summaryrefslogtreecommitdiff
path: root/fs/jbd2
diff options
context:
space:
mode:
authorTheodore Ts'o <tytso@mit.edu>2015-06-03 16:32:39 +0300
committerTheodore Ts'o <tytso@mit.edu>2015-06-03 16:32:39 +0300
commit3dbb5eb9a3aa04f40e551338eee5e8d06f352fe8 (patch)
treec84bc425081af46b5692e437aa258adb0fe60846 /fs/jbd2
parente298e73bd766768707a7af440691ce2f418f5acc (diff)
downloadlinux-3dbb5eb9a3aa04f40e551338eee5e8d06f352fe8.tar.xz
ext4 crypto: allocate bounce pages using GFP_NOWAIT
Previously we allocated bounce pages using a combination of alloc_page() and mempool_alloc() with the __GFP_WAIT bit set. Instead, use mempool_alloc() with GFP_NOWAIT. The mempool_alloc() function will try using alloc_pages() initially, and then only use the mempool reserve of pages if alloc_pages() is unable to fulfill the request. This minimizes the the impact on the mm layer when we need to do a large amount of writeback of encrypted files, as Jaeguk Kim had reported that under a heavy fio workload on a system with restricted amounts memory (which unfortunately, includes many mobile handsets), he had observed the the OOM killer getting triggered several times. Using GFP_NOWAIT If the mempool_alloc() function fails, we will retry the page writeback at a later time; the function of the mempool is to ensure that we can writeback at least 32 pages at a time, so we can more efficiently dispatch I/O under high memory pressure situations. In the future we should make this be a tunable so we can determine the best tradeoff between permanently sequestering memory and the ability to quickly launder pages so we can free up memory quickly when necessary. Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Diffstat (limited to 'fs/jbd2')
0 files changed, 0 insertions, 0 deletions