733f63d8e788e4b5e6566ee04818 /fs/xfs/xfs_buf.c | |
parent | 10e4ac572eeffe5317019bd7330b6058a400dfc2 (diff) | |
parent | cc39c6a9bbdebfcf1a7dee64d83bf302bc38d941 (diff) | |
download | linux-e060c38434b2caa78efe7cedaff4191040b65a15.tar.xz |
Merge branch 'master' into for-next
Fast-forward merge with Linus to be able to merge patches
based on more recent version of the tree.
Diffstat (limited to 'fs/xfs/xfs_buf.c')
-rw-r--r-- | fs/xfs/xfs_buf.c | 1876 |
1 files changed, 1876 insertions, 0 deletions
diff --git a/fs/xfs/xfs_buf.c b/fs/xfs/xfs_buf.c new file mode 100644 index 000000000000..c57836dc778f --- /dev/null +++ b/fs/xfs/xfs_buf.c @@ -0,0 +1,1876 @@ +/* + * Copyright (c) 2000-2006 Silicon Graphics, Inc. + * All Rights Reserved. + * + * This program is free software; you can redistribute it and/or + * modify it under the terms of the GNU General Public License as + * published by the Free Software Foundation. + * + * This program is distributed in the hope that it would be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write the Free Software Foundation, + * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA + */ +#include "xfs.h" +#include <linux/stddef.h> +#include <linux/errno.h> +#include <linux/gfp.h> +#include <linux/pagemap.h> +#include <linux/init.h> +#include <linux/vmalloc.h> +#include <linux/bio.h> +#include <linux/sysctl.h> +#include <linux/proc_fs.h> +#include <linux/workqueue.h> +#include <linux/percpu.h> +#include <linux/blkdev.h> +#include <linux/hash.h> +#include <linux/kthread.h> +#include <linux/migrate.h> +#include <linux/backing-dev.h> +#include <linux/freezer.h> + +#include "xfs_sb.h" +#include "xfs_inum.h" +#include "xfs_log.h" +#include "xfs_ag.h" +#include "xfs_mount.h" +#include "xfs_trace.h" + +static kmem_zone_t *xfs_buf_zone; +STATIC int xfsbufd(void *); +STATIC void xfs_buf_delwri_queue(xfs_buf_t *, int); + +static struct workqueue_struct *xfslogd_workqueue; +struct workqueue_struct *xfsdatad_workqueue; +struct workqueue_struct *xfsconvertd_workqueue; + +#ifdef XFS_BUF_LOCK_TRACKING +# define XB_SET_OWNER(bp) ((bp)->b_last_holder = current->pid) +# define XB_CLEAR_OWNER(bp) ((bp)->b_last_holder = -1) +# define XB_GET_OWNER(bp) ((bp)->b_last_holder) +#else +# define XB_SET_OWNER(bp) do { } while (0) +# define XB_CLEAR_OWNER(bp) do { } while (0) +# define XB_GET_OWNER(bp) do { } while (0) +#endif + +#define xb_to_gfp(flags) \ + ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : \ + ((flags) & XBF_DONT_BLOCK) ? GFP_NOFS : GFP_KERNEL) | __GFP_NOWARN) + +#define xb_to_km(flags) \ + (((flags) & XBF_DONT_BLOCK) ? KM_NOFS : KM_SLEEP) + +#define xfs_buf_allocate(flags) \ + kmem_zone_alloc(xfs_buf_zone, xb_to_km(flags)) +#define xfs_buf_deallocate(bp) \ + kmem_zone_free(xfs_buf_zone, (bp)); + +static inline int +xfs_buf_is_vmapped( + struct xfs_buf *bp) +{ + /* + * Return true if the buffer is vmapped. + * + * The XBF_MAPPED flag is set if the buffer should be mapped, but the + * code is clever enough to know it doesn't have to map a single page, + * so the check has to be both for XBF_MAPPED and bp->b_page_count > 1. + */ + return (bp->b_flags & XBF_MAPPED) && bp->b_page_count > 1; +} + +static inline int +xfs_buf_vmap_len( + struct xfs_buf *bp) +{ + return (bp->b_page_count * PAGE_SIZE) - bp->b_offset; +} + +/* + * xfs_buf_lru_add - add a buffer to the LRU. + * + * The LRU takes a new reference to the buffer so that it will only be freed + * once the shrinker takes the buffer off the LRU. + */ +STATIC void +xfs_buf_lru_add( + struct xfs_buf *bp) +{ + struct xfs_buftarg *btp = bp->b_target; + + spin_lock(&btp->bt_lru_lock); + if (list_empty(&bp->b_lru)) { + atomic_inc(&bp->b_hold); + list_add_tail(&bp->b_lru, &btp->bt_lru); + btp->bt_lru_nr++; + } + spin_unlock(&btp->bt_lru_lock); +} + +/* + * xfs_buf_lru_del - remove a buffer from the LRU + * + * The unlocked check is safe here because it only occurs when there are not + * b_lru_ref counts left on the inode under the pag->pag_buf_lock. it is there + * to optimise the shrinker removing the buffer from the LRU and calling + * xfs_buf_free(). i.e. it removes an unnecessary round trip on the + * bt_lru_lock. + */ +STATIC void +xfs_buf_lru_del( + struct xfs_buf *bp) +{ + struct xfs_buftarg *btp = bp->b_target; + + if (list_empty(&bp->b_lru)) + return; + + spin_lock(&btp->bt_lru_lock); + if (!list_empty(&bp->b_lru)) { + list_del_init(&bp->b_lru); + btp->bt_lru_nr--; + } + spin_unlock(&btp->bt_lru_lock); +} + +/* + * When we mark a buffer stale, we remove the buffer from the LRU and clear the + * b_lru_ref count so that the buffer is freed immediately when the buffer + * reference count falls to zero. If the buffer is already on the LRU, we need + * to remove the reference that LRU holds on the buffer. + * + * This prevents build-up of stale buffers on the LRU. + */ +void +xfs_buf_stale( + struct xfs_buf *bp) +{ + bp->b_flags |= XBF_STALE; + atomic_set(&(bp)->b_lru_ref, 0); + if (!list_empty(&bp->b_lru)) { + struct xfs_buftarg *btp = bp->b_target; + + spin_lock(&btp->bt_lru_lock); + if (!list_empty(&bp->b_lru)) { + list_del_init(&bp->b_lru); + btp->bt_lru_nr--; + atomic_dec(&bp->b_hold); + } + spin_unlock(&btp->bt_lru_lock); + } + ASSERT(atomic_read(&bp->b_hold) >= 1); +} + +STATIC void +_xfs_buf_initialize( + xfs_buf_t *bp, + xfs_buftarg_t *target, + xfs_off_t range_base, + size_t range_length, + xfs_buf_flags_t flags) +{ + /* + * We don't want certain flags to appear in b_flags. + */ + flags &= ~(XBF_LOCK|XBF_MAPPED|XBF_DONT_BLOCK|XBF_READ_AHEAD); + + memset(bp, 0, sizeof(xfs_buf_t)); + atomic_set(&bp->b_hold, 1); + atomic_set(&bp->b_lru_ref, 1); + init_completion(&bp->b_iowait); + INIT_LIST_HEAD(&bp->b_lru); + INIT_LIST_HEAD(&bp->b_list); + RB_CLEAR_NODE(&bp->b_rbnode); + sema_init(&bp->b_sema, 0); /* held, no waiters */ + XB_SET_OWNER(bp); + bp->b_target = target; + bp->b_file_offset = range_base; + /* + * Set buffer_length and count_desired to the same value initially. + * I/O routines should use count_desired, which will be the same in + * most cases but may be reset (e.g. XFS recovery). + */ + bp->b_buffer_length = bp->b_count_desired = range_length; + bp->b_flags = flags; + bp->b_bn = XFS_BUF_DADDR_NULL; + atomic_set(&bp->b_pin_count, 0); + init_waitqueue_head(&bp->b_waiters); + + XFS_STATS_INC(xb_create); + + trace_xfs_buf_init(bp, _RET_IP_); +} + +/* + * Allocate a page array capable of holding a specified number + * of pages, and point the page buf at it. + */ +STATIC int +_xfs_buf_get_pages( + xfs_buf_t *bp, + int page_count, + xfs_buf_flags_t flags) +{ + /* Make sure that we have a page list */ + if (bp->b_pages == NULL) { + bp->b_offset = xfs_buf_poff(bp->b_file_offset); + bp->b_page_count = page_count; + if (page_count <= XB_PAGES) { + bp->b_pages = bp->b_page_array; + } else { + bp->b_pages = kmem_alloc(sizeof(struct page *) * + page_count, xb_to_km(flags)); + if (bp->b_pages == NULL) + return -ENOMEM; + } + memset(bp->b_pages, 0, sizeof(struct page *) * page_count); + } + return 0; +} + +/* + * Frees b_pages if it was allocated. + */ +STATIC void +_xfs_buf_free_pages( + xfs_buf_t *bp) +{ + if (bp->b_pages != bp->b_page_array) { + kmem_free(bp->b_pages); + bp->b_pages = NULL; + } +} + +/* + * Releases the specified buffer. + * + * The modification state of any associated pages is left unchanged. + * The buffer most not be on any hash - use xfs_buf_rele instead for + * hashed and refcounted buffers + */ +void +xfs_buf_free( + xfs_buf_t *bp) +{ + trace_xfs_buf_free(bp, _RET_IP_); + + ASSERT(list_empty(&bp->b_lru)); + + if (bp->b_flags & _XBF_PAGES) { + uint i; + + if (xfs_buf_is_vmapped(bp)) + vm_unmap_ram(bp->b_addr - bp->b_offset, + bp->b_page_count); + + for (i = 0; i < bp->b_page_count; i++) { + struct page *page = bp->b_pages[i]; + + __free_page(page); + } + } else if (bp->b_flags & _XBF_KMEM) + kmem_free(bp->b_addr); + _xfs_buf_free_pages(bp); + xfs_buf_deallocate(bp); +} + +/* + * Allocates all the pages for buffer in question and builds it's page list. + */ +STATIC int +xfs_buf_allocate_memory( + xfs_buf_t *bp, + uint flags) +{ + size_t size = bp->b_count_desired; + size_t nbytes, offset; + gfp_t gfp_mask = xb_to_gfp(flags); + unsigned short page_count, i; + xfs_off_t end; + int error; + + /* + * for buffers that are contained within a single page, just allocate + * the memory from the heap - there's no need for the complexity of + * page arrays to keep allocation down to order 0. + */ + if (bp->b_buffer_length < PAGE_SIZE) { + bp->b_addr = kmem_alloc(bp->b_buffer_length, xb_to_km(flags)); + if (!bp->b_addr) { + /* low memory - use alloc_page loop instead */ + goto use_alloc_page; + } + + if (((unsigned long)(bp->b_addr + bp->b_buffer_length - 1) & + PAGE_MASK) != + ((unsigned long)bp->b_addr & PAGE_MASK)) { + /* b_addr spans two pages - use alloc_page instead */ + kmem_free(bp->b_addr); + bp->b_addr = NULL; + goto use_alloc_page; + } + bp->b_offset = offset_in_page(bp->b_addr); + bp->b_pages = bp->b_page_array; + bp->b_pages[0] = virt_to_page(bp->b_addr); + bp->b_page_count = 1; + bp->b_flags |= XBF_MAPPED | _XBF_KMEM; + return 0; + } + +use_alloc_page: + end = bp->b_file_offset + bp->b_buffer_length; + page_count = xfs_buf_btoc(end) - xfs_buf_btoct(bp->b_file_offset); + error = _xfs_buf_get_pages(bp, page_count, flags); + if (unlikely(error)) + return error; + + offset = bp->b_offset; + bp->b_flags |= _XBF_PAGES; + + for (i = 0; i < bp->b_page_count; i++) { + struct page *page; + uint retries = 0; +retry: + page = alloc_page(gfp_mask); + if (unlikely(page == NULL)) { + if (flags & XBF_READ_AHEAD) { + bp->b_page_count = i; + error = ENOMEM; + goto out_free_pages; + } + + /* + * This could deadlock. + * + * But until all the XFS lowlevel code is revamped to + * handle buffer allocation failures we can't do much. + */ + if (!(++retries % 100)) + xfs_err(NULL, + "possible memory allocation deadlock in %s (mode:0x%x)", + __func__, gfp_mask); + + XFS_STATS_INC(xb_page_retries); + congestion_wait(BLK_RW_ASYNC, HZ/50); + goto retry; + } + + XFS_STATS_INC(xb_page_found); + + nbytes = min_t(size_t, size, PAGE_SIZE - offset); + size -= nbytes; + bp->b_pages[i] = page; + offset = 0; + } + return 0; + +out_free_pages: + for (i = 0; i < bp->b_page_count; i++) + __free_page(bp->b_pages[i]); + return error; +} + +/* + * Map buffer into kernel address-space if necessary. + */ +STATIC int +_xfs_buf_map_pages( + xfs_buf_t *bp, + uint flags) +{ + ASSERT(bp->b_flags & _XBF_PAGES); + if (bp->b_page_count == 1) { + /* A single page buffer is always mappable */ + bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset; + bp->b_flags |= XBF_MAPPED; + } else if (flags & XBF_MAPPED) { + int retried = 0; + + do { + bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count, + -1, PAGE_KERNEL); + if (bp->b_addr) + break; + vm_unmap_aliases(); + } while (retried++ <= 1); + + if (!bp->b_addr) + return -ENOMEM; + bp->b_addr += bp->b_offset; + bp->b_flags |= XBF_MAPPED; + } + + return 0; +} + +/* + * Finding and Reading Buffers + */ + +/* + * Look up, and creates if absent, a lockable buffer for + * a given range of an inode. The buffer is returned + * locked. If other overlapping buffers exist, they are + * released before the new buffer is created and locked, + * which may imply that this call will block until those buffers + * are unlocked. No I/O is implied by this call. + */ +xfs_buf_t * +_xfs_buf_find( + xfs_buftarg_t *btp, /* block device target */ + xfs_off_t ioff, /* starting offset of range */ + size_t isize, /* length of range */ + xfs_buf_flags_t flags, + xfs_buf_t *new_bp) +{ + xfs_off_t range_base; + size_t range_length; + struct xfs_perag *pag; + struct rb_node **rbp; + struct rb_node *parent; + xfs_buf_t *bp; + + range_base = (ioff << BBSHIFT); + range_length = (isize << BBSHIFT); + + /* Check for IOs smaller than the sector size / not sector aligned */ + ASSERT(!(range_length < (1 << btp->bt_sshift))); + ASSERT(!(range_base & (xfs_off_t)btp->bt_smask)); + + /* get tree root */ + pag = xfs_perag_get(btp->bt_mount, + xfs_daddr_to_agno(btp->bt_mount, ioff)); + + /* walk tree */ + spin_lock(&pag->pag_buf_lock); + rbp = &pag->pag_buf_tree.rb_node; + parent = NULL; + bp = NULL; + while (*rbp) { + parent = *rbp; + bp = rb_entry(parent, struct xfs_buf, b_rbnode); + + if (range_base < bp->b_file_offset) + rbp = &(*rbp)->rb_left; + else if (range_base > bp->b_file_offset) + rbp = &(*rbp)->rb_right; + else { + /* + * found a block offset match. If the range doesn't + * match, the only way this is allowed is if the buffer + * in the cache is stale and the transaction that made + * it stale has not yet committed. i.e. we are + * reallocating a busy extent. Skip this buffer and + * continue searching to the right for an exact match. + */ + if (bp->b_buffer_length != range_length) { + ASSERT(bp->b_flags & XBF_STALE); + rbp = &(*rbp)->rb_right; + continue; + } + atomic_inc(&bp->b_hold); + goto found; + } + } + + /* No match found */ + if (new_bp) { + _xfs_buf_initialize(new_bp, btp, range_base, + range_length, flags); + rb_link_node(&new_bp->b_rbnode, parent, rbp); + rb_insert_color(&new_bp->b_rbnode, &pag->pag_buf_tree); + /* the buffer keeps the perag reference until it is freed */ + new_bp->b_pag = pag; + spin_unlock(&pag->pag_buf_lock); + } else { + XFS_STATS_INC(xb_miss_locked); + spin_unlock(&pag->pag_buf_lock); + xfs_perag_put(pag); + } + return new_bp; + +found: + spin_unlock(&pag->pag_buf_lock); + xfs_perag_put(pag); + + if (!xfs_buf_trylock(bp)) { + if (flags & XBF_TRYLOCK) { + xfs_buf_rele(bp); + XFS_STATS_INC(xb_busy_locked); + return NULL; + } + xfs_buf_lock(bp); + XFS_STATS_INC(xb_get_locked_waited); + } + + /* + * if the buffer is stale, clear all the external state associated with + * it. We need to keep flags such as how we allocated the buffer memory + * intact here. + */ + if (bp->b_flags & XBF_STALE) { + ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0); + bp->b_flags &= XBF_MAPPED | _XBF_KMEM | _XBF_PAGES; + } + + trace_xfs_buf_find(bp, flags, _RET_IP_); + XFS_STATS_INC(xb_get_locked); + return bp; +} + +/* + * Assembles a buffer covering the specified range. + * Storage in memory for all portions of the buffer will be allocated, + * although backing storage may not be. + */ +xfs_buf_t * +xfs_buf_get( + xfs_buftarg_t *target,/* target for buffer */ + xfs_off_t ioff, /* starting offset of range */ + size_t isize, /* length of range */ + xfs_buf_flags_t flags) +{ + xfs_buf_t *bp, *new_bp; + int error = 0; + + new_bp = xfs_buf_allocate(flags); + if (unlikely(!new_bp)) + return NULL; + + bp = _xfs_buf_find(target, ioff, isize, flags, new_bp); + if (bp == new_bp) { + error = xfs_buf_allocate_memory(bp, flags); + if (error) + goto no_buffer; + } else { + xfs_buf_deallocate(new_bp); + if (unlikely(bp == NULL)) + return NULL; + } + + if (!(bp->b_flags & XBF_MAPPED)) { + error = _xfs_buf_map_pages(bp, flags); + if (unlikely(error)) { + xfs_warn(target->bt_mount, + "%s: failed to map pages\n", __func__); + goto no_buffer; + } + } + + XFS_STATS_INC(xb_get); + + /* + * Always fill in the block number now, the mapped cases can do + * their own overlay of this later. + */ + bp->b_bn = ioff; + bp->b_count_desired = bp->b_buffer_length; + + trace_xfs_buf_get(bp, flags, _RET_IP_); + return bp; + + no_buffer: + if (flags & (XBF_LOCK | XBF_TRYLOCK)) + xfs_buf_unlock(bp); + xfs_buf_rele(bp); + return NULL; +} + +STATIC int +_xfs_buf_read( + xfs_buf_t *bp, + xfs_buf_flags_t flags) +{ + int status; + + ASSERT(!(flags & (XBF_DELWRI|XBF_WRITE))); + ASSERT(bp->b_bn != XFS_BUF_DADDR_NULL); + + bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_DELWRI | XBF_READ_AHEAD); + bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD); + + status = xfs_buf_iorequest(bp); + if (status || bp->b_error || (flags & XBF_ASYNC)) + return status; + return xfs_buf_iowait(bp); +} + +xfs_buf_t * +xfs_buf_read( + xfs_buftarg_t *target, + xfs_off_t ioff, + size_t isize, + xfs_buf_flags_t flags) +{ + xfs_buf_t *bp; + + flags |= XBF_READ; + + bp = xfs_buf_get(target, ioff, isize, flags); + if (bp) { + trace_xfs_buf_read(bp, flags, _RET_IP_); + + if (!XFS_BUF_ISDONE(bp)) { + XFS_STATS_INC(xb_get_read); + _xfs_buf_read(bp, flags); + } else if (flags & XBF_ASYNC) { + /* + * Read ahead call which is already satisfied, + * drop the buffer + */ + goto no_buffer; + } else { + /* We do not want read in the flags */ + bp->b_flags &= ~XBF_READ; + } + } + + return bp; + + no_buffer: + if (flags & (XBF_LOCK | XBF_TRYLOCK)) + xfs_buf_unlock(bp); + xfs_buf_rele(bp); + return NULL; +} + +/* + * If we are not low on memory then do the readahead in a deadlock + * safe manner. + */ +void +xfs_buf_readahead( + xfs_buftarg_t *target, + xfs_off_t ioff, + size_t isize) +{ + if (bdi_read_congested(target->bt_bdi)) + return; + + xfs_buf_read(target, ioff, isize, + XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD|XBF_DONT_BLOCK); +} + +/* + * Read an uncached buffer from disk. Allocates and returns a locked + * buffer containing the disk contents or nothing. + */ +struct xfs_buf * +xfs_buf_read_uncached( + struct xfs_mount *mp, + struct xfs_buftarg *target, + xfs_daddr_t daddr, + size_t length, + int flags) +{ + xfs_buf_t *bp; + int error; + + bp = xfs_buf_get_uncached(target, length, flags); + if (!bp) + return NULL; + + /* set up the buffer for a read IO */ + XFS_BUF_SET_ADDR(bp, daddr); + XFS_BUF_READ(bp); + + xfsbdstrat(mp, bp); + error = xfs_buf_iowait(bp); + if (error || bp->b_error) { + xfs_buf_relse(bp); + return NULL; + } + return bp; +} + +xfs_buf_t * +xfs_buf_get_empty( + size_t len, + xfs_buftarg_t *target) +{ + xfs_buf_t *bp; + + bp = xfs_buf_allocate(0); + if (bp) + _xfs_buf_initialize(bp, target, 0, len, 0); + return bp; +} + +/* + * Return a buffer allocated as an empty buffer and associated to external + * memory via xfs_buf_associate_memory() back to it's empty state. + */ +void +xfs_buf_set_empty( + struct xfs_buf *bp, + size_t len) +{ + if (bp->b_pages) + _xfs_buf_free_pages(bp); + + bp->b_pages = NULL; + bp->b_page_count = 0; + bp->b_addr = NULL; + bp->b_file_offset = 0; + bp->b_buffer_length = bp->b_count_desired = len; + bp->b_bn = XFS_BUF_DADDR_NULL; + bp->b_flags &= ~XBF_MAPPED; +} + +static inline struct page * +mem_to_page( + void *addr) +{ + if ((!is_vmalloc_addr(addr))) { + return virt_to_page(addr); + } else { + return vmalloc_to_page(addr); + } +} + +int +xfs_buf_associate_memory( + xfs_buf_t *bp, + void *mem, + size_t len) +{ + int rval; + int i = 0; + unsigned long pageaddr; + unsigned long offset; + size_t buflen; + int page_count; + + pageaddr = (unsigned long)mem & PAGE_MASK; + offset = (unsigned long)mem - pageaddr; + buflen = PAGE_ALIGN(len + offset); + page_count = buflen >> PAGE_SHIFT; + + /* Free any previous set of page pointers */ + if (bp->b_pages) + _xfs_buf_free_pages(bp); + + bp->b_pages = NULL; + bp->b_addr = mem; + + rval = _xfs_buf_get_pages(bp, page_count, XBF_DONT_BLOCK); + if (rval) + return rval; + + bp->b_offset = offset; + + for (i = 0; i < bp->b_page_count; i++) { + bp->b_pages[i] = mem_to_page((void *)pageaddr); + pageaddr += PAGE_SIZE; + } + + bp->b_count_desired = len; + bp->b_buffer_length = buflen; + bp->b_flags |= XBF_MAPPED; + + return 0; +} + +xfs_buf_t * +xfs_buf_get_uncached( + struct xfs_buftarg *target, + size_t len, + int flags) +{ + unsigned long page_count = PAGE_ALIGN(len) >> PAGE_SHIFT; + int error, i; + xfs_buf_t *bp; + + bp = xfs_buf_allocate(0); + if (unlikely(bp == NULL)) + goto fail; + _xfs_buf_initialize(bp, target, 0, len, 0); + + error = _xfs_buf_get_pages(bp, page_count, 0); + if (error) + goto fail_free_buf; + + for (i = 0; i < page_count; i++) { + bp->b_pages[i] = alloc_page(xb_to_gfp(flags)); + if (!bp->b_pages[i]) + goto fail_free_mem; + } + bp->b_flags |= _XBF_PAGES; + + error = _xfs_buf_map_pages(bp, XBF_MAPPED); + if (unlikely(error)) { + xfs_warn(target->bt_mount, + "%s: failed to map pages\n", __func__); + goto fail_free_mem; + } + + trace_xfs_buf_get_uncached(bp, _RET_IP_); + return bp; + + fail_free_mem: + while (--i >= 0) + __free_page(bp->b_pages[i]); + _xfs_buf_free_pages(bp); + fail_free_buf: + xfs_buf_deallocate(bp); + fail: + return NULL; +} + +/* + * Increment reference count on buffer, to hold the buffer concurrently + * with another thread which may release (free) the buffer asynchronously. + * Must hold the buffer already to call this function. + */ +void +xfs_buf_hold( + xfs_buf_t *bp) +{ + trace_xfs_buf_hold(bp, _RET_IP_); + atomic_inc(&bp->b_hold); +} + +/* + * Releases a hold on the specified buffer. If the + * the hold count is 1, calls xfs_buf_free. + */ +void +xfs_buf_rele( + xfs_buf_t *bp) +{ + struct xfs_perag *pag = bp->b_pag; + + trace_xfs_buf_rele(bp, _RET_IP_); + + if (!pag) { + ASSERT(list_empty(&bp->b_lru)); + ASSERT(RB_EMPTY_NODE(&bp->b_rbnode)); + if (atomic_dec_and_test(&bp->b_hold)) + xfs_buf_free(bp); + return; + } + + ASSERT(!RB_EMPTY_NODE(&bp->b_rbnode)); + + ASSERT(atomic_read(&bp->b_hold) > 0); + if (atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock)) { + if (!(bp->b_flags & XBF_STALE) && + atomic_read(&bp->b_lru_ref)) { + xfs_buf_lru_add(bp); + spin_unlock(&pag->pag_buf_lock); + } else { + xfs_buf_lru_del(bp); + ASSERT(!(bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q))); + rb_erase(&bp->b_rbnode, &pag->pag_buf_tree); + spin_unlock(&pag->pag_buf_lock); + xfs_perag_put(pag); + xfs_buf_free(bp); + } + } +} + + +/* + * Lock a buffer object, if it is not already locked. + * + * If we come across a stale, pinned, locked buffer, we know that we are + * being asked to lock a buffer that has been reallocated. Because it is + * pinned, we know that the log has not been pushed to disk and hence it + * will still be locked. Rather than continuing to have trylock attempts + * fail until someone else pushes the log, push it ourselves before + * returning. This means that the xfsaild will not get stuck trying + * to push on stale inode buffers. + */ +int +xfs_buf_trylock( + struct xfs_buf *bp) +{ + int locked; + + locked = down_trylock(&bp->b_sema) == 0; + if (locked) + XB_SET_OWNER(bp); + else if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE)) + xfs_log_force(bp->b_target->bt_mount, 0); + + trace_xfs_buf_trylock(bp, _RET_IP_); + return locked; +} + +/* + * Lock a buffer object. + * + * If we come across a stale, pinned, locked buffer, we know that we + * are being asked to lock a buffer that has been reallocated. Because + * it is pinned, we know that the log has not been pushed to disk and + * hence it will still be locked. Rather than sleeping until someone + * else pushes the log, push it ourselves before trying to get the lock. + */ +void +xfs_buf_lock( + struct xfs_buf *bp) +{ + trace_xfs_buf_lock(bp, _RET_IP_); + + if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE)) + xfs_log_force(bp->b_target->bt_mount, 0); + down(&bp->b_sema); + XB_SET_OWNER(bp); + + trace_xfs_buf_lock_done(bp, _RET_IP_); +} + +/* + * Releases the lock on the buffer object. + * If the buffer is marked delwri but is not queued, do so before we + * unlock the buffer as we need to set flags correctly. We also need to + * take a reference for the delwri queue because the unlocker is going to + * drop their's and they don't know we just queued it. + */ +void +xfs_buf_unlock( + struct xfs_buf *bp) +{ + if ((bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)) == XBF_DELWRI) { + atomic_inc(&bp->b_hold); + bp->b_flags |= XBF_ASYNC; + xfs_buf_delwri_queue(bp, 0); + } + + XB_CLEAR_OWNER(bp); + up(&bp->b_sema); + + trace_xfs_buf_unlock(bp, _RET_IP_); +} + +STATIC void +xfs_buf_wait_unpin( + xfs_buf_t *bp) +{ + DECLARE_WAITQUEUE (wait, current); + + if (atomic_read(&bp->b_pin_count) == 0) + return; + + add_wait_queue(&bp->b_waiters, &wait); + for (;;) { + set_current_state(TASK_UNINTERRUPTIBLE); + if (atomic_read(&bp->b_pin_count) == 0) + break; + io_schedule(); + } + remove_wait_queue(&bp->b_waiters, &wait); + set_current_state(TASK_RUNNING); +} + +/* + * Buffer Utility Routines + */ + +STATIC void +xfs_buf_iodone_work( + struct work_struct *work) +{ + xfs_buf_t *bp = + container_of(work, xfs_buf_t, b_iodone_work); + + if (bp->b_iodone) + (*(bp->b_iodone))(bp); + else if (bp->b_flags & XBF_ASYNC) + xfs_buf_relse(bp); +} + +void +xfs_buf_ioend( + xfs_buf_t *bp, + int schedule) +{ + trace_xfs_buf_iodone(bp, _RET_IP_); + + bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD); + if (bp->b_error == 0) + bp->b_flags |= XBF_DONE; + + if ((bp->b_iodone) || (bp->b_flags & XBF_ASYNC)) { + if (schedule) { + INIT_WORK(&bp->b_iodone_work, xfs_buf_iodone_work); + queue_work(xfslogd_workqueue, &bp->b_iodone_work); + } else { + xfs_buf_iodone_work(&bp->b_iodone_work); + } + } else { + complete(&bp->b_iowait); + } +} + +void +xfs_buf_ioerror( + xfs_buf_t *bp, + int error) +{ + ASSERT(error >= 0 && error <= 0xffff); + bp->b_error = (unsigned short)error; + trace_xfs_buf_ioerror(bp, error, _RET_IP_); +} + +int +xfs_bwrite( + struct xfs_mount *mp, + struct xfs_buf *bp) +{ + int error; + + bp->b_flags |= XBF_WRITE; + bp->b_flags &= ~(XBF_ASYNC | XBF_READ); + + xfs_buf_delwri_dequeue(bp); + xfs_bdstrat_cb(bp); + + error = xfs_buf_iowait(bp); + if (error) + xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR); + xfs_buf_relse(bp); + return error; +} + +void +xfs_bdwrite( + void *mp, + struct xfs_buf *bp) +{ + trace_xfs_buf_bdwrite(bp, _RET_IP_); + + bp->b_flags &= ~XBF_READ; + bp->b_flags |= (XBF_DELWRI | XBF_ASYNC); + + xfs_buf_delwri_queue(bp, 1); +} + +/* + * Called when we want to stop a buffer from getting written or read. + * We attach the EIO error, muck with its flags, and call xfs_buf_ioend + * so that the proper iodone callbacks get called. + */ +STATIC int +xfs_bioerror( + xfs_buf_t *bp) +{ +#ifdef XFSERRORDEBUG + ASSERT(XFS_BUF_ISREAD(bp) || bp->b_iodone); +#endif + + /* + * No need to wait until the buffer is unpinned, we aren't flushing it. + */ + xfs_buf_ioerror(bp, EIO); + + /* + * We're calling xfs_buf_ioend, so delete XBF_DONE flag. + */ + XFS_BUF_UNREAD(bp); + XFS_BUF_UNDELAYWRITE(bp); + XFS_BUF_UNDONE(bp); + XFS_BUF_STALE(bp); + + xfs_buf_ioend(bp, 0); + + return EIO; +} + +/* + * Same as xfs_bioerror, except that we are releasing the buffer + * here ourselves, and avoiding the xfs_buf_ioend call. + * This is meant for userdata errors; metadata bufs come with + * iodone functions attached, so that we can track down errors. + */ +STATIC int +xfs_bioerror_relse( + struct xfs_buf *bp) +{ + int64_t fl = bp->b_flags; + /* + * No need to wait until the buffer is unpinned. + * We aren't flushing it. + * + * chunkhold expects B_DONE to be set, whether + * we actually finish the I/O or not. We don't want to + * change that interface. + */ + XFS_BUF_UNREAD(bp); + XFS_BUF_UNDELAYWRITE(bp); + XFS_BUF_DONE(bp); + XFS_BUF_STALE(bp); + bp->b_iodone = NULL; + if (!(fl & XBF_ASYNC)) { + /* + * Mark b_error and B_ERROR _both_. + * Lot's of chunkcache code assumes that. + * There's no reason to mark error for + * ASYNC buffers. + */ + xfs_buf_ioerror(bp, EIO); + XFS_BUF_FINISH_IOWAIT(bp); + } else { + xfs_buf_relse(bp); + } + + return EIO; +} + + +/* + * All xfs metadata buffers except log state machine buffers + * get this attached as their b_bdstrat callback function. + * This is so that we can catch a buffer + * after prematurely unpinning it to forcibly shutdown the filesystem. + */ +int +xfs_bdstrat_cb( + struct xfs_buf *bp) +{ + if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) { + trace_xfs_bdstrat_shut(bp, _RET_IP_); + /* + * Metadata write that didn't get logged but + * written delayed anyway. These aren't associated + * with a transaction, and can be ignored. + */ + if (!bp->b_iodone && !XFS_BUF_ISREAD(bp)) + return xfs_bioerror_relse(bp); + else + return xfs_bioerror(bp); + } + + xfs_buf_iorequest(bp); + return 0; +} + +/* + * Wrapper around bdstrat so that we can stop data from going to disk in case + * we are shutting down the filesystem. Typically user data goes thru this + * path; one of the exceptions is the superblock. + */ +void +xfsbdstrat( + struct xfs_mount *mp, + struct xfs_buf *bp) +{ + if (XFS_FORCED_SHUTDOWN(mp)) { + trace_xfs_bdstrat_shut(bp, _RET_IP_); + xfs_bioerror_relse(bp); + return; + } + + xfs_buf_iorequest(bp); +} + +STATIC void +_xfs_buf_ioend( + xfs_buf_t *bp, + int schedule) +{ + if (atomic_dec_and_test(&bp->b_io_remaining) == 1) + xfs_buf_ioend(bp, schedule); +} + +STATIC void +xfs_buf_bio_end_io( + struct bio *bio, + int error) +{ + xfs_buf_t *bp = (xfs_buf_t *)bio->bi_private; + + xfs_buf_ioerror(bp, -error); + + if (!error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ)) + invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp)); + + _xfs_buf_ioend(bp, 1); + bio_put(bio); +} + +STATIC void +_xfs_buf_ioapply( + xfs_buf_t *bp) +{ + int rw, map_i, total_nr_pages, nr_pages; + struct bio *bio; + int offset = bp->b_offset; + int size = bp->b_count_desired; + sector_t sector = bp->b_bn; + + total_nr_pages = bp->b_page_count; + map_i = 0; + + if (bp->b_flags & XBF_WRITE) { + if (bp->b_flags & XBF_SYNCIO) + rw = WRITE_SYNC; + else + rw = WRITE; + if (bp->b_flags & XBF_FUA) + rw |= REQ_FUA; + if (bp->b_flags & XBF_FLUSH) + rw |= REQ_FLUSH; + } else if (bp->b_flags & XBF_READ_AHEAD) { + rw = READA; + } else { + rw = READ; + } + + /* we only use the buffer cache for meta-data */ + rw |= REQ_META; + +next_chunk: + atomic_inc(&bp->b_io_remaining); + nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT); + if (nr_pages > total_nr_pages) + nr_pages = total_nr_pages; + + bio = bio_alloc(GFP_NOIO, nr_pages); + bio->bi_bdev = bp->b_target->bt_bdev; + bio->bi_sector = sector; + bio->bi_end_io = xfs_buf_bio_end_io; + bio->bi_private = bp; + + + for (; size && nr_pages; nr_pages--, map_i++) { + int rbytes, nbytes = PAGE_SIZE - offset; + + if (nbytes > size) + nbytes = size; + + rbytes = bio_add_page(bio, bp->b_pages[map_i], nbytes, offset); + if (rbytes < nbytes) + break; + + offset = 0; + sector += nbytes >> BBSHIFT; + size -= nbytes; + total_nr_pages--; + } + + if (likely(bio->bi_size)) { + if (xfs_buf_is_vmapped(bp)) { + flush_kernel_vmap_range(bp->b_addr, + xfs_buf_vmap_len(bp)); + } + submit_bio(rw, bio); + if (size) + goto next_chunk; + } else { + xfs_buf_ioerror(bp, EIO); + bio_put(bio); + } +} + +int +xfs_buf_iorequest( + xfs_buf_t *bp) +{ + trace_xfs_buf_iorequest(bp, _RET_IP_); + + if (bp->b_flags & XBF_DELWRI) { + xfs_buf_delwri_queue(bp, 1); + return 0; + } + + if (bp->b_flags & XBF_WRITE) { + xfs_buf_wait_unpin(bp); + } + + xfs_buf_hold(bp); + + /* Set the count to 1 initially, this will stop an I/O + * completion callout which happens before we have started + * all the I/O from calling xfs_buf_ioend too early. + */ + atomic_set(&bp->b_io_remaining, 1); + _xfs_buf_ioapply(bp); + _xfs_buf_ioend(bp, 0); + + xfs_buf_rele(bp); + return 0; +} + +/* + * Waits for I/O to complete on the buffer supplied. + * It returns immediately if no I/O is pending. + * It returns the I/O error code, if any, or 0 if there was no error. + */ +int +xfs_buf_iowait( + xfs_buf_t *bp) +{ + trace_xfs_buf_iowait(bp, _RET_IP_); + + wait_for_completion(&bp->b_iowait); + + trace_xfs_buf_iowait_done(bp, _RET_IP_); + return bp->b_error; +} + +xfs_caddr_t +xfs_buf_offset( + xfs_buf_t *bp, + size_t offset) +{ + struct page *page; + + if (bp->b_flags & XBF_MAPPED) + return bp->b_addr + offset; + + offset += bp->b_offset; + page = bp->b_pages[offset >> PAGE_SHIFT]; + return (xfs_caddr_t)page_address(page) + (offset & (PAGE_SIZE-1)); +} + +/* + * Move data into or out of a buffer. + */ +void +xfs_buf_iomove( + xfs_buf_t *bp, /* buffer to process */ + size_t boff, /* starting buffer offset */ + size_t bsize, /* length to copy */ + void *data, /* data address */ + xfs_buf_rw_t mode) /* read/write/zero flag */ +{ + size_t bend, cpoff, csize; + struct page *page; + + bend = boff + bsize; + while (boff < bend) { + page = bp->b_pages[xfs_buf_btoct(boff + bp->b_offset)]; + cpoff = xfs_buf_poff(boff + bp->b_offset); + csize = min_t(size_t, + PAGE_SIZE-cpoff, bp->b_count_desired-boff); + + ASSERT(((csize + cpoff) <= PAGE_SIZE)); + + switch (mode) { + case XBRW_ZERO: + memset(page_address(page) + cpoff, 0, csize); + break; + case XBRW_READ: + memcpy(data, page_address(page) + cpoff, csize); + break; + case XBRW_WRITE: + memcpy(page_address(page) + cpoff, data, csize); + } + + boff += csize; + data += csize; + } +} + +/* + * Handling of buffer targets (buftargs). + */ + +/* + * Wait for any bufs with callbacks that have been submitted but have not yet + * returned. These buffers will have an elevated hold count, so wait on those + * while freeing all the buffers only held by the LRU. + */ +void +xfs_wait_buftarg( + struct xfs_buftarg *btp) +{ + struct xfs_buf *bp; + +restart: + spin_lock(&btp->bt_lru_lock); + while (!list_empty(&btp->bt_lru)) { + bp = list_first_entry(&btp->bt_lru, struct xfs_buf, b_lru); + if (atomic_read(&bp->b_hold) > 1) { + spin_unlock(&btp->bt_lru_lock); + delay(100); + goto restart; + } + /* + * clear the LRU reference count so the bufer doesn't get + * ignored in xfs_buf_rele(). + */ + atomic_set(&bp->b_lru_ref, 0); + spin_unlock(&btp->bt_lru_lock); + xfs_buf_rele(bp); + spin_lock(&btp->bt_lru_lock); + } + spin_unlock(&btp->bt_lru_lock); +} + +int +xfs_buftarg_shrink( + struct shrinker *shrink, + struct shrink_control *sc) +{ + struct xfs_buftarg *btp = container_of(shrink, + struct xfs_buftarg, bt_shrinker); + struct xfs_buf *bp; + int nr_to_scan = sc->nr_to_scan; + LIST_HEAD(dispose); + + if (!nr_to_scan) + return btp->bt_lru_nr; + + spin_lock(&btp->bt_lru_lock); + while (!list_empty(&btp->bt_lru)) { + if (nr_to_scan-- <= 0) + break; + + bp = list_first_entry(&btp->bt_lru, struct xfs_buf, b_lru); + + /* + * Decrement the b_lru_ref count unless the value is already + * zero. If the value is already zero, we need to reclaim the + * buffer, otherwise it gets another trip through the LRU. + */ + if (!atomic_add_unless(&bp->b_lru_ref, -1, 0)) { + list_move_tail(&bp->b_lru, &btp->bt_lru); + continue; + } + + /* + * remove the buffer from the LRU now to avoid needing another + * lock round trip inside xfs_buf_rele(). + */ + list_move(&bp->b_lru, &dispose); + btp->bt_lru_nr--; + } + spin_unlock(&btp->bt_lru_lock); + + while (!list_empty(&dispose)) { + bp = list_first_entry(&dispose, struct xfs_buf, b_lru); + list_del_init(&bp->b_lru); + xfs_buf_rele(bp); + } + + return btp->bt_lru_nr; +} + +void +xfs_free_buftarg( + struct xfs_mount *mp, + struct xfs_buftarg *btp) +{ + unregister_shrinker(&btp->bt_shrinker); + + xfs_flush_buftarg(btp, 1); + if (mp->m_flags & XFS_MOUNT_BARRIER) + xfs_blkdev_issue_flush(btp); + + kthread_stop(btp->bt_task); + kmem_free(btp); +} + +STATIC int +xfs_setsize_buftarg_flags( + xfs_buftarg_t *btp, + unsigned int blocksize, + unsigned int sectorsize, + int verbose) +{ + btp->bt_bsize = blocksize; + btp->bt_sshift = ffs(sectorsize) - 1; + btp->bt_smask = sectorsize - 1; + + if (set_blocksize(btp->bt_bdev, sectorsize)) { + xfs_warn(btp->bt_mount, + "Cannot set_blocksize to %u on device %s\n", + sectorsize, xfs_buf_target_name(btp)); + return EINVAL; + } + + return 0; +} + +/* + * When allocating the initial buffer target we have not yet + * read in the superblock, so don't know what sized sectors + * are being used is at this early stage. Play safe. + */ +STATIC int +xfs_setsize_buftarg_early( + xfs_buftarg_t *btp, + struct block_device *bdev) +{ + return xfs_setsize_buftarg_flags(btp, + PAGE_SIZE, bdev_logical_block_size(bdev), 0); +} + +int +xfs_setsize_buftarg( + xfs_buftarg_t *btp, + unsigned int blocksize, + unsigned int sectorsize) +{ + return xfs_setsize_buftarg_flags(btp, blocksize, sectorsize, 1); +} + +STATIC int +xfs_alloc_delwrite_queue( + xfs_buftarg_t *btp, + const char *fsname) +{ + INIT_LIST_HEAD(&btp->bt_delwrite_queue); + spin_lock_init(&btp->bt_delwrite_lock); + btp->bt_flags = 0; + btp->bt_task = kthread_run(xfsbufd, btp, "xfsbufd/%s", fsname); + if (IS_ERR(btp->bt_task)) + return PTR_ERR(btp->bt_task); + return 0; +} + +xfs_buftarg_t * +xfs_alloc_buftarg( + struct xfs_mount *mp, + struct block_device *bdev, + int external, + const char *fsname) +{ + xfs_buftarg_t *btp; + + btp = kmem_zalloc(sizeof(*btp), KM_SLEEP); + + btp->bt_mount = mp; + btp->bt_dev = bdev->bd_dev; + btp->bt_bdev = bdev; + btp->bt_bdi = blk_get_backing_dev_info(bdev); + if (!btp->bt_bdi) + goto error; + + INIT_LIST_HEAD(&btp->bt_lru); + spin_lock_init(&btp->bt_lru_lock); + if (xfs_setsize_buftarg_early(btp, bdev)) + goto error; + if (xfs_alloc_delwrite_queue(btp, fsname)) + goto error; + btp->bt_shrinker.shrink = xfs_buftarg_shrink; + btp->bt_shrinker.seeks = DEFAULT_SEEKS; + register_shrinker(&btp->bt_shrinker); + return btp; + +error: + kmem_free(btp); + return NULL; +} + + +/* + * Delayed write buffer handling + */ +STATIC void +xfs_buf_delwri_queue( + xfs_buf_t *bp, + int unlock) +{ + struct list_head *dwq = &bp->b_target->bt_delwrite_queue; + spinlock_t *dwlk = &bp->b_target->bt_delwrite_lock; + + trace_xfs_buf_delwri_queue(bp, _RET_IP_); + + ASSERT((bp->b_flags&(XBF_DELWRI|XBF_ASYNC)) == (XBF_DELWRI|XBF_ASYNC)); + + spin_lock(dwlk); + /* If already in the queue, dequeue and place at tail */ + if (!list_empty(&bp->b_list)) { + ASSERT(bp->b_flags & _XBF_DELWRI_Q); + if (unlock) + atomic_dec(&bp->b_hold); + list_del(&bp->b_list); + } + + if (list_empty(dwq)) { + /* start xfsbufd as it is about to have something to do */ + wake_up_process(bp->b_target->bt_task); + } + + bp->b_flags |= _XBF_DELWRI_Q; + list_add_tail(&bp->b_list, dwq); + bp->b_queuetime = jiffies; + spin_unlock(dwlk); + + if (unlock) + xfs_buf_unlock(bp); +} + +void +xfs_buf_delwri_dequeue( + xfs_buf_t *bp) +{ + spinlock_t *dwlk = &bp->b_target->bt_delwrite_lock; + int dequeued = 0; + + spin_lock(dwlk); + if ((bp->b_flags & XBF_DELWRI) && !list_empty(&bp->b_list)) { + ASSERT(bp->b_flags & _XBF_DELWRI_Q); + list_del_init(&bp->b_list); + dequeued = 1; + } + bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q); + spin_unlock(dwlk); + + if (dequeued) + xfs_buf_rele(bp); + + trace_xfs_buf_delwri_dequeue(bp, _RET_IP_); +} + +/* + * If a delwri buffer needs to be pushed before it has aged out, then promote + * it to the head of the delwri queue so that it will be flushed on the next + * xfsbufd run. We do this by resetting the queuetime of the buffer to be older + * than the age currently needed to flush the buffer. Hence the next time the + * xfsbufd sees it is guaranteed to be considered old enough to flush. + */ +void +xfs_buf_delwri_promote( + struct xfs_buf *bp) +{ + struct xfs_buftarg *btp = bp->b_target; + long age = xfs_buf_age_centisecs * msecs_to_jiffies(10) + 1; + + ASSERT(bp->b_flags & XBF_DELWRI); + ASSERT(bp->b_flags & _XBF_DELWRI_Q); + + /* + * Check the buffer age before locking the delayed write queue as we + * don't need to promote buffers that are already past the flush age. + */ + if (bp->b_queuetime < jiffies - age) + return; + bp->b_queuetime = jiffies - age; + spin_lock(&btp->bt_delwrite_lock); + list_move(&bp->b_list, &btp->bt_delwrite_queue); + spin_unlock(&btp->bt_delwrite_lock); +} + +STATIC void +xfs_buf_runall_queues( + struct workqueue_struct *queue) +{ + flush_workqueue(queue); +} + +/* + * Move as many buffers as specified to the supplied list + * idicating if we skipped any buffers to prevent deadlocks. + */ +STATIC int +xfs_buf_delwri_split( + xfs_buftarg_t *target, + struct list_head *list, + unsigned long age) +{ + xfs_buf_t *bp, *n; + struct list_head *dwq = &target->bt_delwrite_queue; + spinlock_t *dwlk = &target->bt_delwrite_lock; + int skipped = 0; + int force; + + force = test_and_clear_bit(XBT_FORCE_FLUSH, &target->bt_flags); + INIT_LIST_HEAD(list); + spin_lock(dwlk); + list_for_each_entry_safe(bp, n, dwq, b_list) { + ASSERT(bp->b_flags & XBF_DELWRI); + + if (!xfs_buf_ispinned(bp) && xfs_buf_trylock(bp)) { + if (!force && + time_before(jiffies, bp->b_queuetime + age)) { + xfs_buf_unlock(bp); + break; + } + + bp->b_flags &= ~(XBF_DELWRI | _XBF_DELWRI_Q); + bp->b_flags |= XBF_WRITE; + list_move_tail(&bp->b_list, list); + trace_xfs_buf_delwri_split(bp, _RET_IP_); + } else + skipped++; + } + spin_unlock(dwlk); + + return skipped; + +} + +/* + * Compare function is more complex than it needs to be because + * the return value is only 32 bits and we are doing comparisons + * on 64 bit values + */ +static int +xfs_buf_cmp( + void *priv, + struct list_head *a, + struct list_head *b) +{ + struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list); + struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list); + xfs_daddr_t diff; + + diff = ap->b_bn - bp->b_bn; + if (diff < 0) + return -1; + if (diff > 0) + return 1; + return 0; +} + +STATIC int +xfsbufd( + void *data) +{ + xfs_buftarg_t *target = (xfs_buftarg_t *)data; + + current->flags |= PF_MEMALLOC; + + set_freezable(); + + do { + long age = xfs_buf_age_centisecs * msecs_to_jiffies(10); + long tout = xfs_buf_timer_centisecs * msecs_to_jiffies(10); + struct list_head tmp; + struct blk_plug plug; + + if (unlikely(freezing(current))) { + set_bit(XBT_FORCE_SLEEP, &target->bt_flags); + refrigerator(); + } else { + clear_bit(XBT_FORCE_SLEEP, &target->bt_flags); + } + + /* sleep for a long time if there is nothing to do. */ + if (list_empty(&target->bt_delwrite_queue)) + tout = MAX_SCHEDULE_TIMEOUT; + schedule_timeout_interruptible(tout); + + xfs_buf_delwri_split(target, &tmp, age); + list_sort(NULL, &tmp, xfs_buf_cmp); + + blk_start_plug(&plug); + while (!list_empty(&tmp)) { + struct xfs_buf *bp; + bp = list_first_entry(&tmp, struct xfs_buf, b_list); + list_del_init(&bp->b_list); + xfs_bdstrat_cb(bp); + } + blk_finish_plug(&plug); + } while (!kthread_should_stop()); + + return 0; +} + +/* + * Go through all incore buffers, and release buffers if they belong to + * the given device. This is used in filesystem error handling to + * preserve the consistency of its metadata. + */ +int +xfs_flush_buftarg( + xfs_buftarg_t *target, + int wait) +{ + xfs_buf_t *bp; + int pincount = 0; + LIST_HEAD(tmp_list); + LIST_HEAD(wait_list); + struct blk_plug plug; + + xfs_buf_runall_queues(xfsconvertd_workqueue); + xfs_buf_runall_queues(xfsdatad_workqueue); + xfs_buf_runall_queues(xfslogd_workqueue); + + set_bit(XBT_FORCE_FLUSH, &target->bt_flags); + pincount = xfs_buf_delwri_split(target, &tmp_list, 0); + + /* + * Dropped the delayed write list lock, now walk the temporary list. + * All I/O is issued async and then if we need to wait for completion + * we do that after issuing all the IO. + */ + list_sort(NULL, &tmp_list, xfs_buf_cmp); + + blk_start_plug(&plug); + while (!list_empty(&tmp_list)) { + bp = list_first_entry(&tmp_list, struct xfs_buf, b_list); + ASSERT(target == bp->b_target); + list_del_init(&bp->b_list); + if (wait) { + bp->b_flags &= ~XBF_ASYNC; + list_add(&bp->b_list, &wait_list); + } + xfs_bdstrat_cb(bp); + } + blk_finish_plug(&plug); + + if (wait) { + /* Wait for IO to complete. */ + while (!list_empty(&wait_list)) { + bp = list_first_entry(&wait_list, struct xfs_buf, b_list); + + list_del_init(&bp->b_list); + xfs_buf_iowait(bp); + xfs_buf_relse(bp); + } + } + + return pincount; +} + +int __init +xfs_buf_init(void) +{ + xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf", + KM_ZONE_HWALIGN, NULL); + if (!xfs_buf_zone) + goto out; + + xfslogd_workqueue = alloc_workqueue("xfslogd", + WQ_MEM_RECLAIM | WQ_HIGHPRI, 1); + if (!xfslogd_workqueue) + goto out_free_buf_zone; + + xfsdatad_workqueue = alloc_workqueue("xfsdatad", WQ_MEM_RECLAIM, 1); + if (!xfsdatad_workqueue) + goto out_destroy_xfslogd_workqueue; + + xfsconvertd_workqueue = alloc_workqueue("xfsconvertd", + WQ_MEM_RECLAIM, 1); + if (!xfsconvertd_workqueue) + goto out_destroy_xfsdatad_workqueue; + + return 0; + + out_destroy_xfsdatad_workqueue: + destroy_workqueue(xfsdatad_workqueue); + out_destroy_xfslogd_workqueue: + destroy_workqueue(xfslogd_workqueue); + out_free_buf_zone: + kmem_zone_destroy(xfs_buf_zone); + out: + return -ENOMEM; +} + +void +xfs_buf_terminate(void) +{ + destroy_workqueue(xfsconvertd_workqueue); + destroy_workqueue(xfsdatad_workqueue); + destroy_workqueue(xfslogd_workqueue); + kmem_zone_destroy(xfs_buf_zone); +} + +#ifdef CONFIG_KDB_MODULES +struct list_head * +xfs_get_buftarg_list(void) +{ + return &xfs_buftarg_list; +} +#endif |