diff options
author | Boris Brezillon <boris.brezillon@free-electrons.com> | 2016-06-14 12:13:18 +0300 |
---|---|---|
committer | Thierry Reding <thierry.reding@gmail.com> | 2016-07-11 09:43:21 +0300 |
commit | 3f4eb39be9b1402ea01a5c67441d0b0bcb74b4b2 (patch) | |
tree | 45f961742b2ef54d9c1e7dcc4c5119519e51e1ba /drivers/regulator/pwm-regulator.c | |
parent | fd4f99c4c3ce8ccd9b8ea751afc614a7624ecef2 (diff) | |
download | linux-3f4eb39be9b1402ea01a5c67441d0b0bcb74b4b2.tar.xz |
regulator: pwm: Switch to the atomic PWM API
Use the atomic API wherever appropriate and get rid of pwm_apply_args()
call (the reference period and polarity are now explicitly set when
calling pwm_apply_state()).
We also make use of the pwm_set_relative_duty_cycle() helper to ease
relative to absolute duty_cycle conversion.
Note that changes introduced by commit fd786fb0276a ("regulator: pwm:
Try to avoid voltage error in duty cycle calculation") are no longer
needed because pwm_set_relative_duty_cycle() takes care of all rounding
approximation for us.
Signed-off-by: Boris Brezillon <boris.brezillon@free-electrons.com>
Reviewed-by: Brian Norris <briannorris@chromium.org>
Tested-by: Brian Norris <briannorris@chromium.org>
Acked-by: Laxman Dewangan <ldewangan@nvidia.com>
Tested-by: Heiko Stuebner <heiko@sntech.de>
Acked-by: Mark Brown <broonie@kernel.org>
Signed-off-by: Thierry Reding <thierry.reding@gmail.com>
Diffstat (limited to 'drivers/regulator/pwm-regulator.c')
-rw-r--r-- | drivers/regulator/pwm-regulator.c | 38 |
1 files changed, 10 insertions, 28 deletions
diff --git a/drivers/regulator/pwm-regulator.c b/drivers/regulator/pwm-regulator.c index cb2f22c02469..7920411057af 100644 --- a/drivers/regulator/pwm-regulator.c +++ b/drivers/regulator/pwm-regulator.c @@ -63,16 +63,14 @@ static int pwm_regulator_set_voltage_sel(struct regulator_dev *rdev, unsigned selector) { struct pwm_regulator_data *drvdata = rdev_get_drvdata(rdev); - struct pwm_args pargs; - int dutycycle; + struct pwm_state pstate; int ret; - pwm_get_args(drvdata->pwm, &pargs); + pwm_init_state(drvdata->pwm, &pstate); + pwm_set_relative_duty_cycle(&pstate, + drvdata->duty_cycle_table[selector].dutycycle, 100); - dutycycle = (pargs.period * - drvdata->duty_cycle_table[selector].dutycycle) / 100; - - ret = pwm_config(drvdata->pwm, dutycycle, pargs.period); + ret = pwm_apply_state(drvdata->pwm, &pstate); if (ret) { dev_err(&rdev->dev, "Failed to configure PWM: %d\n", ret); return ret; @@ -139,35 +137,19 @@ static int pwm_regulator_set_voltage(struct regulator_dev *rdev, { struct pwm_regulator_data *drvdata = rdev_get_drvdata(rdev); unsigned int ramp_delay = rdev->constraints->ramp_delay; - struct pwm_args pargs; unsigned int req_diff = min_uV - rdev->constraints->min_uV; + struct pwm_state pstate; unsigned int diff; - unsigned int duty_pulse; - u64 req_period; - u32 rem; int old_uV = pwm_regulator_get_voltage(rdev); int ret; - pwm_get_args(drvdata->pwm, &pargs); + pwm_init_state(drvdata->pwm, &pstate); diff = rdev->constraints->max_uV - rdev->constraints->min_uV; - /* First try to find out if we get the iduty cycle time which is - * factor of PWM period time. If (request_diff_to_min * pwm_period) - * is perfect divided by voltage_range_diff then it is possible to - * get duty cycle time which is factor of PWM period. This will help - * to get output voltage nearer to requested value as there is no - * calculation loss. - */ - req_period = req_diff * pargs.period; - div_u64_rem(req_period, diff, &rem); - if (!rem) { - do_div(req_period, diff); - duty_pulse = (unsigned int)req_period; - } else { - duty_pulse = (pargs.period / 100) * ((req_diff * 100) / diff); - } + /* We pass diff as the scale to get a uV precision. */ + pwm_set_relative_duty_cycle(&pstate, req_diff, diff); - ret = pwm_config(drvdata->pwm, duty_pulse, pargs.period); + ret = pwm_apply_state(drvdata->pwm, &pstate); if (ret) { dev_err(&rdev->dev, "Failed to configure PWM: %d\n", ret); return ret; |