summaryrefslogtreecommitdiff
path: root/drivers/perf
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@linux-foundation.org>2015-09-04 02:27:01 +0300
committerLinus Torvalds <torvalds@linux-foundation.org>2015-09-04 02:27:01 +0300
commitc706c7eb0d08098f0d768aeef945d7cf1f8858b4 (patch)
treec629c9705514b70dd3e8f8dc67fa8d849871886c /drivers/perf
parent79b0691d0c1d3d4a976e3304a1512e6eca9671ec (diff)
parent3ff32a0def6e0d2e21a6c5ad1b00726592774018 (diff)
downloadlinux-c706c7eb0d08098f0d768aeef945d7cf1f8858b4.tar.xz
Merge branch 'for-linus' of git://ftp.arm.linux.org.uk/~rmk/linux-arm
Pull ARM development updates from Russell King: "Included in this update: - moving PSCI code from ARM64/ARM to drivers/ - removal of some architecture internals from global kernel view - addition of software based "privileged no access" support using the old domains register to turn off the ability for kernel loads/stores to access userspace. Only the proper accessors will be usable. - addition of early fixup support for early console - re-addition (and reimplementation) of OMAP special interconnect barrier - removal of finish_arch_switch() - only expose cpuX/online in sysfs if hotpluggable - a number of code cleanups" * 'for-linus' of git://ftp.arm.linux.org.uk/~rmk/linux-arm: (41 commits) ARM: software-based priviledged-no-access support ARM: entry: provide uaccess assembly macro hooks ARM: entry: get rid of multiple macro definitions ARM: 8421/1: smp: Collapse arch_cpu_idle_dead() into cpu_die() ARM: uaccess: provide uaccess_save_and_enable() and uaccess_restore() ARM: mm: improve do_ldrd_abort macro ARM: entry: ensure that IRQs are enabled when calling syscall_trace_exit() ARM: entry: efficiency cleanups ARM: entry: get rid of asm_trace_hardirqs_on_cond ARM: uaccess: simplify user access assembly ARM: domains: remove DOMAIN_TABLE ARM: domains: keep vectors in separate domain ARM: domains: get rid of manager mode for user domain ARM: domains: move initial domain setting value to asm/domains.h ARM: domains: provide domain_mask() ARM: domains: switch to keeping domain value in register ARM: 8419/1: dma-mapping: harmonize definition of DMA_ERROR_CODE ARM: 8417/1: refactor bitops functions with BIT_MASK() and BIT_WORD() ARM: 8416/1: Feroceon: use of_iomap() to map register base ARM: 8415/1: early fixmap support for earlycon ...
Diffstat (limited to 'drivers/perf')
-rw-r--r--drivers/perf/Kconfig15
-rw-r--r--drivers/perf/Makefile1
-rw-r--r--drivers/perf/arm_pmu.c921
3 files changed, 937 insertions, 0 deletions
diff --git a/drivers/perf/Kconfig b/drivers/perf/Kconfig
new file mode 100644
index 000000000000..d9de36ee165d
--- /dev/null
+++ b/drivers/perf/Kconfig
@@ -0,0 +1,15 @@
+#
+# Performance Monitor Drivers
+#
+
+menu "Performance monitor support"
+
+config ARM_PMU
+ depends on PERF_EVENTS && ARM
+ bool "ARM PMU framework"
+ default y
+ help
+ Say y if you want to use CPU performance monitors on ARM-based
+ systems.
+
+endmenu
diff --git a/drivers/perf/Makefile b/drivers/perf/Makefile
new file mode 100644
index 000000000000..acd2397ded94
--- /dev/null
+++ b/drivers/perf/Makefile
@@ -0,0 +1 @@
+obj-$(CONFIG_ARM_PMU) += arm_pmu.o
diff --git a/drivers/perf/arm_pmu.c b/drivers/perf/arm_pmu.c
new file mode 100644
index 000000000000..2365a32a595e
--- /dev/null
+++ b/drivers/perf/arm_pmu.c
@@ -0,0 +1,921 @@
+#undef DEBUG
+
+/*
+ * ARM performance counter support.
+ *
+ * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
+ * Copyright (C) 2010 ARM Ltd., Will Deacon <will.deacon@arm.com>
+ *
+ * This code is based on the sparc64 perf event code, which is in turn based
+ * on the x86 code.
+ */
+#define pr_fmt(fmt) "hw perfevents: " fmt
+
+#include <linux/bitmap.h>
+#include <linux/cpumask.h>
+#include <linux/export.h>
+#include <linux/kernel.h>
+#include <linux/of_device.h>
+#include <linux/perf/arm_pmu.h>
+#include <linux/platform_device.h>
+#include <linux/slab.h>
+#include <linux/spinlock.h>
+#include <linux/irq.h>
+#include <linux/irqdesc.h>
+
+#include <asm/cputype.h>
+#include <asm/irq_regs.h>
+
+static int
+armpmu_map_cache_event(const unsigned (*cache_map)
+ [PERF_COUNT_HW_CACHE_MAX]
+ [PERF_COUNT_HW_CACHE_OP_MAX]
+ [PERF_COUNT_HW_CACHE_RESULT_MAX],
+ u64 config)
+{
+ unsigned int cache_type, cache_op, cache_result, ret;
+
+ cache_type = (config >> 0) & 0xff;
+ if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
+ return -EINVAL;
+
+ cache_op = (config >> 8) & 0xff;
+ if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
+ return -EINVAL;
+
+ cache_result = (config >> 16) & 0xff;
+ if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
+ return -EINVAL;
+
+ ret = (int)(*cache_map)[cache_type][cache_op][cache_result];
+
+ if (ret == CACHE_OP_UNSUPPORTED)
+ return -ENOENT;
+
+ return ret;
+}
+
+static int
+armpmu_map_hw_event(const unsigned (*event_map)[PERF_COUNT_HW_MAX], u64 config)
+{
+ int mapping;
+
+ if (config >= PERF_COUNT_HW_MAX)
+ return -EINVAL;
+
+ mapping = (*event_map)[config];
+ return mapping == HW_OP_UNSUPPORTED ? -ENOENT : mapping;
+}
+
+static int
+armpmu_map_raw_event(u32 raw_event_mask, u64 config)
+{
+ return (int)(config & raw_event_mask);
+}
+
+int
+armpmu_map_event(struct perf_event *event,
+ const unsigned (*event_map)[PERF_COUNT_HW_MAX],
+ const unsigned (*cache_map)
+ [PERF_COUNT_HW_CACHE_MAX]
+ [PERF_COUNT_HW_CACHE_OP_MAX]
+ [PERF_COUNT_HW_CACHE_RESULT_MAX],
+ u32 raw_event_mask)
+{
+ u64 config = event->attr.config;
+ int type = event->attr.type;
+
+ if (type == event->pmu->type)
+ return armpmu_map_raw_event(raw_event_mask, config);
+
+ switch (type) {
+ case PERF_TYPE_HARDWARE:
+ return armpmu_map_hw_event(event_map, config);
+ case PERF_TYPE_HW_CACHE:
+ return armpmu_map_cache_event(cache_map, config);
+ case PERF_TYPE_RAW:
+ return armpmu_map_raw_event(raw_event_mask, config);
+ }
+
+ return -ENOENT;
+}
+
+int armpmu_event_set_period(struct perf_event *event)
+{
+ struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
+ struct hw_perf_event *hwc = &event->hw;
+ s64 left = local64_read(&hwc->period_left);
+ s64 period = hwc->sample_period;
+ int ret = 0;
+
+ if (unlikely(left <= -period)) {
+ left = period;
+ local64_set(&hwc->period_left, left);
+ hwc->last_period = period;
+ ret = 1;
+ }
+
+ if (unlikely(left <= 0)) {
+ left += period;
+ local64_set(&hwc->period_left, left);
+ hwc->last_period = period;
+ ret = 1;
+ }
+
+ /*
+ * Limit the maximum period to prevent the counter value
+ * from overtaking the one we are about to program. In
+ * effect we are reducing max_period to account for
+ * interrupt latency (and we are being very conservative).
+ */
+ if (left > (armpmu->max_period >> 1))
+ left = armpmu->max_period >> 1;
+
+ local64_set(&hwc->prev_count, (u64)-left);
+
+ armpmu->write_counter(event, (u64)(-left) & 0xffffffff);
+
+ perf_event_update_userpage(event);
+
+ return ret;
+}
+
+u64 armpmu_event_update(struct perf_event *event)
+{
+ struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
+ struct hw_perf_event *hwc = &event->hw;
+ u64 delta, prev_raw_count, new_raw_count;
+
+again:
+ prev_raw_count = local64_read(&hwc->prev_count);
+ new_raw_count = armpmu->read_counter(event);
+
+ if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
+ new_raw_count) != prev_raw_count)
+ goto again;
+
+ delta = (new_raw_count - prev_raw_count) & armpmu->max_period;
+
+ local64_add(delta, &event->count);
+ local64_sub(delta, &hwc->period_left);
+
+ return new_raw_count;
+}
+
+static void
+armpmu_read(struct perf_event *event)
+{
+ armpmu_event_update(event);
+}
+
+static void
+armpmu_stop(struct perf_event *event, int flags)
+{
+ struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
+ struct hw_perf_event *hwc = &event->hw;
+
+ /*
+ * ARM pmu always has to update the counter, so ignore
+ * PERF_EF_UPDATE, see comments in armpmu_start().
+ */
+ if (!(hwc->state & PERF_HES_STOPPED)) {
+ armpmu->disable(event);
+ armpmu_event_update(event);
+ hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
+ }
+}
+
+static void armpmu_start(struct perf_event *event, int flags)
+{
+ struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
+ struct hw_perf_event *hwc = &event->hw;
+
+ /*
+ * ARM pmu always has to reprogram the period, so ignore
+ * PERF_EF_RELOAD, see the comment below.
+ */
+ if (flags & PERF_EF_RELOAD)
+ WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
+
+ hwc->state = 0;
+ /*
+ * Set the period again. Some counters can't be stopped, so when we
+ * were stopped we simply disabled the IRQ source and the counter
+ * may have been left counting. If we don't do this step then we may
+ * get an interrupt too soon or *way* too late if the overflow has
+ * happened since disabling.
+ */
+ armpmu_event_set_period(event);
+ armpmu->enable(event);
+}
+
+static void
+armpmu_del(struct perf_event *event, int flags)
+{
+ struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
+ struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
+ struct hw_perf_event *hwc = &event->hw;
+ int idx = hwc->idx;
+
+ armpmu_stop(event, PERF_EF_UPDATE);
+ hw_events->events[idx] = NULL;
+ clear_bit(idx, hw_events->used_mask);
+ if (armpmu->clear_event_idx)
+ armpmu->clear_event_idx(hw_events, event);
+
+ perf_event_update_userpage(event);
+}
+
+static int
+armpmu_add(struct perf_event *event, int flags)
+{
+ struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
+ struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
+ struct hw_perf_event *hwc = &event->hw;
+ int idx;
+ int err = 0;
+
+ /* An event following a process won't be stopped earlier */
+ if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
+ return -ENOENT;
+
+ perf_pmu_disable(event->pmu);
+
+ /* If we don't have a space for the counter then finish early. */
+ idx = armpmu->get_event_idx(hw_events, event);
+ if (idx < 0) {
+ err = idx;
+ goto out;
+ }
+
+ /*
+ * If there is an event in the counter we are going to use then make
+ * sure it is disabled.
+ */
+ event->hw.idx = idx;
+ armpmu->disable(event);
+ hw_events->events[idx] = event;
+
+ hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
+ if (flags & PERF_EF_START)
+ armpmu_start(event, PERF_EF_RELOAD);
+
+ /* Propagate our changes to the userspace mapping. */
+ perf_event_update_userpage(event);
+
+out:
+ perf_pmu_enable(event->pmu);
+ return err;
+}
+
+static int
+validate_event(struct pmu *pmu, struct pmu_hw_events *hw_events,
+ struct perf_event *event)
+{
+ struct arm_pmu *armpmu;
+
+ if (is_software_event(event))
+ return 1;
+
+ /*
+ * Reject groups spanning multiple HW PMUs (e.g. CPU + CCI). The
+ * core perf code won't check that the pmu->ctx == leader->ctx
+ * until after pmu->event_init(event).
+ */
+ if (event->pmu != pmu)
+ return 0;
+
+ if (event->state < PERF_EVENT_STATE_OFF)
+ return 1;
+
+ if (event->state == PERF_EVENT_STATE_OFF && !event->attr.enable_on_exec)
+ return 1;
+
+ armpmu = to_arm_pmu(event->pmu);
+ return armpmu->get_event_idx(hw_events, event) >= 0;
+}
+
+static int
+validate_group(struct perf_event *event)
+{
+ struct perf_event *sibling, *leader = event->group_leader;
+ struct pmu_hw_events fake_pmu;
+
+ /*
+ * Initialise the fake PMU. We only need to populate the
+ * used_mask for the purposes of validation.
+ */
+ memset(&fake_pmu.used_mask, 0, sizeof(fake_pmu.used_mask));
+
+ if (!validate_event(event->pmu, &fake_pmu, leader))
+ return -EINVAL;
+
+ list_for_each_entry(sibling, &leader->sibling_list, group_entry) {
+ if (!validate_event(event->pmu, &fake_pmu, sibling))
+ return -EINVAL;
+ }
+
+ if (!validate_event(event->pmu, &fake_pmu, event))
+ return -EINVAL;
+
+ return 0;
+}
+
+static irqreturn_t armpmu_dispatch_irq(int irq, void *dev)
+{
+ struct arm_pmu *armpmu;
+ struct platform_device *plat_device;
+ struct arm_pmu_platdata *plat;
+ int ret;
+ u64 start_clock, finish_clock;
+
+ /*
+ * we request the IRQ with a (possibly percpu) struct arm_pmu**, but
+ * the handlers expect a struct arm_pmu*. The percpu_irq framework will
+ * do any necessary shifting, we just need to perform the first
+ * dereference.
+ */
+ armpmu = *(void **)dev;
+ plat_device = armpmu->plat_device;
+ plat = dev_get_platdata(&plat_device->dev);
+
+ start_clock = sched_clock();
+ if (plat && plat->handle_irq)
+ ret = plat->handle_irq(irq, armpmu, armpmu->handle_irq);
+ else
+ ret = armpmu->handle_irq(irq, armpmu);
+ finish_clock = sched_clock();
+
+ perf_sample_event_took(finish_clock - start_clock);
+ return ret;
+}
+
+static void
+armpmu_release_hardware(struct arm_pmu *armpmu)
+{
+ armpmu->free_irq(armpmu);
+}
+
+static int
+armpmu_reserve_hardware(struct arm_pmu *armpmu)
+{
+ int err = armpmu->request_irq(armpmu, armpmu_dispatch_irq);
+ if (err) {
+ armpmu_release_hardware(armpmu);
+ return err;
+ }
+
+ return 0;
+}
+
+static void
+hw_perf_event_destroy(struct perf_event *event)
+{
+ struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
+ atomic_t *active_events = &armpmu->active_events;
+ struct mutex *pmu_reserve_mutex = &armpmu->reserve_mutex;
+
+ if (atomic_dec_and_mutex_lock(active_events, pmu_reserve_mutex)) {
+ armpmu_release_hardware(armpmu);
+ mutex_unlock(pmu_reserve_mutex);
+ }
+}
+
+static int
+event_requires_mode_exclusion(struct perf_event_attr *attr)
+{
+ return attr->exclude_idle || attr->exclude_user ||
+ attr->exclude_kernel || attr->exclude_hv;
+}
+
+static int
+__hw_perf_event_init(struct perf_event *event)
+{
+ struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
+ struct hw_perf_event *hwc = &event->hw;
+ int mapping;
+
+ mapping = armpmu->map_event(event);
+
+ if (mapping < 0) {
+ pr_debug("event %x:%llx not supported\n", event->attr.type,
+ event->attr.config);
+ return mapping;
+ }
+
+ /*
+ * We don't assign an index until we actually place the event onto
+ * hardware. Use -1 to signify that we haven't decided where to put it
+ * yet. For SMP systems, each core has it's own PMU so we can't do any
+ * clever allocation or constraints checking at this point.
+ */
+ hwc->idx = -1;
+ hwc->config_base = 0;
+ hwc->config = 0;
+ hwc->event_base = 0;
+
+ /*
+ * Check whether we need to exclude the counter from certain modes.
+ */
+ if ((!armpmu->set_event_filter ||
+ armpmu->set_event_filter(hwc, &event->attr)) &&
+ event_requires_mode_exclusion(&event->attr)) {
+ pr_debug("ARM performance counters do not support "
+ "mode exclusion\n");
+ return -EOPNOTSUPP;
+ }
+
+ /*
+ * Store the event encoding into the config_base field.
+ */
+ hwc->config_base |= (unsigned long)mapping;
+
+ if (!is_sampling_event(event)) {
+ /*
+ * For non-sampling runs, limit the sample_period to half
+ * of the counter width. That way, the new counter value
+ * is far less likely to overtake the previous one unless
+ * you have some serious IRQ latency issues.
+ */
+ hwc->sample_period = armpmu->max_period >> 1;
+ hwc->last_period = hwc->sample_period;
+ local64_set(&hwc->period_left, hwc->sample_period);
+ }
+
+ if (event->group_leader != event) {
+ if (validate_group(event) != 0)
+ return -EINVAL;
+ }
+
+ return 0;
+}
+
+static int armpmu_event_init(struct perf_event *event)
+{
+ struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
+ int err = 0;
+ atomic_t *active_events = &armpmu->active_events;
+
+ /*
+ * Reject CPU-affine events for CPUs that are of a different class to
+ * that which this PMU handles. Process-following events (where
+ * event->cpu == -1) can be migrated between CPUs, and thus we have to
+ * reject them later (in armpmu_add) if they're scheduled on a
+ * different class of CPU.
+ */
+ if (event->cpu != -1 &&
+ !cpumask_test_cpu(event->cpu, &armpmu->supported_cpus))
+ return -ENOENT;
+
+ /* does not support taken branch sampling */
+ if (has_branch_stack(event))
+ return -EOPNOTSUPP;
+
+ if (armpmu->map_event(event) == -ENOENT)
+ return -ENOENT;
+
+ event->destroy = hw_perf_event_destroy;
+
+ if (!atomic_inc_not_zero(active_events)) {
+ mutex_lock(&armpmu->reserve_mutex);
+ if (atomic_read(active_events) == 0)
+ err = armpmu_reserve_hardware(armpmu);
+
+ if (!err)
+ atomic_inc(active_events);
+ mutex_unlock(&armpmu->reserve_mutex);
+ }
+
+ if (err)
+ return err;
+
+ err = __hw_perf_event_init(event);
+ if (err)
+ hw_perf_event_destroy(event);
+
+ return err;
+}
+
+static void armpmu_enable(struct pmu *pmu)
+{
+ struct arm_pmu *armpmu = to_arm_pmu(pmu);
+ struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
+ int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events);
+
+ /* For task-bound events we may be called on other CPUs */
+ if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
+ return;
+
+ if (enabled)
+ armpmu->start(armpmu);
+}
+
+static void armpmu_disable(struct pmu *pmu)
+{
+ struct arm_pmu *armpmu = to_arm_pmu(pmu);
+
+ /* For task-bound events we may be called on other CPUs */
+ if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
+ return;
+
+ armpmu->stop(armpmu);
+}
+
+/*
+ * In heterogeneous systems, events are specific to a particular
+ * microarchitecture, and aren't suitable for another. Thus, only match CPUs of
+ * the same microarchitecture.
+ */
+static int armpmu_filter_match(struct perf_event *event)
+{
+ struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
+ unsigned int cpu = smp_processor_id();
+ return cpumask_test_cpu(cpu, &armpmu->supported_cpus);
+}
+
+static void armpmu_init(struct arm_pmu *armpmu)
+{
+ atomic_set(&armpmu->active_events, 0);
+ mutex_init(&armpmu->reserve_mutex);
+
+ armpmu->pmu = (struct pmu) {
+ .pmu_enable = armpmu_enable,
+ .pmu_disable = armpmu_disable,
+ .event_init = armpmu_event_init,
+ .add = armpmu_add,
+ .del = armpmu_del,
+ .start = armpmu_start,
+ .stop = armpmu_stop,
+ .read = armpmu_read,
+ .filter_match = armpmu_filter_match,
+ };
+}
+
+int armpmu_register(struct arm_pmu *armpmu, int type)
+{
+ armpmu_init(armpmu);
+ pr_info("enabled with %s PMU driver, %d counters available\n",
+ armpmu->name, armpmu->num_events);
+ return perf_pmu_register(&armpmu->pmu, armpmu->name, type);
+}
+
+/* Set at runtime when we know what CPU type we are. */
+static struct arm_pmu *__oprofile_cpu_pmu;
+
+/*
+ * Despite the names, these two functions are CPU-specific and are used
+ * by the OProfile/perf code.
+ */
+const char *perf_pmu_name(void)
+{
+ if (!__oprofile_cpu_pmu)
+ return NULL;
+
+ return __oprofile_cpu_pmu->name;
+}
+EXPORT_SYMBOL_GPL(perf_pmu_name);
+
+int perf_num_counters(void)
+{
+ int max_events = 0;
+
+ if (__oprofile_cpu_pmu != NULL)
+ max_events = __oprofile_cpu_pmu->num_events;
+
+ return max_events;
+}
+EXPORT_SYMBOL_GPL(perf_num_counters);
+
+static void cpu_pmu_enable_percpu_irq(void *data)
+{
+ int irq = *(int *)data;
+
+ enable_percpu_irq(irq, IRQ_TYPE_NONE);
+}
+
+static void cpu_pmu_disable_percpu_irq(void *data)
+{
+ int irq = *(int *)data;
+
+ disable_percpu_irq(irq);
+}
+
+static void cpu_pmu_free_irq(struct arm_pmu *cpu_pmu)
+{
+ int i, irq, irqs;
+ struct platform_device *pmu_device = cpu_pmu->plat_device;
+ struct pmu_hw_events __percpu *hw_events = cpu_pmu->hw_events;
+
+ irqs = min(pmu_device->num_resources, num_possible_cpus());
+
+ irq = platform_get_irq(pmu_device, 0);
+ if (irq >= 0 && irq_is_percpu(irq)) {
+ on_each_cpu(cpu_pmu_disable_percpu_irq, &irq, 1);
+ free_percpu_irq(irq, &hw_events->percpu_pmu);
+ } else {
+ for (i = 0; i < irqs; ++i) {
+ int cpu = i;
+
+ if (cpu_pmu->irq_affinity)
+ cpu = cpu_pmu->irq_affinity[i];
+
+ if (!cpumask_test_and_clear_cpu(cpu, &cpu_pmu->active_irqs))
+ continue;
+ irq = platform_get_irq(pmu_device, i);
+ if (irq >= 0)
+ free_irq(irq, per_cpu_ptr(&hw_events->percpu_pmu, cpu));
+ }
+ }
+}
+
+static int cpu_pmu_request_irq(struct arm_pmu *cpu_pmu, irq_handler_t handler)
+{
+ int i, err, irq, irqs;
+ struct platform_device *pmu_device = cpu_pmu->plat_device;
+ struct pmu_hw_events __percpu *hw_events = cpu_pmu->hw_events;
+
+ if (!pmu_device)
+ return -ENODEV;
+
+ irqs = min(pmu_device->num_resources, num_possible_cpus());
+ if (irqs < 1) {
+ pr_warn_once("perf/ARM: No irqs for PMU defined, sampling events not supported\n");
+ return 0;
+ }
+
+ irq = platform_get_irq(pmu_device, 0);
+ if (irq >= 0 && irq_is_percpu(irq)) {
+ err = request_percpu_irq(irq, handler, "arm-pmu",
+ &hw_events->percpu_pmu);
+ if (err) {
+ pr_err("unable to request IRQ%d for ARM PMU counters\n",
+ irq);
+ return err;
+ }
+ on_each_cpu(cpu_pmu_enable_percpu_irq, &irq, 1);
+ } else {
+ for (i = 0; i < irqs; ++i) {
+ int cpu = i;
+
+ err = 0;
+ irq = platform_get_irq(pmu_device, i);
+ if (irq < 0)
+ continue;
+
+ if (cpu_pmu->irq_affinity)
+ cpu = cpu_pmu->irq_affinity[i];
+
+ /*
+ * If we have a single PMU interrupt that we can't shift,
+ * assume that we're running on a uniprocessor machine and
+ * continue. Otherwise, continue without this interrupt.
+ */
+ if (irq_set_affinity(irq, cpumask_of(cpu)) && irqs > 1) {
+ pr_warn("unable to set irq affinity (irq=%d, cpu=%u)\n",
+ irq, cpu);
+ continue;
+ }
+
+ err = request_irq(irq, handler,
+ IRQF_NOBALANCING | IRQF_NO_THREAD, "arm-pmu",
+ per_cpu_ptr(&hw_events->percpu_pmu, cpu));
+ if (err) {
+ pr_err("unable to request IRQ%d for ARM PMU counters\n",
+ irq);
+ return err;
+ }
+
+ cpumask_set_cpu(cpu, &cpu_pmu->active_irqs);
+ }
+ }
+
+ return 0;
+}
+
+/*
+ * PMU hardware loses all context when a CPU goes offline.
+ * When a CPU is hotplugged back in, since some hardware registers are
+ * UNKNOWN at reset, the PMU must be explicitly reset to avoid reading
+ * junk values out of them.
+ */
+static int cpu_pmu_notify(struct notifier_block *b, unsigned long action,
+ void *hcpu)
+{
+ int cpu = (unsigned long)hcpu;
+ struct arm_pmu *pmu = container_of(b, struct arm_pmu, hotplug_nb);
+
+ if ((action & ~CPU_TASKS_FROZEN) != CPU_STARTING)
+ return NOTIFY_DONE;
+
+ if (!cpumask_test_cpu(cpu, &pmu->supported_cpus))
+ return NOTIFY_DONE;
+
+ if (pmu->reset)
+ pmu->reset(pmu);
+ else
+ return NOTIFY_DONE;
+
+ return NOTIFY_OK;
+}
+
+static int cpu_pmu_init(struct arm_pmu *cpu_pmu)
+{
+ int err;
+ int cpu;
+ struct pmu_hw_events __percpu *cpu_hw_events;
+
+ cpu_hw_events = alloc_percpu(struct pmu_hw_events);
+ if (!cpu_hw_events)
+ return -ENOMEM;
+
+ cpu_pmu->hotplug_nb.notifier_call = cpu_pmu_notify;
+ err = register_cpu_notifier(&cpu_pmu->hotplug_nb);
+ if (err)
+ goto out_hw_events;
+
+ for_each_possible_cpu(cpu) {
+ struct pmu_hw_events *events = per_cpu_ptr(cpu_hw_events, cpu);
+ raw_spin_lock_init(&events->pmu_lock);
+ events->percpu_pmu = cpu_pmu;
+ }
+
+ cpu_pmu->hw_events = cpu_hw_events;
+ cpu_pmu->request_irq = cpu_pmu_request_irq;
+ cpu_pmu->free_irq = cpu_pmu_free_irq;
+
+ /* Ensure the PMU has sane values out of reset. */
+ if (cpu_pmu->reset)
+ on_each_cpu_mask(&cpu_pmu->supported_cpus, cpu_pmu->reset,
+ cpu_pmu, 1);
+
+ /* If no interrupts available, set the corresponding capability flag */
+ if (!platform_get_irq(cpu_pmu->plat_device, 0))
+ cpu_pmu->pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
+
+ return 0;
+
+out_hw_events:
+ free_percpu(cpu_hw_events);
+ return err;
+}
+
+static void cpu_pmu_destroy(struct arm_pmu *cpu_pmu)
+{
+ unregister_cpu_notifier(&cpu_pmu->hotplug_nb);
+ free_percpu(cpu_pmu->hw_events);
+}
+
+/*
+ * CPU PMU identification and probing.
+ */
+static int probe_current_pmu(struct arm_pmu *pmu,
+ const struct pmu_probe_info *info)
+{
+ int cpu = get_cpu();
+ unsigned int cpuid = read_cpuid_id();
+ int ret = -ENODEV;
+
+ pr_info("probing PMU on CPU %d\n", cpu);
+
+ for (; info->init != NULL; info++) {
+ if ((cpuid & info->mask) != info->cpuid)
+ continue;
+ ret = info->init(pmu);
+ break;
+ }
+
+ put_cpu();
+ return ret;
+}
+
+static int of_pmu_irq_cfg(struct arm_pmu *pmu)
+{
+ int *irqs, i = 0;
+ bool using_spi = false;
+ struct platform_device *pdev = pmu->plat_device;
+
+ irqs = kcalloc(pdev->num_resources, sizeof(*irqs), GFP_KERNEL);
+ if (!irqs)
+ return -ENOMEM;
+
+ do {
+ struct device_node *dn;
+ int cpu, irq;
+
+ /* See if we have an affinity entry */
+ dn = of_parse_phandle(pdev->dev.of_node, "interrupt-affinity", i);
+ if (!dn)
+ break;
+
+ /* Check the IRQ type and prohibit a mix of PPIs and SPIs */
+ irq = platform_get_irq(pdev, i);
+ if (irq >= 0) {
+ bool spi = !irq_is_percpu(irq);
+
+ if (i > 0 && spi != using_spi) {
+ pr_err("PPI/SPI IRQ type mismatch for %s!\n",
+ dn->name);
+ kfree(irqs);
+ return -EINVAL;
+ }
+
+ using_spi = spi;
+ }
+
+ /* Now look up the logical CPU number */
+ for_each_possible_cpu(cpu)
+ if (dn == of_cpu_device_node_get(cpu))
+ break;
+
+ if (cpu >= nr_cpu_ids) {
+ pr_warn("Failed to find logical CPU for %s\n",
+ dn->name);
+ of_node_put(dn);
+ cpumask_setall(&pmu->supported_cpus);
+ break;
+ }
+ of_node_put(dn);
+
+ /* For SPIs, we need to track the affinity per IRQ */
+ if (using_spi) {
+ if (i >= pdev->num_resources) {
+ of_node_put(dn);
+ break;
+ }
+
+ irqs[i] = cpu;
+ }
+
+ /* Keep track of the CPUs containing this PMU type */
+ cpumask_set_cpu(cpu, &pmu->supported_cpus);
+ of_node_put(dn);
+ i++;
+ } while (1);
+
+ /* If we didn't manage to parse anything, claim to support all CPUs */
+ if (cpumask_weight(&pmu->supported_cpus) == 0)
+ cpumask_setall(&pmu->supported_cpus);
+
+ /* If we matched up the IRQ affinities, use them to route the SPIs */
+ if (using_spi && i == pdev->num_resources)
+ pmu->irq_affinity = irqs;
+ else
+ kfree(irqs);
+
+ return 0;
+}
+
+int arm_pmu_device_probe(struct platform_device *pdev,
+ const struct of_device_id *of_table,
+ const struct pmu_probe_info *probe_table)
+{
+ const struct of_device_id *of_id;
+ const int (*init_fn)(struct arm_pmu *);
+ struct device_node *node = pdev->dev.of_node;
+ struct arm_pmu *pmu;
+ int ret = -ENODEV;
+
+ pmu = kzalloc(sizeof(struct arm_pmu), GFP_KERNEL);
+ if (!pmu) {
+ pr_info("failed to allocate PMU device!\n");
+ return -ENOMEM;
+ }
+
+ if (!__oprofile_cpu_pmu)
+ __oprofile_cpu_pmu = pmu;
+
+ pmu->plat_device = pdev;
+
+ if (node && (of_id = of_match_node(of_table, pdev->dev.of_node))) {
+ init_fn = of_id->data;
+
+ ret = of_pmu_irq_cfg(pmu);
+ if (!ret)
+ ret = init_fn(pmu);
+ } else {
+ ret = probe_current_pmu(pmu, probe_table);
+ cpumask_setall(&pmu->supported_cpus);
+ }
+
+ if (ret) {
+ pr_info("failed to probe PMU!\n");
+ goto out_free;
+ }
+
+ ret = cpu_pmu_init(pmu);
+ if (ret)
+ goto out_free;
+
+ ret = armpmu_register(pmu, -1);
+ if (ret)
+ goto out_destroy;
+
+ return 0;
+
+out_destroy:
+ cpu_pmu_destroy(pmu);
+out_free:
+ pr_info("failed to register PMU devices!\n");
+ kfree(pmu);
+ return ret;
+}