diff options
author | Christoph Hellwig <hch@lst.de> | 2010-08-11 19:06:24 +0400 |
---|---|---|
committer | Al Viro <viro@zeniv.linux.org.uk> | 2010-08-18 09:09:01 +0400 |
commit | 9cb569d601e0b93e01c20a22872270ec663b75f6 (patch) | |
tree | 80b2568fae48018806e82f8884062dae8a5494ae /fs/buffer.c | |
parent | 87e99511ea54510ffb60b98001d108794d5037f8 (diff) | |
download | linux-9cb569d601e0b93e01c20a22872270ec663b75f6.tar.xz |
remove SWRITE* I/O types
These flags aren't real I/O types, but tell ll_rw_block to always
lock the buffer instead of giving up on a failed trylock.
Instead add a new write_dirty_buffer helper that implements this semantic
and use it from the existing SWRITE* callers. Note that the ll_rw_block
code had a bug where it didn't promote WRITE_SYNC_PLUG properly, which
this patch fixes.
In the ufs code clean up the helper that used to call ll_rw_block
to mirror sync_dirty_buffer, which is the function it implements for
compound buffers.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Diffstat (limited to 'fs/buffer.c')
-rw-r--r-- | fs/buffer.c | 52 |
1 files changed, 29 insertions, 23 deletions
diff --git a/fs/buffer.c b/fs/buffer.c index 6c8ad977f3d4..3e7dca279d1c 100644 --- a/fs/buffer.c +++ b/fs/buffer.c @@ -770,11 +770,12 @@ static int fsync_buffers_list(spinlock_t *lock, struct list_head *list) spin_unlock(lock); /* * Ensure any pending I/O completes so that - * ll_rw_block() actually writes the current - * contents - it is a noop if I/O is still in - * flight on potentially older contents. + * write_dirty_buffer() actually writes the + * current contents - it is a noop if I/O is + * still in flight on potentially older + * contents. */ - ll_rw_block(SWRITE_SYNC_PLUG, 1, &bh); + write_dirty_buffer(bh, WRITE_SYNC_PLUG); /* * Kick off IO for the previous mapping. Note @@ -2949,22 +2950,21 @@ EXPORT_SYMBOL(submit_bh); /** * ll_rw_block: low-level access to block devices (DEPRECATED) - * @rw: whether to %READ or %WRITE or %SWRITE or maybe %READA (readahead) + * @rw: whether to %READ or %WRITE or maybe %READA (readahead) * @nr: number of &struct buffer_heads in the array * @bhs: array of pointers to &struct buffer_head * * ll_rw_block() takes an array of pointers to &struct buffer_heads, and * requests an I/O operation on them, either a %READ or a %WRITE. The third - * %SWRITE is like %WRITE only we make sure that the *current* data in buffers - * are sent to disk. The fourth %READA option is described in the documentation - * for generic_make_request() which ll_rw_block() calls. + * %READA option is described in the documentation for generic_make_request() + * which ll_rw_block() calls. * * This function drops any buffer that it cannot get a lock on (with the - * BH_Lock state bit) unless SWRITE is required, any buffer that appears to be - * clean when doing a write request, and any buffer that appears to be - * up-to-date when doing read request. Further it marks as clean buffers that - * are processed for writing (the buffer cache won't assume that they are - * actually clean until the buffer gets unlocked). + * BH_Lock state bit), any buffer that appears to be clean when doing a write + * request, and any buffer that appears to be up-to-date when doing read + * request. Further it marks as clean buffers that are processed for + * writing (the buffer cache won't assume that they are actually clean + * until the buffer gets unlocked). * * ll_rw_block sets b_end_io to simple completion handler that marks * the buffer up-to-date (if approriate), unlocks the buffer and wakes @@ -2980,20 +2980,13 @@ void ll_rw_block(int rw, int nr, struct buffer_head *bhs[]) for (i = 0; i < nr; i++) { struct buffer_head *bh = bhs[i]; - if (rw == SWRITE || rw == SWRITE_SYNC || rw == SWRITE_SYNC_PLUG) - lock_buffer(bh); - else if (!trylock_buffer(bh)) + if (!trylock_buffer(bh)) continue; - - if (rw == WRITE || rw == SWRITE || rw == SWRITE_SYNC || - rw == SWRITE_SYNC_PLUG) { + if (rw == WRITE) { if (test_clear_buffer_dirty(bh)) { bh->b_end_io = end_buffer_write_sync; get_bh(bh); - if (rw == SWRITE_SYNC) - submit_bh(WRITE_SYNC, bh); - else - submit_bh(WRITE, bh); + submit_bh(WRITE, bh); continue; } } else { @@ -3009,6 +3002,19 @@ void ll_rw_block(int rw, int nr, struct buffer_head *bhs[]) } EXPORT_SYMBOL(ll_rw_block); +void write_dirty_buffer(struct buffer_head *bh, int rw) +{ + lock_buffer(bh); + if (!test_clear_buffer_dirty(bh)) { + unlock_buffer(bh); + return; + } + bh->b_end_io = end_buffer_write_sync; + get_bh(bh); + submit_bh(rw, bh); +} +EXPORT_SYMBOL(write_dirty_buffer); + /* * For a data-integrity writeout, we need to wait upon any in-progress I/O * and then start new I/O and then wait upon it. The caller must have a ref on |