diff options
author | Venkatesh Pallipadi <venkatesh.pallipadi@intel.com> | 2006-10-03 23:38:45 +0400 |
---|---|---|
committer | Dave Jones <davej@redhat.com> | 2006-10-16 03:57:11 +0400 |
commit | dfde5d62ed9b28b0bda676c16e8cb635df244ef2 (patch) | |
tree | 12c690189fcc7155389860beae554199456b7d3e /drivers | |
parent | a6f6e6e6ab464c9d1dff66570b78be2f66d8ba3d (diff) | |
download | linux-dfde5d62ed9b28b0bda676c16e8cb635df244ef2.tar.xz |
[CPUFREQ][8/8] acpi-cpufreq: Add support for freq feedback from hardware
Enable ondemand governor and acpi-cpufreq to use IA32_APERF and IA32_MPERF MSR
to get active frequency feedback for the last sampling interval. This will
make ondemand take right frequency decisions when hardware coordination of
frequency is going on.
Without APERF/MPERF, ondemand can take wrong decision at times due
to underlying hardware coordination or TM2.
Example:
* CPU 0 and CPU 1 are hardware cooridnated.
* CPU 1 running at highest frequency.
* CPU 0 was running at highest freq. Now ondemand reduces it to
some intermediate frequency based on utilization.
* Due to underlying hardware coordination with other CPU 1, CPU 0 continues to
run at highest frequency (as long as other CPU is at highest).
* When ondemand samples CPU 0 again next time, without actual frequency
feedback from APERF/MPERF, it will think that previous frequency change
was successful and can go to wrong target frequency. This is because it
thinks that utilization it has got this sampling interval is when running at
intermediate frequency, rather than actual highest frequency.
More information about IA32_APERF IA32_MPERF MSR:
Refer to IA-32 IntelĀ® Architecture Software Developer's Manual at
http://developer.intel.com
Signed-off-by: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
Signed-off-by: Dave Jones <davej@redhat.com>
Diffstat (limited to 'drivers')
-rw-r--r-- | drivers/cpufreq/cpufreq.c | 20 | ||||
-rw-r--r-- | drivers/cpufreq/cpufreq_ondemand.c | 9 |
2 files changed, 28 insertions, 1 deletions
diff --git a/drivers/cpufreq/cpufreq.c b/drivers/cpufreq/cpufreq.c index 86e69b7f9122..56c433e64d58 100644 --- a/drivers/cpufreq/cpufreq.c +++ b/drivers/cpufreq/cpufreq.c @@ -1274,6 +1274,26 @@ int cpufreq_driver_target(struct cpufreq_policy *policy, } EXPORT_SYMBOL_GPL(cpufreq_driver_target); +int cpufreq_driver_getavg(struct cpufreq_policy *policy) +{ + int ret = 0; + + policy = cpufreq_cpu_get(policy->cpu); + if (!policy) + return -EINVAL; + + mutex_lock(&policy->lock); + + if (cpu_online(policy->cpu) && cpufreq_driver->getavg) + ret = cpufreq_driver->getavg(policy->cpu); + + mutex_unlock(&policy->lock); + + cpufreq_cpu_put(policy); + return ret; +} +EXPORT_SYMBOL_GPL(cpufreq_driver_getavg); + /* * Locking: Must be called with the lock_cpu_hotplug() lock held * when "event" is CPUFREQ_GOV_LIMITS diff --git a/drivers/cpufreq/cpufreq_ondemand.c b/drivers/cpufreq/cpufreq_ondemand.c index bf8aa45d4f01..291cfe9400a1 100644 --- a/drivers/cpufreq/cpufreq_ondemand.c +++ b/drivers/cpufreq/cpufreq_ondemand.c @@ -393,8 +393,15 @@ static void dbs_check_cpu(struct cpu_dbs_info_s *this_dbs_info) * policy. To be safe, we focus 10 points under the threshold. */ if (load < (dbs_tuners_ins.up_threshold - 10)) { - unsigned int freq_next = (policy->cur * load) / + unsigned int freq_next, freq_cur; + + freq_cur = cpufreq_driver_getavg(policy); + if (!freq_cur) + freq_cur = policy->cur; + + freq_next = (freq_cur * load) / (dbs_tuners_ins.up_threshold - 10); + if (!dbs_tuners_ins.powersave_bias) { __cpufreq_driver_target(policy, freq_next, CPUFREQ_RELATION_L); |