summaryrefslogtreecommitdiff
path: root/fs/crypto
diff options
context:
space:
mode:
authorEric Biggers <ebiggers@google.com>2017-04-07 20:58:37 +0300
committerTheodore Ts'o <tytso@mit.edu>2017-05-04 18:43:17 +0300
commit272f98f6846277378e1758a49a49d7bf39343c02 (patch)
tree91d4554f42078f0840cdc0977fd775087f56703d /fs/crypto
parent960e6994ad9cf10ddd4d3680a2d6cf5159c93a83 (diff)
downloadlinux-272f98f6846277378e1758a49a49d7bf39343c02.tar.xz
fscrypt: fix context consistency check when key(s) unavailable
To mitigate some types of offline attacks, filesystem encryption is designed to enforce that all files in an encrypted directory tree use the same encryption policy (i.e. the same encryption context excluding the nonce). However, the fscrypt_has_permitted_context() function which enforces this relies on comparing struct fscrypt_info's, which are only available when we have the encryption keys. This can cause two incorrect behaviors: 1. If we have the parent directory's key but not the child's key, or vice versa, then fscrypt_has_permitted_context() returned false, causing applications to see EPERM or ENOKEY. This is incorrect if the encryption contexts are in fact consistent. Although we'd normally have either both keys or neither key in that case since the master_key_descriptors would be the same, this is not guaranteed because keys can be added or removed from keyrings at any time. 2. If we have neither the parent's key nor the child's key, then fscrypt_has_permitted_context() returned true, causing applications to see no error (or else an error for some other reason). This is incorrect if the encryption contexts are in fact inconsistent, since in that case we should deny access. To fix this, retrieve and compare the fscrypt_contexts if we are unable to set up both fscrypt_infos. While this slightly hurts performance when accessing an encrypted directory tree without the key, this isn't a case we really need to be optimizing for; access *with* the key is much more important. Furthermore, the performance hit is barely noticeable given that we are already retrieving the fscrypt_context and doing two keyring searches in fscrypt_get_encryption_info(). If we ever actually wanted to optimize this case we might start by caching the fscrypt_contexts. Cc: stable@vger.kernel.org # 4.0+ Signed-off-by: Eric Biggers <ebiggers@google.com> Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Diffstat (limited to 'fs/crypto')
-rw-r--r--fs/crypto/policy.c87
1 files changed, 68 insertions, 19 deletions
diff --git a/fs/crypto/policy.c b/fs/crypto/policy.c
index d71ec3780d0c..210976e7a269 100644
--- a/fs/crypto/policy.c
+++ b/fs/crypto/policy.c
@@ -137,27 +137,61 @@ int fscrypt_ioctl_get_policy(struct file *filp, void __user *arg)
}
EXPORT_SYMBOL(fscrypt_ioctl_get_policy);
+/**
+ * fscrypt_has_permitted_context() - is a file's encryption policy permitted
+ * within its directory?
+ *
+ * @parent: inode for parent directory
+ * @child: inode for file being looked up, opened, or linked into @parent
+ *
+ * Filesystems must call this before permitting access to an inode in a
+ * situation where the parent directory is encrypted (either before allowing
+ * ->lookup() to succeed, or for a regular file before allowing it to be opened)
+ * and before any operation that involves linking an inode into an encrypted
+ * directory, including link, rename, and cross rename. It enforces the
+ * constraint that within a given encrypted directory tree, all files use the
+ * same encryption policy. The pre-access check is needed to detect potentially
+ * malicious offline violations of this constraint, while the link and rename
+ * checks are needed to prevent online violations of this constraint.
+ *
+ * Return: 1 if permitted, 0 if forbidden. If forbidden, the caller must fail
+ * the filesystem operation with EPERM.
+ */
int fscrypt_has_permitted_context(struct inode *parent, struct inode *child)
{
- struct fscrypt_info *parent_ci, *child_ci;
+ const struct fscrypt_operations *cops = parent->i_sb->s_cop;
+ const struct fscrypt_info *parent_ci, *child_ci;
+ struct fscrypt_context parent_ctx, child_ctx;
int res;
- if ((parent == NULL) || (child == NULL)) {
- printk(KERN_ERR "parent %p child %p\n", parent, child);
- BUG_ON(1);
- }
-
/* No restrictions on file types which are never encrypted */
if (!S_ISREG(child->i_mode) && !S_ISDIR(child->i_mode) &&
!S_ISLNK(child->i_mode))
return 1;
- /* no restrictions if the parent directory is not encrypted */
- if (!parent->i_sb->s_cop->is_encrypted(parent))
+ /* No restrictions if the parent directory is unencrypted */
+ if (!cops->is_encrypted(parent))
return 1;
- /* if the child directory is not encrypted, this is always a problem */
- if (!parent->i_sb->s_cop->is_encrypted(child))
+
+ /* Encrypted directories must not contain unencrypted files */
+ if (!cops->is_encrypted(child))
return 0;
+
+ /*
+ * Both parent and child are encrypted, so verify they use the same
+ * encryption policy. Compare the fscrypt_info structs if the keys are
+ * available, otherwise retrieve and compare the fscrypt_contexts.
+ *
+ * Note that the fscrypt_context retrieval will be required frequently
+ * when accessing an encrypted directory tree without the key.
+ * Performance-wise this is not a big deal because we already don't
+ * really optimize for file access without the key (to the extent that
+ * such access is even possible), given that any attempted access
+ * already causes a fscrypt_context retrieval and keyring search.
+ *
+ * In any case, if an unexpected error occurs, fall back to "forbidden".
+ */
+
res = fscrypt_get_encryption_info(parent);
if (res)
return 0;
@@ -166,17 +200,32 @@ int fscrypt_has_permitted_context(struct inode *parent, struct inode *child)
return 0;
parent_ci = parent->i_crypt_info;
child_ci = child->i_crypt_info;
- if (!parent_ci && !child_ci)
- return 1;
- if (!parent_ci || !child_ci)
+
+ if (parent_ci && child_ci) {
+ return memcmp(parent_ci->ci_master_key, child_ci->ci_master_key,
+ FS_KEY_DESCRIPTOR_SIZE) == 0 &&
+ (parent_ci->ci_data_mode == child_ci->ci_data_mode) &&
+ (parent_ci->ci_filename_mode ==
+ child_ci->ci_filename_mode) &&
+ (parent_ci->ci_flags == child_ci->ci_flags);
+ }
+
+ res = cops->get_context(parent, &parent_ctx, sizeof(parent_ctx));
+ if (res != sizeof(parent_ctx))
+ return 0;
+
+ res = cops->get_context(child, &child_ctx, sizeof(child_ctx));
+ if (res != sizeof(child_ctx))
return 0;
- return (memcmp(parent_ci->ci_master_key,
- child_ci->ci_master_key,
- FS_KEY_DESCRIPTOR_SIZE) == 0 &&
- (parent_ci->ci_data_mode == child_ci->ci_data_mode) &&
- (parent_ci->ci_filename_mode == child_ci->ci_filename_mode) &&
- (parent_ci->ci_flags == child_ci->ci_flags));
+ return memcmp(parent_ctx.master_key_descriptor,
+ child_ctx.master_key_descriptor,
+ FS_KEY_DESCRIPTOR_SIZE) == 0 &&
+ (parent_ctx.contents_encryption_mode ==
+ child_ctx.contents_encryption_mode) &&
+ (parent_ctx.filenames_encryption_mode ==
+ child_ctx.filenames_encryption_mode) &&
+ (parent_ctx.flags == child_ctx.flags);
}
EXPORT_SYMBOL(fscrypt_has_permitted_context);