diff options
author | Linus Torvalds <torvalds@linux-foundation.org> | 2011-03-18 20:50:27 +0300 |
---|---|---|
committer | Linus Torvalds <torvalds@linux-foundation.org> | 2011-03-18 20:50:27 +0300 |
commit | 8f627a8a881481598c2591c3acc122fb9be7bac4 (patch) | |
tree | 06497d25e30824500aeaf8c736c45b070f121234 /fs/ubifs | |
parent | fd57ed021990157ee5b3997c3f21c734093a9e23 (diff) | |
parent | 5d630e43284fdb0613e4e7e7dd906f27bc25b6af (diff) | |
download | linux-8f627a8a881481598c2591c3acc122fb9be7bac4.tar.xz |
Merge branch 'linux-next' of git://git.infradead.org/ubifs-2.6
* 'linux-next' of git://git.infradead.org/ubifs-2.6: (25 commits)
UBIFS: clean-up commentaries
UBIFS: save 128KiB or more RAM
UBIFS: allocate orphans scan buffer on demand
UBIFS: allocate lpt dump buffer on demand
UBIFS: allocate ltab checking buffer on demand
UBIFS: allocate scanning buffer on demand
UBIFS: allocate dump buffer on demand
UBIFS: do not check data crc by default
UBIFS: simplify UBIFS Kconfig menu
UBIFS: print max. index node size
UBIFS: handle allocation failures in UBIFS write path
UBIFS: use max_write_size during recovery
UBIFS: use max_write_size for write-buffers
UBIFS: introduce write-buffer size field
UBI: incorporate LEB offset information
UBIFS: incorporate maximum write size
UBI: provide LEB offset information
UBI: incorporate maximum write size
UBIFS: fix LEB number in printk
UBIFS: restrict world-writable debugfs files
...
Diffstat (limited to 'fs/ubifs')
-rw-r--r-- | fs/ubifs/Kconfig | 23 | ||||
-rw-r--r-- | fs/ubifs/commit.c | 58 | ||||
-rw-r--r-- | fs/ubifs/debug.c | 34 | ||||
-rw-r--r-- | fs/ubifs/debug.h | 30 | ||||
-rw-r--r-- | fs/ubifs/io.c | 201 | ||||
-rw-r--r-- | fs/ubifs/journal.c | 28 | ||||
-rw-r--r-- | fs/ubifs/lprops.c | 26 | ||||
-rw-r--r-- | fs/ubifs/lpt_commit.c | 56 | ||||
-rw-r--r-- | fs/ubifs/orphan.c | 10 | ||||
-rw-r--r-- | fs/ubifs/recovery.c | 44 | ||||
-rw-r--r-- | fs/ubifs/scan.c | 2 | ||||
-rw-r--r-- | fs/ubifs/super.c | 54 | ||||
-rw-r--r-- | fs/ubifs/tnc.c | 10 | ||||
-rw-r--r-- | fs/ubifs/ubifs.h | 45 |
14 files changed, 447 insertions, 174 deletions
diff --git a/fs/ubifs/Kconfig b/fs/ubifs/Kconfig index 830e3f76f442..1d1859dc3de5 100644 --- a/fs/ubifs/Kconfig +++ b/fs/ubifs/Kconfig @@ -44,23 +44,20 @@ config UBIFS_FS_ZLIB # Debugging-related stuff config UBIFS_FS_DEBUG - bool "Enable debugging" + bool "Enable debugging support" depends on UBIFS_FS select DEBUG_FS select KALLSYMS_ALL help - This option enables UBIFS debugging. - -config UBIFS_FS_DEBUG_MSG_LVL - int "Default message level (0 = no extra messages, 3 = lots)" - depends on UBIFS_FS_DEBUG - default "0" - help - This controls the amount of debugging messages produced by UBIFS. - If reporting bugs, please try to have available a full dump of the - messages at level 1 while the misbehaviour was occurring. Level 2 - may become necessary if level 1 messages were not enough to find the - bug. Generally Level 3 should be avoided. + This option enables UBIFS debugging support. It makes sure various + assertions, self-checks, debugging messages and test modes are compiled + in (this all is compiled out otherwise). Assertions are light-weight + and this option also enables them. Self-checks, debugging messages and + test modes are switched off by default. Thus, it is safe and actually + recommended to have debugging support enabled, and it should not slow + down UBIFS. You can then further enable / disable individual debugging + features using UBIFS module parameters and the corresponding sysfs + interfaces. config UBIFS_FS_DEBUG_CHKS bool "Enable extra checks" diff --git a/fs/ubifs/commit.c b/fs/ubifs/commit.c index 02429d81ca33..b148fbc80f8d 100644 --- a/fs/ubifs/commit.c +++ b/fs/ubifs/commit.c @@ -48,6 +48,56 @@ #include <linux/slab.h> #include "ubifs.h" +/* + * nothing_to_commit - check if there is nothing to commit. + * @c: UBIFS file-system description object + * + * This is a helper function which checks if there is anything to commit. It is + * used as an optimization to avoid starting the commit if it is not really + * necessary. Indeed, the commit operation always assumes flash I/O (e.g., + * writing the commit start node to the log), and it is better to avoid doing + * this unnecessarily. E.g., 'ubifs_sync_fs()' runs the commit, but if there is + * nothing to commit, it is more optimal to avoid any flash I/O. + * + * This function has to be called with @c->commit_sem locked for writing - + * this function does not take LPT/TNC locks because the @c->commit_sem + * guarantees that we have exclusive access to the TNC and LPT data structures. + * + * This function returns %1 if there is nothing to commit and %0 otherwise. + */ +static int nothing_to_commit(struct ubifs_info *c) +{ + /* + * During mounting or remounting from R/O mode to R/W mode we may + * commit for various recovery-related reasons. + */ + if (c->mounting || c->remounting_rw) + return 0; + + /* + * If the root TNC node is dirty, we definitely have something to + * commit. + */ + if (c->zroot.znode && test_bit(DIRTY_ZNODE, &c->zroot.znode->flags)) + return 0; + + /* + * Even though the TNC is clean, the LPT tree may have dirty nodes. For + * example, this may happen if the budgeting subsystem invoked GC to + * make some free space, and the GC found an LEB with only dirty and + * free space. In this case GC would just change the lprops of this + * LEB (by turning all space into free space) and unmap it. + */ + if (c->nroot && test_bit(DIRTY_CNODE, &c->nroot->flags)) + return 0; + + ubifs_assert(atomic_long_read(&c->dirty_zn_cnt) == 0); + ubifs_assert(c->dirty_pn_cnt == 0); + ubifs_assert(c->dirty_nn_cnt == 0); + + return 1; +} + /** * do_commit - commit the journal. * @c: UBIFS file-system description object @@ -70,6 +120,12 @@ static int do_commit(struct ubifs_info *c) goto out_up; } + if (nothing_to_commit(c)) { + up_write(&c->commit_sem); + err = 0; + goto out_cancel; + } + /* Sync all write buffers (necessary for recovery) */ for (i = 0; i < c->jhead_cnt; i++) { err = ubifs_wbuf_sync(&c->jheads[i].wbuf); @@ -162,12 +218,12 @@ static int do_commit(struct ubifs_info *c) if (err) goto out; +out_cancel: spin_lock(&c->cs_lock); c->cmt_state = COMMIT_RESTING; wake_up(&c->cmt_wq); dbg_cmt("commit end"); spin_unlock(&c->cs_lock); - return 0; out_up: diff --git a/fs/ubifs/debug.c b/fs/ubifs/debug.c index 0bee4dbffc31..01c2b028e525 100644 --- a/fs/ubifs/debug.c +++ b/fs/ubifs/debug.c @@ -43,8 +43,8 @@ DEFINE_SPINLOCK(dbg_lock); static char dbg_key_buf0[128]; static char dbg_key_buf1[128]; -unsigned int ubifs_msg_flags = UBIFS_MSG_FLAGS_DEFAULT; -unsigned int ubifs_chk_flags = UBIFS_CHK_FLAGS_DEFAULT; +unsigned int ubifs_msg_flags; +unsigned int ubifs_chk_flags; unsigned int ubifs_tst_flags; module_param_named(debug_msgs, ubifs_msg_flags, uint, S_IRUGO | S_IWUSR); @@ -810,16 +810,24 @@ void dbg_dump_leb(const struct ubifs_info *c, int lnum) { struct ubifs_scan_leb *sleb; struct ubifs_scan_node *snod; + void *buf; if (dbg_failure_mode) return; printk(KERN_DEBUG "(pid %d) start dumping LEB %d\n", current->pid, lnum); - sleb = ubifs_scan(c, lnum, 0, c->dbg->buf, 0); + + buf = __vmalloc(c->leb_size, GFP_KERNEL | GFP_NOFS, PAGE_KERNEL); + if (!buf) { + ubifs_err("cannot allocate memory for dumping LEB %d", lnum); + return; + } + + sleb = ubifs_scan(c, lnum, 0, buf, 0); if (IS_ERR(sleb)) { ubifs_err("scan error %d", (int)PTR_ERR(sleb)); - return; + goto out; } printk(KERN_DEBUG "LEB %d has %d nodes ending at %d\n", lnum, @@ -835,6 +843,9 @@ void dbg_dump_leb(const struct ubifs_info *c, int lnum) printk(KERN_DEBUG "(pid %d) finish dumping LEB %d\n", current->pid, lnum); ubifs_scan_destroy(sleb); + +out: + vfree(buf); return; } @@ -2690,16 +2701,8 @@ int ubifs_debugging_init(struct ubifs_info *c) if (!c->dbg) return -ENOMEM; - c->dbg->buf = vmalloc(c->leb_size); - if (!c->dbg->buf) - goto out; - failure_mode_init(c); return 0; - -out: - kfree(c->dbg); - return -ENOMEM; } /** @@ -2709,7 +2712,6 @@ out: void ubifs_debugging_exit(struct ubifs_info *c) { failure_mode_exit(c); - vfree(c->dbg->buf); kfree(c->dbg); } @@ -2813,19 +2815,19 @@ int dbg_debugfs_init_fs(struct ubifs_info *c) } fname = "dump_lprops"; - dent = debugfs_create_file(fname, S_IWUGO, d->dfs_dir, c, &dfs_fops); + dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops); if (IS_ERR(dent)) goto out_remove; d->dfs_dump_lprops = dent; fname = "dump_budg"; - dent = debugfs_create_file(fname, S_IWUGO, d->dfs_dir, c, &dfs_fops); + dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops); if (IS_ERR(dent)) goto out_remove; d->dfs_dump_budg = dent; fname = "dump_tnc"; - dent = debugfs_create_file(fname, S_IWUGO, d->dfs_dir, c, &dfs_fops); + dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops); if (IS_ERR(dent)) goto out_remove; d->dfs_dump_tnc = dent; diff --git a/fs/ubifs/debug.h b/fs/ubifs/debug.h index 69ebe4729151..919f0de29d8f 100644 --- a/fs/ubifs/debug.h +++ b/fs/ubifs/debug.h @@ -27,7 +27,6 @@ /** * ubifs_debug_info - per-FS debugging information. - * @buf: a buffer of LEB size, used for various purposes * @old_zroot: old index root - used by 'dbg_check_old_index()' * @old_zroot_level: old index root level - used by 'dbg_check_old_index()' * @old_zroot_sqnum: old index root sqnum - used by 'dbg_check_old_index()' @@ -54,7 +53,6 @@ * dfs_dump_tnc: "dump TNC" debugfs knob */ struct ubifs_debug_info { - void *buf; struct ubifs_zbranch old_zroot; int old_zroot_level; unsigned long long old_zroot_sqnum; @@ -173,7 +171,7 @@ const char *dbg_key_str1(const struct ubifs_info *c, #define dbg_rcvry(fmt, ...) dbg_do_msg(UBIFS_MSG_RCVRY, fmt, ##__VA_ARGS__) /* - * Debugging message type flags (must match msg_type_names in debug.c). + * Debugging message type flags. * * UBIFS_MSG_GEN: general messages * UBIFS_MSG_JNL: journal messages @@ -205,14 +203,8 @@ enum { UBIFS_MSG_RCVRY = 0x1000, }; -/* Debugging message type flags for each default debug message level */ -#define UBIFS_MSG_LVL_0 0 -#define UBIFS_MSG_LVL_1 0x1 -#define UBIFS_MSG_LVL_2 0x7f -#define UBIFS_MSG_LVL_3 0xffff - /* - * Debugging check flags (must match chk_names in debug.c). + * Debugging check flags. * * UBIFS_CHK_GEN: general checks * UBIFS_CHK_TNC: check TNC @@ -233,7 +225,7 @@ enum { }; /* - * Special testing flags (must match tst_names in debug.c). + * Special testing flags. * * UBIFS_TST_FORCE_IN_THE_GAPS: force the use of in-the-gaps method * UBIFS_TST_RCVRY: failure mode for recovery testing @@ -243,22 +235,6 @@ enum { UBIFS_TST_RCVRY = 0x4, }; -#if CONFIG_UBIFS_FS_DEBUG_MSG_LVL == 1 -#define UBIFS_MSG_FLAGS_DEFAULT UBIFS_MSG_LVL_1 -#elif CONFIG_UBIFS_FS_DEBUG_MSG_LVL == 2 -#define UBIFS_MSG_FLAGS_DEFAULT UBIFS_MSG_LVL_2 -#elif CONFIG_UBIFS_FS_DEBUG_MSG_LVL == 3 -#define UBIFS_MSG_FLAGS_DEFAULT UBIFS_MSG_LVL_3 -#else -#define UBIFS_MSG_FLAGS_DEFAULT UBIFS_MSG_LVL_0 -#endif - -#ifdef CONFIG_UBIFS_FS_DEBUG_CHKS -#define UBIFS_CHK_FLAGS_DEFAULT 0xffffffff -#else -#define UBIFS_CHK_FLAGS_DEFAULT 0 -#endif - extern spinlock_t dbg_lock; extern unsigned int ubifs_msg_flags; diff --git a/fs/ubifs/io.c b/fs/ubifs/io.c index d82173182eeb..dfd168b7807e 100644 --- a/fs/ubifs/io.c +++ b/fs/ubifs/io.c @@ -31,6 +31,26 @@ * buffer is full or when it is not used for some time (by timer). This is * similar to the mechanism is used by JFFS2. * + * UBIFS distinguishes between minimum write size (@c->min_io_size) and maximum + * write size (@c->max_write_size). The latter is the maximum amount of bytes + * the underlying flash is able to program at a time, and writing in + * @c->max_write_size units should presumably be faster. Obviously, + * @c->min_io_size <= @c->max_write_size. Write-buffers are of + * @c->max_write_size bytes in size for maximum performance. However, when a + * write-buffer is flushed, only the portion of it (aligned to @c->min_io_size + * boundary) which contains data is written, not the whole write-buffer, + * because this is more space-efficient. + * + * This optimization adds few complications to the code. Indeed, on the one + * hand, we want to write in optimal @c->max_write_size bytes chunks, which + * also means aligning writes at the @c->max_write_size bytes offsets. On the + * other hand, we do not want to waste space when synchronizing the write + * buffer, so during synchronization we writes in smaller chunks. And this makes + * the next write offset to be not aligned to @c->max_write_size bytes. So the + * have to make sure that the write-buffer offset (@wbuf->offs) becomes aligned + * to @c->max_write_size bytes again. We do this by temporarily shrinking + * write-buffer size (@wbuf->size). + * * Write-buffers are defined by 'struct ubifs_wbuf' objects and protected by * mutexes defined inside these objects. Since sometimes upper-level code * has to lock the write-buffer (e.g. journal space reservation code), many @@ -46,8 +66,8 @@ * UBIFS uses padding when it pads to the next min. I/O unit. In this case it * uses padding nodes or padding bytes, if the padding node does not fit. * - * All UBIFS nodes are protected by CRC checksums and UBIFS checks all nodes - * every time they are read from the flash media. + * All UBIFS nodes are protected by CRC checksums and UBIFS checks CRC when + * they are read from the flash media. */ #include <linux/crc32.h> @@ -88,8 +108,12 @@ void ubifs_ro_mode(struct ubifs_info *c, int err) * This function may skip data nodes CRC checking if @c->no_chk_data_crc is * true, which is controlled by corresponding UBIFS mount option. However, if * @must_chk_crc is true, then @c->no_chk_data_crc is ignored and CRC is - * checked. Similarly, if @c->always_chk_crc is true, @c->no_chk_data_crc is - * ignored and CRC is checked. + * checked. Similarly, if @c->mounting or @c->remounting_rw is true (we are + * mounting or re-mounting to R/W mode), @c->no_chk_data_crc is ignored and CRC + * is checked. This is because during mounting or re-mounting from R/O mode to + * R/W mode we may read journal nodes (when replying the journal or doing the + * recovery) and the journal nodes may potentially be corrupted, so checking is + * required. * * This function returns zero in case of success and %-EUCLEAN in case of bad * CRC or magic. @@ -131,8 +155,8 @@ int ubifs_check_node(const struct ubifs_info *c, const void *buf, int lnum, node_len > c->ranges[type].max_len) goto out_len; - if (!must_chk_crc && type == UBIFS_DATA_NODE && !c->always_chk_crc && - c->no_chk_data_crc) + if (!must_chk_crc && type == UBIFS_DATA_NODE && !c->mounting && + !c->remounting_rw && c->no_chk_data_crc) return 0; crc = crc32(UBIFS_CRC32_INIT, buf + 8, node_len - 8); @@ -343,11 +367,17 @@ static void cancel_wbuf_timer_nolock(struct ubifs_wbuf *wbuf) * * This function synchronizes write-buffer @buf and returns zero in case of * success or a negative error code in case of failure. + * + * Note, although write-buffers are of @c->max_write_size, this function does + * not necessarily writes all @c->max_write_size bytes to the flash. Instead, + * if the write-buffer is only partially filled with data, only the used part + * of the write-buffer (aligned on @c->min_io_size boundary) is synchronized. + * This way we waste less space. */ int ubifs_wbuf_sync_nolock(struct ubifs_wbuf *wbuf) { struct ubifs_info *c = wbuf->c; - int err, dirt; + int err, dirt, sync_len; cancel_wbuf_timer_nolock(wbuf); if (!wbuf->used || wbuf->lnum == -1) @@ -357,27 +387,53 @@ int ubifs_wbuf_sync_nolock(struct ubifs_wbuf *wbuf) dbg_io("LEB %d:%d, %d bytes, jhead %s", wbuf->lnum, wbuf->offs, wbuf->used, dbg_jhead(wbuf->jhead)); ubifs_assert(!(wbuf->avail & 7)); - ubifs_assert(wbuf->offs + c->min_io_size <= c->leb_size); + ubifs_assert(wbuf->offs + wbuf->size <= c->leb_size); + ubifs_assert(wbuf->size >= c->min_io_size); + ubifs_assert(wbuf->size <= c->max_write_size); + ubifs_assert(wbuf->size % c->min_io_size == 0); ubifs_assert(!c->ro_media && !c->ro_mount); + if (c->leb_size - wbuf->offs >= c->max_write_size) + ubifs_assert(!((wbuf->offs + wbuf->size) % c->max_write_size )); if (c->ro_error) return -EROFS; - ubifs_pad(c, wbuf->buf + wbuf->used, wbuf->avail); + /* + * Do not write whole write buffer but write only the minimum necessary + * amount of min. I/O units. + */ + sync_len = ALIGN(wbuf->used, c->min_io_size); + dirt = sync_len - wbuf->used; + if (dirt) + ubifs_pad(c, wbuf->buf + wbuf->used, dirt); err = ubi_leb_write(c->ubi, wbuf->lnum, wbuf->buf, wbuf->offs, - c->min_io_size, wbuf->dtype); + sync_len, wbuf->dtype); if (err) { ubifs_err("cannot write %d bytes to LEB %d:%d", - c->min_io_size, wbuf->lnum, wbuf->offs); + sync_len, wbuf->lnum, wbuf->offs); dbg_dump_stack(); return err; } - dirt = wbuf->avail; - spin_lock(&wbuf->lock); - wbuf->offs += c->min_io_size; - wbuf->avail = c->min_io_size; + wbuf->offs += sync_len; + /* + * Now @wbuf->offs is not necessarily aligned to @c->max_write_size. + * But our goal is to optimize writes and make sure we write in + * @c->max_write_size chunks and to @c->max_write_size-aligned offset. + * Thus, if @wbuf->offs is not aligned to @c->max_write_size now, make + * sure that @wbuf->offs + @wbuf->size is aligned to + * @c->max_write_size. This way we make sure that after next + * write-buffer flush we are again at the optimal offset (aligned to + * @c->max_write_size). + */ + if (c->leb_size - wbuf->offs < c->max_write_size) + wbuf->size = c->leb_size - wbuf->offs; + else if (wbuf->offs & (c->max_write_size - 1)) + wbuf->size = ALIGN(wbuf->offs, c->max_write_size) - wbuf->offs; + else + wbuf->size = c->max_write_size; + wbuf->avail = wbuf->size; wbuf->used = 0; wbuf->next_ino = 0; spin_unlock(&wbuf->lock); @@ -420,7 +476,13 @@ int ubifs_wbuf_seek_nolock(struct ubifs_wbuf *wbuf, int lnum, int offs, spin_lock(&wbuf->lock); wbuf->lnum = lnum; wbuf->offs = offs; - wbuf->avail = c->min_io_size; + if (c->leb_size - wbuf->offs < c->max_write_size) + wbuf->size = c->leb_size - wbuf->offs; + else if (wbuf->offs & (c->max_write_size - 1)) + wbuf->size = ALIGN(wbuf->offs, c->max_write_size) - wbuf->offs; + else + wbuf->size = c->max_write_size; + wbuf->avail = wbuf->size; wbuf->used = 0; spin_unlock(&wbuf->lock); wbuf->dtype = dtype; @@ -500,8 +562,9 @@ out_timers: * * This function writes data to flash via write-buffer @wbuf. This means that * the last piece of the node won't reach the flash media immediately if it - * does not take whole minimal I/O unit. Instead, the node will sit in RAM - * until the write-buffer is synchronized (e.g., by timer). + * does not take whole max. write unit (@c->max_write_size). Instead, the node + * will sit in RAM until the write-buffer is synchronized (e.g., by timer, or + * because more data are appended to the write-buffer). * * This function returns zero in case of success and a negative error code in * case of failure. If the node cannot be written because there is no more @@ -518,9 +581,14 @@ int ubifs_wbuf_write_nolock(struct ubifs_wbuf *wbuf, void *buf, int len) ubifs_assert(len > 0 && wbuf->lnum >= 0 && wbuf->lnum < c->leb_cnt); ubifs_assert(wbuf->offs >= 0 && wbuf->offs % c->min_io_size == 0); ubifs_assert(!(wbuf->offs & 7) && wbuf->offs <= c->leb_size); - ubifs_assert(wbuf->avail > 0 && wbuf->avail <= c->min_io_size); + ubifs_assert(wbuf->avail > 0 && wbuf->avail <= wbuf->size); + ubifs_assert(wbuf->size >= c->min_io_size); + ubifs_assert(wbuf->size <= c->max_write_size); + ubifs_assert(wbuf->size % c->min_io_size == 0); ubifs_assert(mutex_is_locked(&wbuf->io_mutex)); ubifs_assert(!c->ro_media && !c->ro_mount); + if (c->leb_size - wbuf->offs >= c->max_write_size) + ubifs_assert(!((wbuf->offs + wbuf->size) % c->max_write_size )); if (c->leb_size - wbuf->offs - wbuf->used < aligned_len) { err = -ENOSPC; @@ -543,14 +611,18 @@ int ubifs_wbuf_write_nolock(struct ubifs_wbuf *wbuf, void *buf, int len) dbg_io("flush jhead %s wbuf to LEB %d:%d", dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs); err = ubi_leb_write(c->ubi, wbuf->lnum, wbuf->buf, - wbuf->offs, c->min_io_size, + wbuf->offs, wbuf->size, wbuf->dtype); if (err) goto out; spin_lock(&wbuf->lock); - wbuf->offs += c->min_io_size; - wbuf->avail = c->min_io_size; + wbuf->offs += wbuf->size; + if (c->leb_size - wbuf->offs >= c->max_write_size) + wbuf->size = c->max_write_size; + else + wbuf->size = c->leb_size - wbuf->offs; + wbuf->avail = wbuf->size; wbuf->used = 0; wbuf->next_ino = 0; spin_unlock(&wbuf->lock); @@ -564,33 +636,57 @@ int ubifs_wbuf_write_nolock(struct ubifs_wbuf *wbuf, void *buf, int len) goto exit; } - /* - * The node is large enough and does not fit entirely within current - * minimal I/O unit. We have to fill and flush write-buffer and switch - * to the next min. I/O unit. - */ - dbg_io("flush jhead %s wbuf to LEB %d:%d", - dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs); - memcpy(wbuf->buf + wbuf->used, buf, wbuf->avail); - err = ubi_leb_write(c->ubi, wbuf->lnum, wbuf->buf, wbuf->offs, - c->min_io_size, wbuf->dtype); - if (err) - goto out; + offs = wbuf->offs; + written = 0; - offs = wbuf->offs + c->min_io_size; - len -= wbuf->avail; - aligned_len -= wbuf->avail; - written = wbuf->avail; + if (wbuf->used) { + /* + * The node is large enough and does not fit entirely within + * current available space. We have to fill and flush + * write-buffer and switch to the next max. write unit. + */ + dbg_io("flush jhead %s wbuf to LEB %d:%d", + dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs); + memcpy(wbuf->buf + wbuf->used, buf, wbuf->avail); + err = ubi_leb_write(c->ubi, wbuf->lnum, wbuf->buf, wbuf->offs, + wbuf->size, wbuf->dtype); + if (err) + goto out; + + offs += wbuf->size; + len -= wbuf->avail; + aligned_len -= wbuf->avail; + written += wbuf->avail; + } else if (wbuf->offs & (c->max_write_size - 1)) { + /* + * The write-buffer offset is not aligned to + * @c->max_write_size and @wbuf->size is less than + * @c->max_write_size. Write @wbuf->size bytes to make sure the + * following writes are done in optimal @c->max_write_size + * chunks. + */ + dbg_io("write %d bytes to LEB %d:%d", + wbuf->size, wbuf->lnum, wbuf->offs); + err = ubi_leb_write(c->ubi, wbuf->lnum, buf, wbuf->offs, + wbuf->size, wbuf->dtype); + if (err) + goto out; + + offs += wbuf->size; + len -= wbuf->size; + aligned_len -= wbuf->size; + written += wbuf->size; + } /* - * The remaining data may take more whole min. I/O units, so write the - * remains multiple to min. I/O unit size directly to the flash media. + * The remaining data may take more whole max. write units, so write the + * remains multiple to max. write unit size directly to the flash media. * We align node length to 8-byte boundary because we anyway flash wbuf * if the remaining space is less than 8 bytes. */ - n = aligned_len >> c->min_io_shift; + n = aligned_len >> c->max_write_shift; if (n) { - n <<= c->min_io_shift; + n <<= c->max_write_shift; dbg_io("write %d bytes to LEB %d:%d", n, wbuf->lnum, offs); err = ubi_leb_write(c->ubi, wbuf->lnum, buf + written, offs, n, wbuf->dtype); @@ -606,14 +702,18 @@ int ubifs_wbuf_write_nolock(struct ubifs_wbuf *wbuf, void *buf, int len) if (aligned_len) /* * And now we have what's left and what does not take whole - * min. I/O unit, so write it to the write-buffer and we are + * max. write unit, so write it to the write-buffer and we are * done. */ memcpy(wbuf->buf, buf + written, len); wbuf->offs = offs; + if (c->leb_size - wbuf->offs >= c->max_write_size) + wbuf->size = c->max_write_size; + else + wbuf->size = c->leb_size - wbuf->offs; + wbuf->avail = wbuf->size - aligned_len; wbuf->used = aligned_len; - wbuf->avail = c->min_io_size - aligned_len; wbuf->next_ino = 0; spin_unlock(&wbuf->lock); @@ -837,11 +937,11 @@ int ubifs_wbuf_init(struct ubifs_info *c, struct ubifs_wbuf *wbuf) { size_t size; - wbuf->buf = kmalloc(c->min_io_size, GFP_KERNEL); + wbuf->buf = kmalloc(c->max_write_size, GFP_KERNEL); if (!wbuf->buf) return -ENOMEM; - size = (c->min_io_size / UBIFS_CH_SZ + 1) * sizeof(ino_t); + size = (c->max_write_size / UBIFS_CH_SZ + 1) * sizeof(ino_t); wbuf->inodes = kmalloc(size, GFP_KERNEL); if (!wbuf->inodes) { kfree(wbuf->buf); @@ -851,7 +951,14 @@ int ubifs_wbuf_init(struct ubifs_info *c, struct ubifs_wbuf *wbuf) wbuf->used = 0; wbuf->lnum = wbuf->offs = -1; - wbuf->avail = c->min_io_size; + /* + * If the LEB starts at the max. write size aligned address, then + * write-buffer size has to be set to @c->max_write_size. Otherwise, + * set it to something smaller so that it ends at the closest max. + * write size boundary. + */ + size = c->max_write_size - (c->leb_start % c->max_write_size); + wbuf->avail = wbuf->size = size; wbuf->dtype = UBI_UNKNOWN; wbuf->sync_callback = NULL; mutex_init(&wbuf->io_mutex); diff --git a/fs/ubifs/journal.c b/fs/ubifs/journal.c index 914f1bd89e57..aed25e864227 100644 --- a/fs/ubifs/journal.c +++ b/fs/ubifs/journal.c @@ -690,7 +690,7 @@ int ubifs_jnl_write_data(struct ubifs_info *c, const struct inode *inode, { struct ubifs_data_node *data; int err, lnum, offs, compr_type, out_len; - int dlen = UBIFS_DATA_NODE_SZ + UBIFS_BLOCK_SIZE * WORST_COMPR_FACTOR; + int dlen = COMPRESSED_DATA_NODE_BUF_SZ, allocated = 1; struct ubifs_inode *ui = ubifs_inode(inode); dbg_jnl("ino %lu, blk %u, len %d, key %s", @@ -698,9 +698,19 @@ int ubifs_jnl_write_data(struct ubifs_info *c, const struct inode *inode, DBGKEY(key)); ubifs_assert(len <= UBIFS_BLOCK_SIZE); - data = kmalloc(dlen, GFP_NOFS); - if (!data) - return -ENOMEM; + data = kmalloc(dlen, GFP_NOFS | __GFP_NOWARN); + if (!data) { + /* + * Fall-back to the write reserve buffer. Note, we might be + * currently on the memory reclaim path, when the kernel is + * trying to free some memory by writing out dirty pages. The + * write reserve buffer helps us to guarantee that we are + * always able to write the data. + */ + allocated = 0; + mutex_lock(&c->write_reserve_mutex); + data = c->write_reserve_buf; + } data->ch.node_type = UBIFS_DATA_NODE; key_write(c, key, &data->key); @@ -736,7 +746,10 @@ int ubifs_jnl_write_data(struct ubifs_info *c, const struct inode *inode, goto out_ro; finish_reservation(c); - kfree(data); + if (!allocated) + mutex_unlock(&c->write_reserve_mutex); + else + kfree(data); return 0; out_release: @@ -745,7 +758,10 @@ out_ro: ubifs_ro_mode(c, err); finish_reservation(c); out_free: - kfree(data); + if (!allocated) + mutex_unlock(&c->write_reserve_mutex); + else + kfree(data); return err; } diff --git a/fs/ubifs/lprops.c b/fs/ubifs/lprops.c index 4d4ca388889b..c7b25e2f7764 100644 --- a/fs/ubifs/lprops.c +++ b/fs/ubifs/lprops.c @@ -1035,7 +1035,8 @@ static int scan_check_cb(struct ubifs_info *c, struct ubifs_scan_leb *sleb; struct ubifs_scan_node *snod; struct ubifs_lp_stats *lst = &data->lst; - int cat, lnum = lp->lnum, is_idx = 0, used = 0, free, dirty; + int cat, lnum = lp->lnum, is_idx = 0, used = 0, free, dirty, ret; + void *buf = NULL; cat = lp->flags & LPROPS_CAT_MASK; if (cat != LPROPS_UNCAT) { @@ -1093,7 +1094,13 @@ static int scan_check_cb(struct ubifs_info *c, } } - sleb = ubifs_scan(c, lnum, 0, c->dbg->buf, 0); + buf = __vmalloc(c->leb_size, GFP_KERNEL | GFP_NOFS, PAGE_KERNEL); + if (!buf) { + ubifs_err("cannot allocate memory to scan LEB %d", lnum); + goto out; + } + + sleb = ubifs_scan(c, lnum, 0, buf, 0); if (IS_ERR(sleb)) { /* * After an unclean unmount, empty and freeable LEBs @@ -1105,7 +1112,8 @@ static int scan_check_cb(struct ubifs_info *c, lst->empty_lebs += 1; lst->total_free += c->leb_size; lst->total_dark += ubifs_calc_dark(c, c->leb_size); - return LPT_SCAN_CONTINUE; + ret = LPT_SCAN_CONTINUE; + goto exit; } if (lp->free + lp->dirty == c->leb_size && @@ -1115,10 +1123,12 @@ static int scan_check_cb(struct ubifs_info *c, lst->total_free += lp->free; lst->total_dirty += lp->dirty; lst->total_dark += ubifs_calc_dark(c, c->leb_size); - return LPT_SCAN_CONTINUE; + ret = LPT_SCAN_CONTINUE; + goto exit; } data->err = PTR_ERR(sleb); - return LPT_SCAN_STOP; + ret = LPT_SCAN_STOP; + goto exit; } is_idx = -1; @@ -1236,7 +1246,10 @@ static int scan_check_cb(struct ubifs_info *c, } ubifs_scan_destroy(sleb); - return LPT_SCAN_CONTINUE; + ret = LPT_SCAN_CONTINUE; +exit: + vfree(buf); + return ret; out_print: ubifs_err("bad accounting of LEB %d: free %d, dirty %d flags %#x, " @@ -1246,6 +1259,7 @@ out_print: out_destroy: ubifs_scan_destroy(sleb); out: + vfree(buf); data->err = -EINVAL; return LPT_SCAN_STOP; } diff --git a/fs/ubifs/lpt_commit.c b/fs/ubifs/lpt_commit.c index 5c90dec5db0b..0a3c2c3f5c4a 100644 --- a/fs/ubifs/lpt_commit.c +++ b/fs/ubifs/lpt_commit.c @@ -1628,29 +1628,35 @@ static int dbg_check_ltab_lnum(struct ubifs_info *c, int lnum) { int err, len = c->leb_size, dirty = 0, node_type, node_num, node_len; int ret; - void *buf = c->dbg->buf; + void *buf, *p; if (!(ubifs_chk_flags & UBIFS_CHK_LPROPS)) return 0; + buf = p = __vmalloc(c->leb_size, GFP_KERNEL | GFP_NOFS, PAGE_KERNEL); + if (!buf) { + ubifs_err("cannot allocate memory for ltab checking"); + return 0; + } + dbg_lp("LEB %d", lnum); err = ubi_read(c->ubi, lnum, buf, 0, c->leb_size); if (err) { dbg_msg("ubi_read failed, LEB %d, error %d", lnum, err); - return err; + goto out; } while (1) { - if (!is_a_node(c, buf, len)) { + if (!is_a_node(c, p, len)) { int i, pad_len; - pad_len = get_pad_len(c, buf, len); + pad_len = get_pad_len(c, p, len); if (pad_len) { - buf += pad_len; + p += pad_len; len -= pad_len; dirty += pad_len; continue; } - if (!dbg_is_all_ff(buf, len)) { + if (!dbg_is_all_ff(p, len)) { dbg_msg("invalid empty space in LEB %d at %d", lnum, c->leb_size - len); err = -EINVAL; @@ -1668,16 +1674,21 @@ static int dbg_check_ltab_lnum(struct ubifs_info *c, int lnum) lnum, dirty, c->ltab[i].dirty); err = -EINVAL; } - return err; + goto out; } - node_type = get_lpt_node_type(c, buf, &node_num); + node_type = get_lpt_node_type(c, p, &node_num); node_len = get_lpt_node_len(c, node_type); ret = dbg_is_node_dirty(c, node_type, lnum, c->leb_size - len); if (ret == 1) dirty += node_len; - buf += node_len; + p += node_len; len -= node_len; } + + err = 0; +out: + vfree(buf); + return err; } /** @@ -1870,25 +1881,31 @@ int dbg_chk_lpt_sz(struct ubifs_info *c, int action, int len) static void dump_lpt_leb(const struct ubifs_info *c, int lnum) { int err, len = c->leb_size, node_type, node_num, node_len, offs; - void *buf = c->dbg->buf; + void *buf, *p; printk(KERN_DEBUG "(pid %d) start dumping LEB %d\n", current->pid, lnum); + buf = p = __vmalloc(c->leb_size, GFP_KERNEL | GFP_NOFS, PAGE_KERNEL); + if (!buf) { + ubifs_err("cannot allocate memory to dump LPT"); + return; + } + err = ubi_read(c->ubi, lnum, buf, 0, c->leb_size); if (err) { ubifs_err("cannot read LEB %d, error %d", lnum, err); - return; + goto out; } while (1) { offs = c->leb_size - len; - if (!is_a_node(c, buf, len)) { + if (!is_a_node(c, p, len)) { int pad_len; - pad_len = get_pad_len(c, buf, len); + pad_len = get_pad_len(c, p, len); if (pad_len) { printk(KERN_DEBUG "LEB %d:%d, pad %d bytes\n", lnum, offs, pad_len); - buf += pad_len; + p += pad_len; len -= pad_len; continue; } @@ -1898,7 +1915,7 @@ static void dump_lpt_leb(const struct ubifs_info *c, int lnum) break; } - node_type = get_lpt_node_type(c, buf, &node_num); + node_type = get_lpt_node_type(c, p, &node_num); switch (node_type) { case UBIFS_LPT_PNODE: { @@ -1923,7 +1940,7 @@ static void dump_lpt_leb(const struct ubifs_info *c, int lnum) else printk(KERN_DEBUG "LEB %d:%d, nnode, ", lnum, offs); - err = ubifs_unpack_nnode(c, buf, &nnode); + err = ubifs_unpack_nnode(c, p, &nnode); for (i = 0; i < UBIFS_LPT_FANOUT; i++) { printk(KERN_CONT "%d:%d", nnode.nbranch[i].lnum, nnode.nbranch[i].offs); @@ -1944,15 +1961,18 @@ static void dump_lpt_leb(const struct ubifs_info *c, int lnum) break; default: ubifs_err("LPT node type %d not recognized", node_type); - return; + goto out; } - buf += node_len; + p += node_len; len -= node_len; } printk(KERN_DEBUG "(pid %d) finish dumping LEB %d\n", current->pid, lnum); +out: + vfree(buf); + return; } /** diff --git a/fs/ubifs/orphan.c b/fs/ubifs/orphan.c index 82009c74b6a3..2cdbd31641d7 100644 --- a/fs/ubifs/orphan.c +++ b/fs/ubifs/orphan.c @@ -892,15 +892,22 @@ static int dbg_read_orphans(struct check_info *ci, struct ubifs_scan_leb *sleb) static int dbg_scan_orphans(struct ubifs_info *c, struct check_info *ci) { int lnum, err = 0; + void *buf; /* Check no-orphans flag and skip this if no orphans */ if (c->no_orphs) return 0; + buf = __vmalloc(c->leb_size, GFP_KERNEL | GFP_NOFS, PAGE_KERNEL); + if (!buf) { + ubifs_err("cannot allocate memory to check orphans"); + return 0; + } + for (lnum = c->orph_first; lnum <= c->orph_last; lnum++) { struct ubifs_scan_leb *sleb; - sleb = ubifs_scan(c, lnum, 0, c->dbg->buf, 0); + sleb = ubifs_scan(c, lnum, 0, buf, 0); if (IS_ERR(sleb)) { err = PTR_ERR(sleb); break; @@ -912,6 +919,7 @@ static int dbg_scan_orphans(struct ubifs_info *c, struct check_info *ci) break; } + vfree(buf); return err; } diff --git a/fs/ubifs/recovery.c b/fs/ubifs/recovery.c index 77e9b874b6c2..936f2cbfe6b6 100644 --- a/fs/ubifs/recovery.c +++ b/fs/ubifs/recovery.c @@ -28,6 +28,23 @@ * UBIFS always cleans away all remnants of an unclean un-mount, so that * errors do not accumulate. However UBIFS defers recovery if it is mounted * read-only, and the flash is not modified in that case. + * + * The general UBIFS approach to the recovery is that it recovers from + * corruptions which could be caused by power cuts, but it refuses to recover + * from corruption caused by other reasons. And UBIFS tries to distinguish + * between these 2 reasons of corruptions and silently recover in the former + * case and loudly complain in the latter case. + * + * UBIFS writes only to erased LEBs, so it writes only to the flash space + * containing only 0xFFs. UBIFS also always writes strictly from the beginning + * of the LEB to the end. And UBIFS assumes that the underlying flash media + * writes in @c->max_write_size bytes at a time. + * + * Hence, if UBIFS finds a corrupted node at offset X, it expects only the min. + * I/O unit corresponding to offset X to contain corrupted data, all the + * following min. I/O units have to contain empty space (all 0xFFs). If this is + * not true, the corruption cannot be the result of a power cut, and UBIFS + * refuses to mount. */ #include <linux/crc32.h> @@ -362,8 +379,9 @@ int ubifs_write_rcvrd_mst_node(struct ubifs_info *c) * @offs: offset to check * * This function returns %1 if @offs was in the last write to the LEB whose data - * is in @buf, otherwise %0 is returned. The determination is made by checking - * for subsequent empty space starting from the next @c->min_io_size boundary. + * is in @buf, otherwise %0 is returned. The determination is made by checking + * for subsequent empty space starting from the next @c->max_write_size + * boundary. */ static int is_last_write(const struct ubifs_info *c, void *buf, int offs) { @@ -371,10 +389,10 @@ static int is_last_write(const struct ubifs_info *c, void *buf, int offs) uint8_t *p; /* - * Round up to the next @c->min_io_size boundary i.e. @offs is in the - * last wbuf written. After that should be empty space. + * Round up to the next @c->max_write_size boundary i.e. @offs is in + * the last wbuf written. After that should be empty space. */ - empty_offs = ALIGN(offs + 1, c->min_io_size); + empty_offs = ALIGN(offs + 1, c->max_write_size); check_len = c->leb_size - empty_offs; p = buf + empty_offs - offs; return is_empty(p, check_len); @@ -429,7 +447,7 @@ static int no_more_nodes(const struct ubifs_info *c, void *buf, int len, int skip, dlen = le32_to_cpu(ch->len); /* Check for empty space after the corrupt node's common header */ - skip = ALIGN(offs + UBIFS_CH_SZ, c->min_io_size) - offs; + skip = ALIGN(offs + UBIFS_CH_SZ, c->max_write_size) - offs; if (is_empty(buf + skip, len - skip)) return 1; /* @@ -441,7 +459,7 @@ static int no_more_nodes(const struct ubifs_info *c, void *buf, int len, return 0; } /* Now we know the corrupt node's length we can skip over it */ - skip = ALIGN(offs + dlen, c->min_io_size) - offs; + skip = ALIGN(offs + dlen, c->max_write_size) - offs; /* After which there should be empty space */ if (is_empty(buf + skip, len - skip)) return 1; @@ -671,10 +689,14 @@ struct ubifs_scan_leb *ubifs_recover_leb(struct ubifs_info *c, int lnum, } else { int corruption = first_non_ff(buf, len); + /* + * See header comment for this file for more + * explanations about the reasons we have this check. + */ ubifs_err("corrupt empty space LEB %d:%d, corruption " "starts at %d", lnum, offs, corruption); /* Make sure we dump interesting non-0xFF data */ - offs = corruption; + offs += corruption; buf += corruption; goto corrupted; } @@ -836,12 +858,8 @@ struct ubifs_scan_leb *ubifs_recover_log_leb(struct ubifs_info *c, int lnum, static int recover_head(const struct ubifs_info *c, int lnum, int offs, void *sbuf) { - int len, err; + int len = c->max_write_size, err; - if (c->min_io_size > 1) - len = c->min_io_size; - else - len = 512; if (offs + len > c->leb_size) len = c->leb_size - offs; diff --git a/fs/ubifs/scan.c b/fs/ubifs/scan.c index 3e1ee57dbeaa..36216b46f772 100644 --- a/fs/ubifs/scan.c +++ b/fs/ubifs/scan.c @@ -328,7 +328,7 @@ struct ubifs_scan_leb *ubifs_scan(const struct ubifs_info *c, int lnum, if (!quiet) ubifs_err("empty space starts at non-aligned offset %d", offs); - goto corrupted;; + goto corrupted; } ubifs_end_scan(c, sleb, lnum, offs); diff --git a/fs/ubifs/super.c b/fs/ubifs/super.c index 6e11c2975dcf..e5dc1e120e8d 100644 --- a/fs/ubifs/super.c +++ b/fs/ubifs/super.c @@ -512,9 +512,12 @@ static int init_constants_early(struct ubifs_info *c) c->leb_cnt = c->vi.size; c->leb_size = c->vi.usable_leb_size; + c->leb_start = c->di.leb_start; c->half_leb_size = c->leb_size / 2; c->min_io_size = c->di.min_io_size; c->min_io_shift = fls(c->min_io_size) - 1; + c->max_write_size = c->di.max_write_size; + c->max_write_shift = fls(c->max_write_size) - 1; if (c->leb_size < UBIFS_MIN_LEB_SZ) { ubifs_err("too small LEBs (%d bytes), min. is %d bytes", @@ -534,6 +537,18 @@ static int init_constants_early(struct ubifs_info *c) } /* + * Maximum write size has to be greater or equivalent to min. I/O + * size, and be multiple of min. I/O size. + */ + if (c->max_write_size < c->min_io_size || + c->max_write_size % c->min_io_size || + !is_power_of_2(c->max_write_size)) { + ubifs_err("bad write buffer size %d for %d min. I/O unit", + c->max_write_size, c->min_io_size); + return -EINVAL; + } + + /* * UBIFS aligns all node to 8-byte boundary, so to make function in * io.c simpler, assume minimum I/O unit size to be 8 bytes if it is * less than 8. @@ -541,6 +556,10 @@ static int init_constants_early(struct ubifs_info *c) if (c->min_io_size < 8) { c->min_io_size = 8; c->min_io_shift = 3; + if (c->max_write_size < c->min_io_size) { + c->max_write_size = c->min_io_size; + c->max_write_shift = c->min_io_shift; + } } c->ref_node_alsz = ALIGN(UBIFS_REF_NODE_SZ, c->min_io_size); @@ -1202,11 +1221,14 @@ static int mount_ubifs(struct ubifs_info *c) if (c->bulk_read == 1) bu_init(c); - /* - * We have to check all CRCs, even for data nodes, when we mount the FS - * (specifically, when we are replaying). - */ - c->always_chk_crc = 1; + if (!c->ro_mount) { + c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ, + GFP_KERNEL); + if (!c->write_reserve_buf) + goto out_free; + } + + c->mounting = 1; err = ubifs_read_superblock(c); if (err) @@ -1382,7 +1404,7 @@ static int mount_ubifs(struct ubifs_info *c) if (err) goto out_infos; - c->always_chk_crc = 0; + c->mounting = 0; ubifs_msg("mounted UBI device %d, volume %d, name \"%s\"", c->vi.ubi_num, c->vi.vol_id, c->vi.name); @@ -1403,6 +1425,7 @@ static int mount_ubifs(struct ubifs_info *c) dbg_msg("compiled on: " __DATE__ " at " __TIME__); dbg_msg("min. I/O unit size: %d bytes", c->min_io_size); + dbg_msg("max. write size: %d bytes", c->max_write_size); dbg_msg("LEB size: %d bytes (%d KiB)", c->leb_size, c->leb_size >> 10); dbg_msg("data journal heads: %d", @@ -1432,9 +1455,9 @@ static int mount_ubifs(struct ubifs_info *c) UBIFS_TRUN_NODE_SZ, UBIFS_SB_NODE_SZ, UBIFS_MST_NODE_SZ); dbg_msg("node sizes: ref %zu, cmt. start %zu, orph %zu", UBIFS_REF_NODE_SZ, UBIFS_CS_NODE_SZ, UBIFS_ORPH_NODE_SZ); - dbg_msg("max. node sizes: data %zu, inode %zu dentry %zu", + dbg_msg("max. node sizes: data %zu, inode %zu dentry %zu, idx %d", UBIFS_MAX_DATA_NODE_SZ, UBIFS_MAX_INO_NODE_SZ, - UBIFS_MAX_DENT_NODE_SZ); + UBIFS_MAX_DENT_NODE_SZ, ubifs_idx_node_sz(c, c->fanout)); dbg_msg("dead watermark: %d", c->dead_wm); dbg_msg("dark watermark: %d", c->dark_wm); dbg_msg("LEB overhead: %d", c->leb_overhead); @@ -1474,6 +1497,7 @@ out_wbufs: out_cbuf: kfree(c->cbuf); out_free: + kfree(c->write_reserve_buf); kfree(c->bu.buf); vfree(c->ileb_buf); vfree(c->sbuf); @@ -1512,6 +1536,7 @@ static void ubifs_umount(struct ubifs_info *c) kfree(c->cbuf); kfree(c->rcvrd_mst_node); kfree(c->mst_node); + kfree(c->write_reserve_buf); kfree(c->bu.buf); vfree(c->ileb_buf); vfree(c->sbuf); @@ -1543,7 +1568,6 @@ static int ubifs_remount_rw(struct ubifs_info *c) mutex_lock(&c->umount_mutex); dbg_save_space_info(c); c->remounting_rw = 1; - c->always_chk_crc = 1; err = check_free_space(c); if (err) @@ -1598,6 +1622,10 @@ static int ubifs_remount_rw(struct ubifs_info *c) goto out; } + c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ, GFP_KERNEL); + if (!c->write_reserve_buf) + goto out; + err = ubifs_lpt_init(c, 0, 1); if (err) goto out; @@ -1650,7 +1678,6 @@ static int ubifs_remount_rw(struct ubifs_info *c) dbg_gen("re-mounted read-write"); c->ro_mount = 0; c->remounting_rw = 0; - c->always_chk_crc = 0; err = dbg_check_space_info(c); mutex_unlock(&c->umount_mutex); return err; @@ -1663,11 +1690,12 @@ out: c->bgt = NULL; } free_wbufs(c); + kfree(c->write_reserve_buf); + c->write_reserve_buf = NULL; vfree(c->ileb_buf); c->ileb_buf = NULL; ubifs_lpt_free(c, 1); c->remounting_rw = 0; - c->always_chk_crc = 0; mutex_unlock(&c->umount_mutex); return err; } @@ -1707,6 +1735,8 @@ static void ubifs_remount_ro(struct ubifs_info *c) free_wbufs(c); vfree(c->orph_buf); c->orph_buf = NULL; + kfree(c->write_reserve_buf); + c->write_reserve_buf = NULL; vfree(c->ileb_buf); c->ileb_buf = NULL; ubifs_lpt_free(c, 1); @@ -1937,6 +1967,7 @@ static int ubifs_fill_super(struct super_block *sb, void *data, int silent) mutex_init(&c->mst_mutex); mutex_init(&c->umount_mutex); mutex_init(&c->bu_mutex); + mutex_init(&c->write_reserve_mutex); init_waitqueue_head(&c->cmt_wq); c->buds = RB_ROOT; c->old_idx = RB_ROOT; @@ -1954,6 +1985,7 @@ static int ubifs_fill_super(struct super_block *sb, void *data, int silent) INIT_LIST_HEAD(&c->old_buds); INIT_LIST_HEAD(&c->orph_list); INIT_LIST_HEAD(&c->orph_new); + c->no_chk_data_crc = 1; c->vfs_sb = sb; c->highest_inum = UBIFS_FIRST_INO; diff --git a/fs/ubifs/tnc.c b/fs/ubifs/tnc.c index ad9cf0133622..de485979ca39 100644 --- a/fs/ubifs/tnc.c +++ b/fs/ubifs/tnc.c @@ -447,8 +447,11 @@ static int tnc_read_node_nm(struct ubifs_info *c, struct ubifs_zbranch *zbr, * * Note, this function does not check CRC of data nodes if @c->no_chk_data_crc * is true (it is controlled by corresponding mount option). However, if - * @c->always_chk_crc is true, @c->no_chk_data_crc is ignored and CRC is always - * checked. + * @c->mounting or @c->remounting_rw is true (we are mounting or re-mounting to + * R/W mode), @c->no_chk_data_crc is ignored and CRC is checked. This is + * because during mounting or re-mounting from R/O mode to R/W mode we may read + * journal nodes (when replying the journal or doing the recovery) and the + * journal nodes may potentially be corrupted, so checking is required. */ static int try_read_node(const struct ubifs_info *c, void *buf, int type, int len, int lnum, int offs) @@ -476,7 +479,8 @@ static int try_read_node(const struct ubifs_info *c, void *buf, int type, if (node_len != len) return 0; - if (type == UBIFS_DATA_NODE && !c->always_chk_crc && c->no_chk_data_crc) + if (type == UBIFS_DATA_NODE && c->no_chk_data_crc && !c->mounting && + !c->remounting_rw) return 1; crc = crc32(UBIFS_CRC32_INIT, buf + 8, node_len - 8); diff --git a/fs/ubifs/ubifs.h b/fs/ubifs/ubifs.h index 381d6b207a52..8c40ad3c6721 100644 --- a/fs/ubifs/ubifs.h +++ b/fs/ubifs/ubifs.h @@ -151,6 +151,12 @@ */ #define WORST_COMPR_FACTOR 2 +/* + * How much memory is needed for a buffer where we comress a data node. + */ +#define COMPRESSED_DATA_NODE_BUF_SZ \ + (UBIFS_DATA_NODE_SZ + UBIFS_BLOCK_SIZE * WORST_COMPR_FACTOR) + /* Maximum expected tree height for use by bottom_up_buf */ #define BOTTOM_UP_HEIGHT 64 @@ -646,6 +652,7 @@ typedef int (*ubifs_lpt_scan_callback)(struct ubifs_info *c, * @offs: write-buffer offset in this logical eraseblock * @avail: number of bytes available in the write-buffer * @used: number of used bytes in the write-buffer + * @size: write-buffer size (in [@c->min_io_size, @c->max_write_size] range) * @dtype: type of data stored in this LEB (%UBI_LONGTERM, %UBI_SHORTTERM, * %UBI_UNKNOWN) * @jhead: journal head the mutex belongs to (note, needed only to shut lockdep @@ -680,6 +687,7 @@ struct ubifs_wbuf { int offs; int avail; int used; + int size; int dtype; int jhead; int (*sync_callback)(struct ubifs_info *c, int lnum, int free, int pad); @@ -1003,6 +1011,11 @@ struct ubifs_debug_info; * @bu_mutex: protects the pre-allocated bulk-read buffer and @c->bu * @bu: pre-allocated bulk-read information * + * @write_reserve_mutex: protects @write_reserve_buf + * @write_reserve_buf: on the write path we allocate memory, which might + * sometimes be unavailable, in which case we use this + * write reserve buffer + * * @log_lebs: number of logical eraseblocks in the log * @log_bytes: log size in bytes * @log_last: last LEB of the log @@ -1024,7 +1037,12 @@ struct ubifs_debug_info; * * @min_io_size: minimal input/output unit size * @min_io_shift: number of bits in @min_io_size minus one + * @max_write_size: maximum amount of bytes the underlying flash can write at a + * time (MTD write buffer size) + * @max_write_shift: number of bits in @max_write_size minus one * @leb_size: logical eraseblock size in bytes + * @leb_start: starting offset of logical eraseblocks within physical + * eraseblocks * @half_leb_size: half LEB size * @idx_leb_size: how many bytes of an LEB are effectively available when it is * used to store indexing nodes (@leb_size - @max_idx_node_sz) @@ -1166,22 +1184,21 @@ struct ubifs_debug_info; * @rp_uid: reserved pool user ID * @rp_gid: reserved pool group ID * - * @empty: if the UBI device is empty + * @empty: %1 if the UBI device is empty + * @need_recovery: %1 if the file-system needs recovery + * @replaying: %1 during journal replay + * @mounting: %1 while mounting + * @remounting_rw: %1 while re-mounting from R/O mode to R/W mode * @replay_tree: temporary tree used during journal replay * @replay_list: temporary list used during journal replay * @replay_buds: list of buds to replay * @cs_sqnum: sequence number of first node in the log (commit start node) * @replay_sqnum: sequence number of node currently being replayed - * @need_recovery: file-system needs recovery - * @replaying: set to %1 during journal replay * @unclean_leb_list: LEBs to recover when re-mounting R/O mounted FS to R/W * mode * @rcvrd_mst_node: recovered master node to write when re-mounting R/O mounted * FS to R/W mode * @size_tree: inode size information for recovery - * @remounting_rw: set while re-mounting from R/O mode to R/W mode - * @always_chk_crc: always check CRCs (while mounting and remounting to R/W - * mode) * @mount_opts: UBIFS-specific mount options * * @dbg: debugging-related information @@ -1250,6 +1267,9 @@ struct ubifs_info { struct mutex bu_mutex; struct bu_info bu; + struct mutex write_reserve_mutex; + void *write_reserve_buf; + int log_lebs; long long log_bytes; int log_last; @@ -1271,7 +1291,10 @@ struct ubifs_info { int min_io_size; int min_io_shift; + int max_write_size; + int max_write_shift; int leb_size; + int leb_start; int half_leb_size; int idx_leb_size; int leb_cnt; @@ -1402,19 +1425,19 @@ struct ubifs_info { gid_t rp_gid; /* The below fields are used only during mounting and re-mounting */ - int empty; + unsigned int empty:1; + unsigned int need_recovery:1; + unsigned int replaying:1; + unsigned int mounting:1; + unsigned int remounting_rw:1; struct rb_root replay_tree; struct list_head replay_list; struct list_head replay_buds; unsigned long long cs_sqnum; unsigned long long replay_sqnum; - int need_recovery; - int replaying; struct list_head unclean_leb_list; struct ubifs_mst_node *rcvrd_mst_node; struct rb_root size_tree; - int remounting_rw; - int always_chk_crc; struct ubifs_mount_opts mount_opts; #ifdef CONFIG_UBIFS_FS_DEBUG |