diff options
author | Filipe Manana <fdmanana@suse.com> | 2023-11-21 16:38:38 +0300 |
---|---|---|
committer | David Sterba <dsterba@suse.com> | 2023-12-15 22:27:02 +0300 |
commit | 7dc66abb5a47778d7db327783a0ba172b8cff0b5 (patch) | |
tree | 66fef581a2f31904aae1c15f9fdbbc7aec798132 /fs/btrfs/disk-io.c | |
parent | ebb0beca6c6a2d33f809a74bad63261651237833 (diff) | |
download | linux-7dc66abb5a47778d7db327783a0ba172b8cff0b5.tar.xz |
btrfs: use a dedicated data structure for chunk maps
Currently we abuse the extent_map structure for two purposes:
1) To actually represent extents for inodes;
2) To represent chunk mappings.
This is odd and has several disadvantages:
1) To create a chunk map, we need to do two memory allocations: one for
an extent_map structure and another one for a map_lookup structure, so
more potential for an allocation failure and more complicated code to
manage and link two structures;
2) For a chunk map we actually only use 3 fields (24 bytes) of the
respective extent map structure: the 'start' field to have the logical
start address of the chunk, the 'len' field to have the chunk's size,
and the 'orig_block_len' field to contain the chunk's stripe size.
Besides wasting a memory, it's also odd and not intuitive at all to
have the stripe size in a field named 'orig_block_len'.
We are also using 'block_len' of the extent_map structure to contain
the chunk size, so we have 2 fields for the same value, 'len' and
'block_len', which is pointless;
3) When an extent map is associated to a chunk mapping, we set the bit
EXTENT_FLAG_FS_MAPPING on its flags and then make its member named
'map_lookup' point to the associated map_lookup structure. This means
that for an extent map associated to an inode extent, we are not using
this 'map_lookup' pointer, so wasting 8 bytes (on a 64 bits platform);
4) Extent maps associated to a chunk mapping are never merged or split so
it's pointless to use the existing extent map infrastructure.
So add a dedicated data structure named 'btrfs_chunk_map' to represent
chunk mappings, this is basically the existing map_lookup structure with
some extra fields:
1) 'start' to contain the chunk logical address;
2) 'chunk_len' to contain the chunk's length;
3) 'stripe_size' for the stripe size;
4) 'rb_node' for insertion into a rb tree;
5) 'refs' for reference counting.
This way we do a single memory allocation for chunk mappings and we don't
waste memory for them with unused/unnecessary fields from an extent_map.
We also save 8 bytes from the extent_map structure by removing the
'map_lookup' pointer, so the size of struct extent_map is reduced from
144 bytes down to 136 bytes, and we can now have 30 extents map per 4K
page instead of 28.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Diffstat (limited to 'fs/btrfs/disk-io.c')
-rw-r--r-- | fs/btrfs/disk-io.c | 7 |
1 files changed, 4 insertions, 3 deletions
diff --git a/fs/btrfs/disk-io.c b/fs/btrfs/disk-io.c index 7d8d175d5a59..17ec983ea672 100644 --- a/fs/btrfs/disk-io.c +++ b/fs/btrfs/disk-io.c @@ -2720,7 +2720,8 @@ void btrfs_init_fs_info(struct btrfs_fs_info *fs_info) INIT_LIST_HEAD(&fs_info->allocated_ebs); spin_lock_init(&fs_info->eb_leak_lock); #endif - extent_map_tree_init(&fs_info->mapping_tree); + fs_info->mapping_tree = RB_ROOT_CACHED; + rwlock_init(&fs_info->mapping_tree_lock); btrfs_init_block_rsv(&fs_info->global_block_rsv, BTRFS_BLOCK_RSV_GLOBAL); btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS); @@ -3604,7 +3605,7 @@ fail_sb_buffer: btrfs_stop_all_workers(fs_info); btrfs_free_block_groups(fs_info); fail_alloc: - btrfs_mapping_tree_free(&fs_info->mapping_tree); + btrfs_mapping_tree_free(fs_info); iput(fs_info->btree_inode); fail: @@ -4387,7 +4388,7 @@ void __cold close_ctree(struct btrfs_fs_info *fs_info) iput(fs_info->btree_inode); - btrfs_mapping_tree_free(&fs_info->mapping_tree); + btrfs_mapping_tree_free(fs_info); btrfs_close_devices(fs_info->fs_devices); } |