diff options
author | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-17 02:20:36 +0400 |
---|---|---|
committer | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-17 02:20:36 +0400 |
commit | 1da177e4c3f41524e886b7f1b8a0c1fc7321cac2 (patch) | |
tree | 0bba044c4ce775e45a88a51686b5d9f90697ea9d /drivers/net/s2io.c | |
download | linux-1da177e4c3f41524e886b7f1b8a0c1fc7321cac2.tar.xz |
Linux-2.6.12-rc2v2.6.12-rc2
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!
Diffstat (limited to 'drivers/net/s2io.c')
-rw-r--r-- | drivers/net/s2io.c | 4950 |
1 files changed, 4950 insertions, 0 deletions
diff --git a/drivers/net/s2io.c b/drivers/net/s2io.c new file mode 100644 index 000000000000..9c224eba057d --- /dev/null +++ b/drivers/net/s2io.c @@ -0,0 +1,4950 @@ +/************************************************************************ + * s2io.c: A Linux PCI-X Ethernet driver for S2IO 10GbE Server NIC + * Copyright(c) 2002-2005 Neterion Inc. + + * This software may be used and distributed according to the terms of + * the GNU General Public License (GPL), incorporated herein by reference. + * Drivers based on or derived from this code fall under the GPL and must + * retain the authorship, copyright and license notice. This file is not + * a complete program and may only be used when the entire operating + * system is licensed under the GPL. + * See the file COPYING in this distribution for more information. + * + * Credits: + * Jeff Garzik : For pointing out the improper error condition + * check in the s2io_xmit routine and also some + * issues in the Tx watch dog function. Also for + * patiently answering all those innumerable + * questions regaring the 2.6 porting issues. + * Stephen Hemminger : Providing proper 2.6 porting mechanism for some + * macros available only in 2.6 Kernel. + * Francois Romieu : For pointing out all code part that were + * deprecated and also styling related comments. + * Grant Grundler : For helping me get rid of some Architecture + * dependent code. + * Christopher Hellwig : Some more 2.6 specific issues in the driver. + * + * The module loadable parameters that are supported by the driver and a brief + * explaination of all the variables. + * rx_ring_num : This can be used to program the number of receive rings used + * in the driver. + * rx_ring_len: This defines the number of descriptors each ring can have. This + * is also an array of size 8. + * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver. + * tx_fifo_len: This too is an array of 8. Each element defines the number of + * Tx descriptors that can be associated with each corresponding FIFO. + * in PCI Configuration space. + ************************************************************************/ + +#include <linux/config.h> +#include <linux/module.h> +#include <linux/types.h> +#include <linux/errno.h> +#include <linux/ioport.h> +#include <linux/pci.h> +#include <linux/kernel.h> +#include <linux/netdevice.h> +#include <linux/etherdevice.h> +#include <linux/skbuff.h> +#include <linux/init.h> +#include <linux/delay.h> +#include <linux/stddef.h> +#include <linux/ioctl.h> +#include <linux/timex.h> +#include <linux/sched.h> +#include <linux/ethtool.h> +#include <linux/version.h> +#include <linux/workqueue.h> + +#include <asm/io.h> +#include <asm/system.h> +#include <asm/uaccess.h> + +/* local include */ +#include "s2io.h" +#include "s2io-regs.h" + +/* S2io Driver name & version. */ +static char s2io_driver_name[] = "s2io"; +static char s2io_driver_version[] = "Version 1.7.7.1"; + +/* + * Cards with following subsystem_id have a link state indication + * problem, 600B, 600C, 600D, 640B, 640C and 640D. + * macro below identifies these cards given the subsystem_id. + */ +#define CARDS_WITH_FAULTY_LINK_INDICATORS(subid) \ + (((subid >= 0x600B) && (subid <= 0x600D)) || \ + ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0 + +#define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \ + ADAPTER_STATUS_RMAC_LOCAL_FAULT))) +#define TASKLET_IN_USE test_and_set_bit(0, (&sp->tasklet_status)) +#define PANIC 1 +#define LOW 2 +static inline int rx_buffer_level(nic_t * sp, int rxb_size, int ring) +{ + int level = 0; + if ((sp->pkt_cnt[ring] - rxb_size) > 16) { + level = LOW; + if ((sp->pkt_cnt[ring] - rxb_size) < MAX_RXDS_PER_BLOCK) { + level = PANIC; + } + } + + return level; +} + +/* Ethtool related variables and Macros. */ +static char s2io_gstrings[][ETH_GSTRING_LEN] = { + "Register test\t(offline)", + "Eeprom test\t(offline)", + "Link test\t(online)", + "RLDRAM test\t(offline)", + "BIST Test\t(offline)" +}; + +static char ethtool_stats_keys[][ETH_GSTRING_LEN] = { + {"tmac_frms"}, + {"tmac_data_octets"}, + {"tmac_drop_frms"}, + {"tmac_mcst_frms"}, + {"tmac_bcst_frms"}, + {"tmac_pause_ctrl_frms"}, + {"tmac_any_err_frms"}, + {"tmac_vld_ip_octets"}, + {"tmac_vld_ip"}, + {"tmac_drop_ip"}, + {"tmac_icmp"}, + {"tmac_rst_tcp"}, + {"tmac_tcp"}, + {"tmac_udp"}, + {"rmac_vld_frms"}, + {"rmac_data_octets"}, + {"rmac_fcs_err_frms"}, + {"rmac_drop_frms"}, + {"rmac_vld_mcst_frms"}, + {"rmac_vld_bcst_frms"}, + {"rmac_in_rng_len_err_frms"}, + {"rmac_long_frms"}, + {"rmac_pause_ctrl_frms"}, + {"rmac_discarded_frms"}, + {"rmac_usized_frms"}, + {"rmac_osized_frms"}, + {"rmac_frag_frms"}, + {"rmac_jabber_frms"}, + {"rmac_ip"}, + {"rmac_ip_octets"}, + {"rmac_hdr_err_ip"}, + {"rmac_drop_ip"}, + {"rmac_icmp"}, + {"rmac_tcp"}, + {"rmac_udp"}, + {"rmac_err_drp_udp"}, + {"rmac_pause_cnt"}, + {"rmac_accepted_ip"}, + {"rmac_err_tcp"}, +}; + +#define S2IO_STAT_LEN sizeof(ethtool_stats_keys)/ ETH_GSTRING_LEN +#define S2IO_STAT_STRINGS_LEN S2IO_STAT_LEN * ETH_GSTRING_LEN + +#define S2IO_TEST_LEN sizeof(s2io_gstrings) / ETH_GSTRING_LEN +#define S2IO_STRINGS_LEN S2IO_TEST_LEN * ETH_GSTRING_LEN + + +/* + * Constants to be programmed into the Xena's registers, to configure + * the XAUI. + */ + +#define SWITCH_SIGN 0xA5A5A5A5A5A5A5A5ULL +#define END_SIGN 0x0 + +static u64 default_mdio_cfg[] = { + /* Reset PMA PLL */ + 0xC001010000000000ULL, 0xC0010100000000E0ULL, + 0xC0010100008000E4ULL, + /* Remove Reset from PMA PLL */ + 0xC001010000000000ULL, 0xC0010100000000E0ULL, + 0xC0010100000000E4ULL, + END_SIGN +}; + +static u64 default_dtx_cfg[] = { + 0x8000051500000000ULL, 0x80000515000000E0ULL, + 0x80000515D93500E4ULL, 0x8001051500000000ULL, + 0x80010515000000E0ULL, 0x80010515001E00E4ULL, + 0x8002051500000000ULL, 0x80020515000000E0ULL, + 0x80020515F21000E4ULL, + /* Set PADLOOPBACKN */ + 0x8002051500000000ULL, 0x80020515000000E0ULL, + 0x80020515B20000E4ULL, 0x8003051500000000ULL, + 0x80030515000000E0ULL, 0x80030515B20000E4ULL, + 0x8004051500000000ULL, 0x80040515000000E0ULL, + 0x80040515B20000E4ULL, 0x8005051500000000ULL, + 0x80050515000000E0ULL, 0x80050515B20000E4ULL, + SWITCH_SIGN, + /* Remove PADLOOPBACKN */ + 0x8002051500000000ULL, 0x80020515000000E0ULL, + 0x80020515F20000E4ULL, 0x8003051500000000ULL, + 0x80030515000000E0ULL, 0x80030515F20000E4ULL, + 0x8004051500000000ULL, 0x80040515000000E0ULL, + 0x80040515F20000E4ULL, 0x8005051500000000ULL, + 0x80050515000000E0ULL, 0x80050515F20000E4ULL, + END_SIGN +}; + + +/* + * Constants for Fixing the MacAddress problem seen mostly on + * Alpha machines. + */ +static u64 fix_mac[] = { + 0x0060000000000000ULL, 0x0060600000000000ULL, + 0x0040600000000000ULL, 0x0000600000000000ULL, + 0x0020600000000000ULL, 0x0060600000000000ULL, + 0x0020600000000000ULL, 0x0060600000000000ULL, + 0x0020600000000000ULL, 0x0060600000000000ULL, + 0x0020600000000000ULL, 0x0060600000000000ULL, + 0x0020600000000000ULL, 0x0060600000000000ULL, + 0x0020600000000000ULL, 0x0060600000000000ULL, + 0x0020600000000000ULL, 0x0060600000000000ULL, + 0x0020600000000000ULL, 0x0060600000000000ULL, + 0x0020600000000000ULL, 0x0060600000000000ULL, + 0x0020600000000000ULL, 0x0060600000000000ULL, + 0x0020600000000000ULL, 0x0000600000000000ULL, + 0x0040600000000000ULL, 0x0060600000000000ULL, + END_SIGN +}; + +/* Module Loadable parameters. */ +static unsigned int tx_fifo_num = 1; +static unsigned int tx_fifo_len[MAX_TX_FIFOS] = + {[0 ...(MAX_TX_FIFOS - 1)] = 0 }; +static unsigned int rx_ring_num = 1; +static unsigned int rx_ring_sz[MAX_RX_RINGS] = + {[0 ...(MAX_RX_RINGS - 1)] = 0 }; +static unsigned int Stats_refresh_time = 4; +static unsigned int rmac_pause_time = 65535; +static unsigned int mc_pause_threshold_q0q3 = 187; +static unsigned int mc_pause_threshold_q4q7 = 187; +static unsigned int shared_splits; +static unsigned int tmac_util_period = 5; +static unsigned int rmac_util_period = 5; +#ifndef CONFIG_S2IO_NAPI +static unsigned int indicate_max_pkts; +#endif + +/* + * S2IO device table. + * This table lists all the devices that this driver supports. + */ +static struct pci_device_id s2io_tbl[] __devinitdata = { + {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN, + PCI_ANY_ID, PCI_ANY_ID}, + {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI, + PCI_ANY_ID, PCI_ANY_ID}, + {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN, + PCI_ANY_ID, PCI_ANY_ID}, + {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI, + PCI_ANY_ID, PCI_ANY_ID}, + {0,} +}; + +MODULE_DEVICE_TABLE(pci, s2io_tbl); + +static struct pci_driver s2io_driver = { + .name = "S2IO", + .id_table = s2io_tbl, + .probe = s2io_init_nic, + .remove = __devexit_p(s2io_rem_nic), +}; + +/* A simplifier macro used both by init and free shared_mem Fns(). */ +#define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each) + +/** + * init_shared_mem - Allocation and Initialization of Memory + * @nic: Device private variable. + * Description: The function allocates all the memory areas shared + * between the NIC and the driver. This includes Tx descriptors, + * Rx descriptors and the statistics block. + */ + +static int init_shared_mem(struct s2io_nic *nic) +{ + u32 size; + void *tmp_v_addr, *tmp_v_addr_next; + dma_addr_t tmp_p_addr, tmp_p_addr_next; + RxD_block_t *pre_rxd_blk = NULL; + int i, j, blk_cnt; + int lst_size, lst_per_page; + struct net_device *dev = nic->dev; +#ifdef CONFIG_2BUFF_MODE + unsigned long tmp; + buffAdd_t *ba; +#endif + + mac_info_t *mac_control; + struct config_param *config; + + mac_control = &nic->mac_control; + config = &nic->config; + + + /* Allocation and initialization of TXDLs in FIOFs */ + size = 0; + for (i = 0; i < config->tx_fifo_num; i++) { + size += config->tx_cfg[i].fifo_len; + } + if (size > MAX_AVAILABLE_TXDS) { + DBG_PRINT(ERR_DBG, "%s: Total number of Tx FIFOs ", + dev->name); + DBG_PRINT(ERR_DBG, "exceeds the maximum value "); + DBG_PRINT(ERR_DBG, "that can be used\n"); + return FAILURE; + } + + lst_size = (sizeof(TxD_t) * config->max_txds); + lst_per_page = PAGE_SIZE / lst_size; + + for (i = 0; i < config->tx_fifo_num; i++) { + int fifo_len = config->tx_cfg[i].fifo_len; + int list_holder_size = fifo_len * sizeof(list_info_hold_t); + nic->list_info[i] = kmalloc(list_holder_size, GFP_KERNEL); + if (!nic->list_info[i]) { + DBG_PRINT(ERR_DBG, + "Malloc failed for list_info\n"); + return -ENOMEM; + } + memset(nic->list_info[i], 0, list_holder_size); + } + for (i = 0; i < config->tx_fifo_num; i++) { + int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len, + lst_per_page); + mac_control->tx_curr_put_info[i].offset = 0; + mac_control->tx_curr_put_info[i].fifo_len = + config->tx_cfg[i].fifo_len - 1; + mac_control->tx_curr_get_info[i].offset = 0; + mac_control->tx_curr_get_info[i].fifo_len = + config->tx_cfg[i].fifo_len - 1; + for (j = 0; j < page_num; j++) { + int k = 0; + dma_addr_t tmp_p; + void *tmp_v; + tmp_v = pci_alloc_consistent(nic->pdev, + PAGE_SIZE, &tmp_p); + if (!tmp_v) { + DBG_PRINT(ERR_DBG, + "pci_alloc_consistent "); + DBG_PRINT(ERR_DBG, "failed for TxDL\n"); + return -ENOMEM; + } + while (k < lst_per_page) { + int l = (j * lst_per_page) + k; + if (l == config->tx_cfg[i].fifo_len) + goto end_txd_alloc; + nic->list_info[i][l].list_virt_addr = + tmp_v + (k * lst_size); + nic->list_info[i][l].list_phy_addr = + tmp_p + (k * lst_size); + k++; + } + } + } + end_txd_alloc: + + /* Allocation and initialization of RXDs in Rings */ + size = 0; + for (i = 0; i < config->rx_ring_num; i++) { + if (config->rx_cfg[i].num_rxd % (MAX_RXDS_PER_BLOCK + 1)) { + DBG_PRINT(ERR_DBG, "%s: RxD count of ", dev->name); + DBG_PRINT(ERR_DBG, "Ring%d is not a multiple of ", + i); + DBG_PRINT(ERR_DBG, "RxDs per Block"); + return FAILURE; + } + size += config->rx_cfg[i].num_rxd; + nic->block_count[i] = + config->rx_cfg[i].num_rxd / (MAX_RXDS_PER_BLOCK + 1); + nic->pkt_cnt[i] = + config->rx_cfg[i].num_rxd - nic->block_count[i]; + } + + for (i = 0; i < config->rx_ring_num; i++) { + mac_control->rx_curr_get_info[i].block_index = 0; + mac_control->rx_curr_get_info[i].offset = 0; + mac_control->rx_curr_get_info[i].ring_len = + config->rx_cfg[i].num_rxd - 1; + mac_control->rx_curr_put_info[i].block_index = 0; + mac_control->rx_curr_put_info[i].offset = 0; + mac_control->rx_curr_put_info[i].ring_len = + config->rx_cfg[i].num_rxd - 1; + blk_cnt = + config->rx_cfg[i].num_rxd / (MAX_RXDS_PER_BLOCK + 1); + /* Allocating all the Rx blocks */ + for (j = 0; j < blk_cnt; j++) { +#ifndef CONFIG_2BUFF_MODE + size = (MAX_RXDS_PER_BLOCK + 1) * (sizeof(RxD_t)); +#else + size = SIZE_OF_BLOCK; +#endif + tmp_v_addr = pci_alloc_consistent(nic->pdev, size, + &tmp_p_addr); + if (tmp_v_addr == NULL) { + /* + * In case of failure, free_shared_mem() + * is called, which should free any + * memory that was alloced till the + * failure happened. + */ + nic->rx_blocks[i][j].block_virt_addr = + tmp_v_addr; + return -ENOMEM; + } + memset(tmp_v_addr, 0, size); + nic->rx_blocks[i][j].block_virt_addr = tmp_v_addr; + nic->rx_blocks[i][j].block_dma_addr = tmp_p_addr; + } + /* Interlinking all Rx Blocks */ + for (j = 0; j < blk_cnt; j++) { + tmp_v_addr = nic->rx_blocks[i][j].block_virt_addr; + tmp_v_addr_next = + nic->rx_blocks[i][(j + 1) % + blk_cnt].block_virt_addr; + tmp_p_addr = nic->rx_blocks[i][j].block_dma_addr; + tmp_p_addr_next = + nic->rx_blocks[i][(j + 1) % + blk_cnt].block_dma_addr; + + pre_rxd_blk = (RxD_block_t *) tmp_v_addr; + pre_rxd_blk->reserved_1 = END_OF_BLOCK; /* last RxD + * marker. + */ +#ifndef CONFIG_2BUFF_MODE + pre_rxd_blk->reserved_2_pNext_RxD_block = + (unsigned long) tmp_v_addr_next; +#endif + pre_rxd_blk->pNext_RxD_Blk_physical = + (u64) tmp_p_addr_next; + } + } + +#ifdef CONFIG_2BUFF_MODE + /* + * Allocation of Storages for buffer addresses in 2BUFF mode + * and the buffers as well. + */ + for (i = 0; i < config->rx_ring_num; i++) { + blk_cnt = + config->rx_cfg[i].num_rxd / (MAX_RXDS_PER_BLOCK + 1); + nic->ba[i] = kmalloc((sizeof(buffAdd_t *) * blk_cnt), + GFP_KERNEL); + if (!nic->ba[i]) + return -ENOMEM; + for (j = 0; j < blk_cnt; j++) { + int k = 0; + nic->ba[i][j] = kmalloc((sizeof(buffAdd_t) * + (MAX_RXDS_PER_BLOCK + 1)), + GFP_KERNEL); + if (!nic->ba[i][j]) + return -ENOMEM; + while (k != MAX_RXDS_PER_BLOCK) { + ba = &nic->ba[i][j][k]; + + ba->ba_0_org = kmalloc + (BUF0_LEN + ALIGN_SIZE, GFP_KERNEL); + if (!ba->ba_0_org) + return -ENOMEM; + tmp = (unsigned long) ba->ba_0_org; + tmp += ALIGN_SIZE; + tmp &= ~((unsigned long) ALIGN_SIZE); + ba->ba_0 = (void *) tmp; + + ba->ba_1_org = kmalloc + (BUF1_LEN + ALIGN_SIZE, GFP_KERNEL); + if (!ba->ba_1_org) + return -ENOMEM; + tmp = (unsigned long) ba->ba_1_org; + tmp += ALIGN_SIZE; + tmp &= ~((unsigned long) ALIGN_SIZE); + ba->ba_1 = (void *) tmp; + k++; + } + } + } +#endif + + /* Allocation and initialization of Statistics block */ + size = sizeof(StatInfo_t); + mac_control->stats_mem = pci_alloc_consistent + (nic->pdev, size, &mac_control->stats_mem_phy); + + if (!mac_control->stats_mem) { + /* + * In case of failure, free_shared_mem() is called, which + * should free any memory that was alloced till the + * failure happened. + */ + return -ENOMEM; + } + mac_control->stats_mem_sz = size; + + tmp_v_addr = mac_control->stats_mem; + mac_control->stats_info = (StatInfo_t *) tmp_v_addr; + memset(tmp_v_addr, 0, size); + + DBG_PRINT(INIT_DBG, "%s:Ring Mem PHY: 0x%llx\n", dev->name, + (unsigned long long) tmp_p_addr); + + return SUCCESS; +} + +/** + * free_shared_mem - Free the allocated Memory + * @nic: Device private variable. + * Description: This function is to free all memory locations allocated by + * the init_shared_mem() function and return it to the kernel. + */ + +static void free_shared_mem(struct s2io_nic *nic) +{ + int i, j, blk_cnt, size; + void *tmp_v_addr; + dma_addr_t tmp_p_addr; + mac_info_t *mac_control; + struct config_param *config; + int lst_size, lst_per_page; + + + if (!nic) + return; + + mac_control = &nic->mac_control; + config = &nic->config; + + lst_size = (sizeof(TxD_t) * config->max_txds); + lst_per_page = PAGE_SIZE / lst_size; + + for (i = 0; i < config->tx_fifo_num; i++) { + int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len, + lst_per_page); + for (j = 0; j < page_num; j++) { + int mem_blks = (j * lst_per_page); + if (!nic->list_info[i][mem_blks].list_virt_addr) + break; + pci_free_consistent(nic->pdev, PAGE_SIZE, + nic->list_info[i][mem_blks]. + list_virt_addr, + nic->list_info[i][mem_blks]. + list_phy_addr); + } + kfree(nic->list_info[i]); + } + +#ifndef CONFIG_2BUFF_MODE + size = (MAX_RXDS_PER_BLOCK + 1) * (sizeof(RxD_t)); +#else + size = SIZE_OF_BLOCK; +#endif + for (i = 0; i < config->rx_ring_num; i++) { + blk_cnt = nic->block_count[i]; + for (j = 0; j < blk_cnt; j++) { + tmp_v_addr = nic->rx_blocks[i][j].block_virt_addr; + tmp_p_addr = nic->rx_blocks[i][j].block_dma_addr; + if (tmp_v_addr == NULL) + break; + pci_free_consistent(nic->pdev, size, + tmp_v_addr, tmp_p_addr); + } + } + +#ifdef CONFIG_2BUFF_MODE + /* Freeing buffer storage addresses in 2BUFF mode. */ + for (i = 0; i < config->rx_ring_num; i++) { + blk_cnt = + config->rx_cfg[i].num_rxd / (MAX_RXDS_PER_BLOCK + 1); + if (!nic->ba[i]) + goto end_free; + for (j = 0; j < blk_cnt; j++) { + int k = 0; + if (!nic->ba[i][j]) { + kfree(nic->ba[i]); + goto end_free; + } + while (k != MAX_RXDS_PER_BLOCK) { + buffAdd_t *ba = &nic->ba[i][j][k]; + if (!ba || !ba->ba_0_org || !ba->ba_1_org) + { + kfree(nic->ba[i]); + kfree(nic->ba[i][j]); + if(ba->ba_0_org) + kfree(ba->ba_0_org); + if(ba->ba_1_org) + kfree(ba->ba_1_org); + goto end_free; + } + kfree(ba->ba_0_org); + kfree(ba->ba_1_org); + k++; + } + kfree(nic->ba[i][j]); + } + kfree(nic->ba[i]); + } +end_free: +#endif + + if (mac_control->stats_mem) { + pci_free_consistent(nic->pdev, + mac_control->stats_mem_sz, + mac_control->stats_mem, + mac_control->stats_mem_phy); + } +} + +/** + * init_nic - Initialization of hardware + * @nic: device peivate variable + * Description: The function sequentially configures every block + * of the H/W from their reset values. + * Return Value: SUCCESS on success and + * '-1' on failure (endian settings incorrect). + */ + +static int init_nic(struct s2io_nic *nic) +{ + XENA_dev_config_t __iomem *bar0 = nic->bar0; + struct net_device *dev = nic->dev; + register u64 val64 = 0; + void __iomem *add; + u32 time; + int i, j; + mac_info_t *mac_control; + struct config_param *config; + int mdio_cnt = 0, dtx_cnt = 0; + unsigned long long mem_share; + + mac_control = &nic->mac_control; + config = &nic->config; + + /* Initialize swapper control register */ + if (s2io_set_swapper(nic)) { + DBG_PRINT(ERR_DBG,"ERROR: Setting Swapper failed\n"); + return -1; + } + + /* Remove XGXS from reset state */ + val64 = 0; + writeq(val64, &bar0->sw_reset); + val64 = readq(&bar0->sw_reset); + msleep(500); + + /* Enable Receiving broadcasts */ + add = &bar0->mac_cfg; + val64 = readq(&bar0->mac_cfg); + val64 |= MAC_RMAC_BCAST_ENABLE; + writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); + writel((u32) val64, add); + writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); + writel((u32) (val64 >> 32), (add + 4)); + + /* Read registers in all blocks */ + val64 = readq(&bar0->mac_int_mask); + val64 = readq(&bar0->mc_int_mask); + val64 = readq(&bar0->xgxs_int_mask); + + /* Set MTU */ + val64 = dev->mtu; + writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len); + + /* + * Configuring the XAUI Interface of Xena. + * *************************************** + * To Configure the Xena's XAUI, one has to write a series + * of 64 bit values into two registers in a particular + * sequence. Hence a macro 'SWITCH_SIGN' has been defined + * which will be defined in the array of configuration values + * (default_dtx_cfg & default_mdio_cfg) at appropriate places + * to switch writing from one regsiter to another. We continue + * writing these values until we encounter the 'END_SIGN' macro. + * For example, After making a series of 21 writes into + * dtx_control register the 'SWITCH_SIGN' appears and hence we + * start writing into mdio_control until we encounter END_SIGN. + */ + while (1) { + dtx_cfg: + while (default_dtx_cfg[dtx_cnt] != END_SIGN) { + if (default_dtx_cfg[dtx_cnt] == SWITCH_SIGN) { + dtx_cnt++; + goto mdio_cfg; + } + SPECIAL_REG_WRITE(default_dtx_cfg[dtx_cnt], + &bar0->dtx_control, UF); + val64 = readq(&bar0->dtx_control); + dtx_cnt++; + } + mdio_cfg: + while (default_mdio_cfg[mdio_cnt] != END_SIGN) { + if (default_mdio_cfg[mdio_cnt] == SWITCH_SIGN) { + mdio_cnt++; + goto dtx_cfg; + } + SPECIAL_REG_WRITE(default_mdio_cfg[mdio_cnt], + &bar0->mdio_control, UF); + val64 = readq(&bar0->mdio_control); + mdio_cnt++; + } + if ((default_dtx_cfg[dtx_cnt] == END_SIGN) && + (default_mdio_cfg[mdio_cnt] == END_SIGN)) { + break; + } else { + goto dtx_cfg; + } + } + + /* Tx DMA Initialization */ + val64 = 0; + writeq(val64, &bar0->tx_fifo_partition_0); + writeq(val64, &bar0->tx_fifo_partition_1); + writeq(val64, &bar0->tx_fifo_partition_2); + writeq(val64, &bar0->tx_fifo_partition_3); + + + for (i = 0, j = 0; i < config->tx_fifo_num; i++) { + val64 |= + vBIT(config->tx_cfg[i].fifo_len - 1, ((i * 32) + 19), + 13) | vBIT(config->tx_cfg[i].fifo_priority, + ((i * 32) + 5), 3); + + if (i == (config->tx_fifo_num - 1)) { + if (i % 2 == 0) + i++; + } + + switch (i) { + case 1: + writeq(val64, &bar0->tx_fifo_partition_0); + val64 = 0; + break; + case 3: + writeq(val64, &bar0->tx_fifo_partition_1); + val64 = 0; + break; + case 5: + writeq(val64, &bar0->tx_fifo_partition_2); + val64 = 0; + break; + case 7: + writeq(val64, &bar0->tx_fifo_partition_3); + break; + } + } + + /* Enable Tx FIFO partition 0. */ + val64 = readq(&bar0->tx_fifo_partition_0); + val64 |= BIT(0); /* To enable the FIFO partition. */ + writeq(val64, &bar0->tx_fifo_partition_0); + + val64 = readq(&bar0->tx_fifo_partition_0); + DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n", + &bar0->tx_fifo_partition_0, (unsigned long long) val64); + + /* + * Initialization of Tx_PA_CONFIG register to ignore packet + * integrity checking. + */ + val64 = readq(&bar0->tx_pa_cfg); + val64 |= TX_PA_CFG_IGNORE_FRM_ERR | TX_PA_CFG_IGNORE_SNAP_OUI | + TX_PA_CFG_IGNORE_LLC_CTRL | TX_PA_CFG_IGNORE_L2_ERR; + writeq(val64, &bar0->tx_pa_cfg); + + /* Rx DMA intialization. */ + val64 = 0; + for (i = 0; i < config->rx_ring_num; i++) { + val64 |= + vBIT(config->rx_cfg[i].ring_priority, (5 + (i * 8)), + 3); + } + writeq(val64, &bar0->rx_queue_priority); + + /* + * Allocating equal share of memory to all the + * configured Rings. + */ + val64 = 0; + for (i = 0; i < config->rx_ring_num; i++) { + switch (i) { + case 0: + mem_share = (64 / config->rx_ring_num + + 64 % config->rx_ring_num); + val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share); + continue; + case 1: + mem_share = (64 / config->rx_ring_num); + val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share); + continue; + case 2: + mem_share = (64 / config->rx_ring_num); + val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share); + continue; + case 3: + mem_share = (64 / config->rx_ring_num); + val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share); + continue; + case 4: + mem_share = (64 / config->rx_ring_num); + val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share); + continue; + case 5: + mem_share = (64 / config->rx_ring_num); + val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share); + continue; + case 6: + mem_share = (64 / config->rx_ring_num); + val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share); + continue; + case 7: + mem_share = (64 / config->rx_ring_num); + val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share); + continue; + } + } + writeq(val64, &bar0->rx_queue_cfg); + + /* + * Initializing the Tx round robin registers to 0. + * Filling Tx and Rx round robin registers as per the + * number of FIFOs and Rings is still TODO. + */ + writeq(0, &bar0->tx_w_round_robin_0); + writeq(0, &bar0->tx_w_round_robin_1); + writeq(0, &bar0->tx_w_round_robin_2); + writeq(0, &bar0->tx_w_round_robin_3); + writeq(0, &bar0->tx_w_round_robin_4); + + /* + * TODO + * Disable Rx steering. Hard coding all packets be steered to + * Queue 0 for now. + */ + val64 = 0x8080808080808080ULL; + writeq(val64, &bar0->rts_qos_steering); + + /* UDP Fix */ + val64 = 0; + for (i = 1; i < 8; i++) + writeq(val64, &bar0->rts_frm_len_n[i]); + + /* Set rts_frm_len register for fifo 0 */ + writeq(MAC_RTS_FRM_LEN_SET(dev->mtu + 22), + &bar0->rts_frm_len_n[0]); + + /* Enable statistics */ + writeq(mac_control->stats_mem_phy, &bar0->stat_addr); + val64 = SET_UPDT_PERIOD(Stats_refresh_time) | + STAT_CFG_STAT_RO | STAT_CFG_STAT_EN; + writeq(val64, &bar0->stat_cfg); + + /* + * Initializing the sampling rate for the device to calculate the + * bandwidth utilization. + */ + val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) | + MAC_RX_LINK_UTIL_VAL(rmac_util_period); + writeq(val64, &bar0->mac_link_util); + + + /* + * Initializing the Transmit and Receive Traffic Interrupt + * Scheme. + */ + /* TTI Initialization. Default Tx timer gets us about + * 250 interrupts per sec. Continuous interrupts are enabled + * by default. + */ + val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078) | + TTI_DATA1_MEM_TX_URNG_A(0xA) | + TTI_DATA1_MEM_TX_URNG_B(0x10) | + TTI_DATA1_MEM_TX_URNG_C(0x30) | TTI_DATA1_MEM_TX_TIMER_AC_EN | + TTI_DATA1_MEM_TX_TIMER_CI_EN; + writeq(val64, &bar0->tti_data1_mem); + + val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) | + TTI_DATA2_MEM_TX_UFC_B(0x20) | + TTI_DATA2_MEM_TX_UFC_C(0x40) | TTI_DATA2_MEM_TX_UFC_D(0x80); + writeq(val64, &bar0->tti_data2_mem); + + val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD; + writeq(val64, &bar0->tti_command_mem); + + /* + * Once the operation completes, the Strobe bit of the command + * register will be reset. We poll for this particular condition + * We wait for a maximum of 500ms for the operation to complete, + * if it's not complete by then we return error. + */ + time = 0; + while (TRUE) { + val64 = readq(&bar0->tti_command_mem); + if (!(val64 & TTI_CMD_MEM_STROBE_NEW_CMD)) { + break; + } + if (time > 10) { + DBG_PRINT(ERR_DBG, "%s: TTI init Failed\n", + dev->name); + return -1; + } + msleep(50); + time++; + } + + /* RTI Initialization */ + val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF) | + RTI_DATA1_MEM_RX_URNG_A(0xA) | + RTI_DATA1_MEM_RX_URNG_B(0x10) | + RTI_DATA1_MEM_RX_URNG_C(0x30) | RTI_DATA1_MEM_RX_TIMER_AC_EN; + + writeq(val64, &bar0->rti_data1_mem); + + val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) | + RTI_DATA2_MEM_RX_UFC_B(0x2) | + RTI_DATA2_MEM_RX_UFC_C(0x40) | RTI_DATA2_MEM_RX_UFC_D(0x80); + writeq(val64, &bar0->rti_data2_mem); + + val64 = RTI_CMD_MEM_WE | RTI_CMD_MEM_STROBE_NEW_CMD; + writeq(val64, &bar0->rti_command_mem); + + /* + * Once the operation completes, the Strobe bit of the command + * register will be reset. We poll for this particular condition + * We wait for a maximum of 500ms for the operation to complete, + * if it's not complete by then we return error. + */ + time = 0; + while (TRUE) { + val64 = readq(&bar0->rti_command_mem); + if (!(val64 & TTI_CMD_MEM_STROBE_NEW_CMD)) { + break; + } + if (time > 10) { + DBG_PRINT(ERR_DBG, "%s: RTI init Failed\n", + dev->name); + return -1; + } + time++; + msleep(50); + } + + /* + * Initializing proper values as Pause threshold into all + * the 8 Queues on Rx side. + */ + writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3); + writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7); + + /* Disable RMAC PAD STRIPPING */ + add = &bar0->mac_cfg; + val64 = readq(&bar0->mac_cfg); + val64 &= ~(MAC_CFG_RMAC_STRIP_PAD); + writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); + writel((u32) (val64), add); + writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); + writel((u32) (val64 >> 32), (add + 4)); + val64 = readq(&bar0->mac_cfg); + + /* + * Set the time value to be inserted in the pause frame + * generated by xena. + */ + val64 = readq(&bar0->rmac_pause_cfg); + val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff)); + val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time); + writeq(val64, &bar0->rmac_pause_cfg); + + /* + * Set the Threshold Limit for Generating the pause frame + * If the amount of data in any Queue exceeds ratio of + * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256 + * pause frame is generated + */ + val64 = 0; + for (i = 0; i < 4; i++) { + val64 |= + (((u64) 0xFF00 | nic->mac_control. + mc_pause_threshold_q0q3) + << (i * 2 * 8)); + } + writeq(val64, &bar0->mc_pause_thresh_q0q3); + + val64 = 0; + for (i = 0; i < 4; i++) { + val64 |= + (((u64) 0xFF00 | nic->mac_control. + mc_pause_threshold_q4q7) + << (i * 2 * 8)); + } + writeq(val64, &bar0->mc_pause_thresh_q4q7); + + /* + * TxDMA will stop Read request if the number of read split has + * exceeded the limit pointed by shared_splits + */ + val64 = readq(&bar0->pic_control); + val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits); + writeq(val64, &bar0->pic_control); + + return SUCCESS; +} + +/** + * en_dis_able_nic_intrs - Enable or Disable the interrupts + * @nic: device private variable, + * @mask: A mask indicating which Intr block must be modified and, + * @flag: A flag indicating whether to enable or disable the Intrs. + * Description: This function will either disable or enable the interrupts + * depending on the flag argument. The mask argument can be used to + * enable/disable any Intr block. + * Return Value: NONE. + */ + +static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag) +{ + XENA_dev_config_t __iomem *bar0 = nic->bar0; + register u64 val64 = 0, temp64 = 0; + + /* Top level interrupt classification */ + /* PIC Interrupts */ + if ((mask & (TX_PIC_INTR | RX_PIC_INTR))) { + /* Enable PIC Intrs in the general intr mask register */ + val64 = TXPIC_INT_M | PIC_RX_INT_M; + if (flag == ENABLE_INTRS) { + temp64 = readq(&bar0->general_int_mask); + temp64 &= ~((u64) val64); + writeq(temp64, &bar0->general_int_mask); + /* + * Disabled all PCIX, Flash, MDIO, IIC and GPIO + * interrupts for now. + * TODO + */ + writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask); + /* + * No MSI Support is available presently, so TTI and + * RTI interrupts are also disabled. + */ + } else if (flag == DISABLE_INTRS) { + /* + * Disable PIC Intrs in the general + * intr mask register + */ + writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask); + temp64 = readq(&bar0->general_int_mask); + val64 |= temp64; + writeq(val64, &bar0->general_int_mask); + } + } + + /* DMA Interrupts */ + /* Enabling/Disabling Tx DMA interrupts */ + if (mask & TX_DMA_INTR) { + /* Enable TxDMA Intrs in the general intr mask register */ + val64 = TXDMA_INT_M; + if (flag == ENABLE_INTRS) { + temp64 = readq(&bar0->general_int_mask); + temp64 &= ~((u64) val64); + writeq(temp64, &bar0->general_int_mask); + /* + * Keep all interrupts other than PFC interrupt + * and PCC interrupt disabled in DMA level. + */ + val64 = DISABLE_ALL_INTRS & ~(TXDMA_PFC_INT_M | + TXDMA_PCC_INT_M); + writeq(val64, &bar0->txdma_int_mask); + /* + * Enable only the MISC error 1 interrupt in PFC block + */ + val64 = DISABLE_ALL_INTRS & (~PFC_MISC_ERR_1); + writeq(val64, &bar0->pfc_err_mask); + /* + * Enable only the FB_ECC error interrupt in PCC block + */ + val64 = DISABLE_ALL_INTRS & (~PCC_FB_ECC_ERR); + writeq(val64, &bar0->pcc_err_mask); + } else if (flag == DISABLE_INTRS) { + /* + * Disable TxDMA Intrs in the general intr mask + * register + */ + writeq(DISABLE_ALL_INTRS, &bar0->txdma_int_mask); + writeq(DISABLE_ALL_INTRS, &bar0->pfc_err_mask); + temp64 = readq(&bar0->general_int_mask); + val64 |= temp64; + writeq(val64, &bar0->general_int_mask); + } + } + + /* Enabling/Disabling Rx DMA interrupts */ + if (mask & RX_DMA_INTR) { + /* Enable RxDMA Intrs in the general intr mask register */ + val64 = RXDMA_INT_M; + if (flag == ENABLE_INTRS) { + temp64 = readq(&bar0->general_int_mask); + temp64 &= ~((u64) val64); + writeq(temp64, &bar0->general_int_mask); + /* + * All RxDMA block interrupts are disabled for now + * TODO + */ + writeq(DISABLE_ALL_INTRS, &bar0->rxdma_int_mask); + } else if (flag == DISABLE_INTRS) { + /* + * Disable RxDMA Intrs in the general intr mask + * register + */ + writeq(DISABLE_ALL_INTRS, &bar0->rxdma_int_mask); + temp64 = readq(&bar0->general_int_mask); + val64 |= temp64; + writeq(val64, &bar0->general_int_mask); + } + } + + /* MAC Interrupts */ + /* Enabling/Disabling MAC interrupts */ + if (mask & (TX_MAC_INTR | RX_MAC_INTR)) { + val64 = TXMAC_INT_M | RXMAC_INT_M; + if (flag == ENABLE_INTRS) { + temp64 = readq(&bar0->general_int_mask); + temp64 &= ~((u64) val64); + writeq(temp64, &bar0->general_int_mask); + /* + * All MAC block error interrupts are disabled for now + * except the link status change interrupt. + * TODO + */ + val64 = MAC_INT_STATUS_RMAC_INT; + temp64 = readq(&bar0->mac_int_mask); + temp64 &= ~((u64) val64); + writeq(temp64, &bar0->mac_int_mask); + + val64 = readq(&bar0->mac_rmac_err_mask); + val64 &= ~((u64) RMAC_LINK_STATE_CHANGE_INT); + writeq(val64, &bar0->mac_rmac_err_mask); + } else if (flag == DISABLE_INTRS) { + /* + * Disable MAC Intrs in the general intr mask register + */ + writeq(DISABLE_ALL_INTRS, &bar0->mac_int_mask); + writeq(DISABLE_ALL_INTRS, + &bar0->mac_rmac_err_mask); + + temp64 = readq(&bar0->general_int_mask); + val64 |= temp64; + writeq(val64, &bar0->general_int_mask); + } + } + + /* XGXS Interrupts */ + if (mask & (TX_XGXS_INTR | RX_XGXS_INTR)) { + val64 = TXXGXS_INT_M | RXXGXS_INT_M; + if (flag == ENABLE_INTRS) { + temp64 = readq(&bar0->general_int_mask); + temp64 &= ~((u64) val64); + writeq(temp64, &bar0->general_int_mask); + /* + * All XGXS block error interrupts are disabled for now + * TODO + */ + writeq(DISABLE_ALL_INTRS, &bar0->xgxs_int_mask); + } else if (flag == DISABLE_INTRS) { + /* + * Disable MC Intrs in the general intr mask register + */ + writeq(DISABLE_ALL_INTRS, &bar0->xgxs_int_mask); + temp64 = readq(&bar0->general_int_mask); + val64 |= temp64; + writeq(val64, &bar0->general_int_mask); + } + } + + /* Memory Controller(MC) interrupts */ + if (mask & MC_INTR) { + val64 = MC_INT_M; + if (flag == ENABLE_INTRS) { + temp64 = readq(&bar0->general_int_mask); + temp64 &= ~((u64) val64); + writeq(temp64, &bar0->general_int_mask); + /* + * All MC block error interrupts are disabled for now + * TODO + */ + writeq(DISABLE_ALL_INTRS, &bar0->mc_int_mask); + } else if (flag == DISABLE_INTRS) { + /* + * Disable MC Intrs in the general intr mask register + */ + writeq(DISABLE_ALL_INTRS, &bar0->mc_int_mask); + temp64 = readq(&bar0->general_int_mask); + val64 |= temp64; + writeq(val64, &bar0->general_int_mask); + } + } + + + /* Tx traffic interrupts */ + if (mask & TX_TRAFFIC_INTR) { + val64 = TXTRAFFIC_INT_M; + if (flag == ENABLE_INTRS) { + temp64 = readq(&bar0->general_int_mask); + temp64 &= ~((u64) val64); + writeq(temp64, &bar0->general_int_mask); + /* + * Enable all the Tx side interrupts + * writing 0 Enables all 64 TX interrupt levels + */ + writeq(0x0, &bar0->tx_traffic_mask); + } else if (flag == DISABLE_INTRS) { + /* + * Disable Tx Traffic Intrs in the general intr mask + * register. + */ + writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask); + temp64 = readq(&bar0->general_int_mask); + val64 |= temp64; + writeq(val64, &bar0->general_int_mask); + } + } + + /* Rx traffic interrupts */ + if (mask & RX_TRAFFIC_INTR) { + val64 = RXTRAFFIC_INT_M; + if (flag == ENABLE_INTRS) { + temp64 = readq(&bar0->general_int_mask); + temp64 &= ~((u64) val64); + writeq(temp64, &bar0->general_int_mask); + /* writing 0 Enables all 8 RX interrupt levels */ + writeq(0x0, &bar0->rx_traffic_mask); + } else if (flag == DISABLE_INTRS) { + /* + * Disable Rx Traffic Intrs in the general intr mask + * register. + */ + writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask); + temp64 = readq(&bar0->general_int_mask); + val64 |= temp64; + writeq(val64, &bar0->general_int_mask); + } + } +} + +/** + * verify_xena_quiescence - Checks whether the H/W is ready + * @val64 : Value read from adapter status register. + * @flag : indicates if the adapter enable bit was ever written once + * before. + * Description: Returns whether the H/W is ready to go or not. Depending + * on whether adapter enable bit was written or not the comparison + * differs and the calling function passes the input argument flag to + * indicate this. + * Return: 1 If xena is quiescence + * 0 If Xena is not quiescence + */ + +static int verify_xena_quiescence(u64 val64, int flag) +{ + int ret = 0; + u64 tmp64 = ~((u64) val64); + + if (! + (tmp64 & + (ADAPTER_STATUS_TDMA_READY | ADAPTER_STATUS_RDMA_READY | + ADAPTER_STATUS_PFC_READY | ADAPTER_STATUS_TMAC_BUF_EMPTY | + ADAPTER_STATUS_PIC_QUIESCENT | ADAPTER_STATUS_MC_DRAM_READY | + ADAPTER_STATUS_MC_QUEUES_READY | ADAPTER_STATUS_M_PLL_LOCK | + ADAPTER_STATUS_P_PLL_LOCK))) { + if (flag == FALSE) { + if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) && + ((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) == + ADAPTER_STATUS_RC_PRC_QUIESCENT)) { + + ret = 1; + + } + } else { + if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) == + ADAPTER_STATUS_RMAC_PCC_IDLE) && + (!(val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) || + ((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) == + ADAPTER_STATUS_RC_PRC_QUIESCENT))) { + + ret = 1; + + } + } + } + + return ret; +} + +/** + * fix_mac_address - Fix for Mac addr problem on Alpha platforms + * @sp: Pointer to device specifc structure + * Description : + * New procedure to clear mac address reading problems on Alpha platforms + * + */ + +static void fix_mac_address(nic_t * sp) +{ + XENA_dev_config_t __iomem *bar0 = sp->bar0; + u64 val64; + int i = 0; + + while (fix_mac[i] != END_SIGN) { + writeq(fix_mac[i++], &bar0->gpio_control); + val64 = readq(&bar0->gpio_control); + } +} + +/** + * start_nic - Turns the device on + * @nic : device private variable. + * Description: + * This function actually turns the device on. Before this function is + * called,all Registers are configured from their reset states + * and shared memory is allocated but the NIC is still quiescent. On + * calling this function, the device interrupts are cleared and the NIC is + * literally switched on by writing into the adapter control register. + * Return Value: + * SUCCESS on success and -1 on failure. + */ + +static int start_nic(struct s2io_nic *nic) +{ + XENA_dev_config_t __iomem *bar0 = nic->bar0; + struct net_device *dev = nic->dev; + register u64 val64 = 0; + u16 interruptible, i; + u16 subid; + mac_info_t *mac_control; + struct config_param *config; + + mac_control = &nic->mac_control; + config = &nic->config; + + /* PRC Initialization and configuration */ + for (i = 0; i < config->rx_ring_num; i++) { + writeq((u64) nic->rx_blocks[i][0].block_dma_addr, + &bar0->prc_rxd0_n[i]); + + val64 = readq(&bar0->prc_ctrl_n[i]); +#ifndef CONFIG_2BUFF_MODE + val64 |= PRC_CTRL_RC_ENABLED; +#else + val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3; +#endif + writeq(val64, &bar0->prc_ctrl_n[i]); + } + +#ifdef CONFIG_2BUFF_MODE + /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */ + val64 = readq(&bar0->rx_pa_cfg); + val64 |= RX_PA_CFG_IGNORE_L2_ERR; + writeq(val64, &bar0->rx_pa_cfg); +#endif + + /* + * Enabling MC-RLDRAM. After enabling the device, we timeout + * for around 100ms, which is approximately the time required + * for the device to be ready for operation. + */ + val64 = readq(&bar0->mc_rldram_mrs); + val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE; + SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF); + val64 = readq(&bar0->mc_rldram_mrs); + + msleep(100); /* Delay by around 100 ms. */ + + /* Enabling ECC Protection. */ + val64 = readq(&bar0->adapter_control); + val64 &= ~ADAPTER_ECC_EN; + writeq(val64, &bar0->adapter_control); + + /* + * Clearing any possible Link state change interrupts that + * could have popped up just before Enabling the card. + */ + val64 = readq(&bar0->mac_rmac_err_reg); + if (val64) + writeq(val64, &bar0->mac_rmac_err_reg); + + /* + * Verify if the device is ready to be enabled, if so enable + * it. + */ + val64 = readq(&bar0->adapter_status); + if (!verify_xena_quiescence(val64, nic->device_enabled_once)) { + DBG_PRINT(ERR_DBG, "%s: device is not ready, ", dev->name); + DBG_PRINT(ERR_DBG, "Adapter status reads: 0x%llx\n", + (unsigned long long) val64); + return FAILURE; + } + + /* Enable select interrupts */ + interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR | TX_MAC_INTR | + RX_MAC_INTR; + en_dis_able_nic_intrs(nic, interruptible, ENABLE_INTRS); + + /* + * With some switches, link might be already up at this point. + * Because of this weird behavior, when we enable laser, + * we may not get link. We need to handle this. We cannot + * figure out which switch is misbehaving. So we are forced to + * make a global change. + */ + + /* Enabling Laser. */ + val64 = readq(&bar0->adapter_control); + val64 |= ADAPTER_EOI_TX_ON; + writeq(val64, &bar0->adapter_control); + + /* SXE-002: Initialize link and activity LED */ + subid = nic->pdev->subsystem_device; + if ((subid & 0xFF) >= 0x07) { + val64 = readq(&bar0->gpio_control); + val64 |= 0x0000800000000000ULL; + writeq(val64, &bar0->gpio_control); + val64 = 0x0411040400000000ULL; + writeq(val64, (void __iomem *) bar0 + 0x2700); + } + + /* + * Don't see link state interrupts on certain switches, so + * directly scheduling a link state task from here. + */ + schedule_work(&nic->set_link_task); + + /* + * Here we are performing soft reset on XGXS to + * force link down. Since link is already up, we will get + * link state change interrupt after this reset + */ + SPECIAL_REG_WRITE(0x80010515001E0000ULL, &bar0->dtx_control, UF); + val64 = readq(&bar0->dtx_control); + udelay(50); + SPECIAL_REG_WRITE(0x80010515001E00E0ULL, &bar0->dtx_control, UF); + val64 = readq(&bar0->dtx_control); + udelay(50); + SPECIAL_REG_WRITE(0x80070515001F00E4ULL, &bar0->dtx_control, UF); + val64 = readq(&bar0->dtx_control); + udelay(50); + + return SUCCESS; +} + +/** + * free_tx_buffers - Free all queued Tx buffers + * @nic : device private variable. + * Description: + * Free all queued Tx buffers. + * Return Value: void +*/ + +static void free_tx_buffers(struct s2io_nic *nic) +{ + struct net_device *dev = nic->dev; + struct sk_buff *skb; + TxD_t *txdp; + int i, j; + mac_info_t *mac_control; + struct config_param *config; + int cnt = 0; + + mac_control = &nic->mac_control; + config = &nic->config; + + for (i = 0; i < config->tx_fifo_num; i++) { + for (j = 0; j < config->tx_cfg[i].fifo_len - 1; j++) { + txdp = (TxD_t *) nic->list_info[i][j]. + list_virt_addr; + skb = + (struct sk_buff *) ((unsigned long) txdp-> + Host_Control); + if (skb == NULL) { + memset(txdp, 0, sizeof(TxD_t)); + continue; + } + dev_kfree_skb(skb); + memset(txdp, 0, sizeof(TxD_t)); + cnt++; + } + DBG_PRINT(INTR_DBG, + "%s:forcibly freeing %d skbs on FIFO%d\n", + dev->name, cnt, i); + mac_control->tx_curr_get_info[i].offset = 0; + mac_control->tx_curr_put_info[i].offset = 0; + } +} + +/** + * stop_nic - To stop the nic + * @nic ; device private variable. + * Description: + * This function does exactly the opposite of what the start_nic() + * function does. This function is called to stop the device. + * Return Value: + * void. + */ + +static void stop_nic(struct s2io_nic *nic) +{ + XENA_dev_config_t __iomem *bar0 = nic->bar0; + register u64 val64 = 0; + u16 interruptible, i; + mac_info_t *mac_control; + struct config_param *config; + + mac_control = &nic->mac_control; + config = &nic->config; + + /* Disable all interrupts */ + interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR | TX_MAC_INTR | + RX_MAC_INTR; + en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS); + + /* Disable PRCs */ + for (i = 0; i < config->rx_ring_num; i++) { + val64 = readq(&bar0->prc_ctrl_n[i]); + val64 &= ~((u64) PRC_CTRL_RC_ENABLED); + writeq(val64, &bar0->prc_ctrl_n[i]); + } +} + +/** + * fill_rx_buffers - Allocates the Rx side skbs + * @nic: device private variable + * @ring_no: ring number + * Description: + * The function allocates Rx side skbs and puts the physical + * address of these buffers into the RxD buffer pointers, so that the NIC + * can DMA the received frame into these locations. + * The NIC supports 3 receive modes, viz + * 1. single buffer, + * 2. three buffer and + * 3. Five buffer modes. + * Each mode defines how many fragments the received frame will be split + * up into by the NIC. The frame is split into L3 header, L4 Header, + * L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself + * is split into 3 fragments. As of now only single buffer mode is + * supported. + * Return Value: + * SUCCESS on success or an appropriate -ve value on failure. + */ + +static int fill_rx_buffers(struct s2io_nic *nic, int ring_no) +{ + struct net_device *dev = nic->dev; + struct sk_buff *skb; + RxD_t *rxdp; + int off, off1, size, block_no, block_no1; + int offset, offset1; + u32 alloc_tab = 0; + u32 alloc_cnt = nic->pkt_cnt[ring_no] - + atomic_read(&nic->rx_bufs_left[ring_no]); + mac_info_t *mac_control; + struct config_param *config; +#ifdef CONFIG_2BUFF_MODE + RxD_t *rxdpnext; + int nextblk; + unsigned long tmp; + buffAdd_t *ba; + dma_addr_t rxdpphys; +#endif +#ifndef CONFIG_S2IO_NAPI + unsigned long flags; +#endif + + mac_control = &nic->mac_control; + config = &nic->config; + + size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE + + HEADER_802_2_SIZE + HEADER_SNAP_SIZE; + + while (alloc_tab < alloc_cnt) { + block_no = mac_control->rx_curr_put_info[ring_no]. + block_index; + block_no1 = mac_control->rx_curr_get_info[ring_no]. + block_index; + off = mac_control->rx_curr_put_info[ring_no].offset; + off1 = mac_control->rx_curr_get_info[ring_no].offset; +#ifndef CONFIG_2BUFF_MODE + offset = block_no * (MAX_RXDS_PER_BLOCK + 1) + off; + offset1 = block_no1 * (MAX_RXDS_PER_BLOCK + 1) + off1; +#else + offset = block_no * (MAX_RXDS_PER_BLOCK) + off; + offset1 = block_no1 * (MAX_RXDS_PER_BLOCK) + off1; +#endif + + rxdp = nic->rx_blocks[ring_no][block_no]. + block_virt_addr + off; + if ((offset == offset1) && (rxdp->Host_Control)) { + DBG_PRINT(INTR_DBG, "%s: Get and Put", dev->name); + DBG_PRINT(INTR_DBG, " info equated\n"); + goto end; + } +#ifndef CONFIG_2BUFF_MODE + if (rxdp->Control_1 == END_OF_BLOCK) { + mac_control->rx_curr_put_info[ring_no]. + block_index++; + mac_control->rx_curr_put_info[ring_no]. + block_index %= nic->block_count[ring_no]; + block_no = mac_control->rx_curr_put_info + [ring_no].block_index; + off++; + off %= (MAX_RXDS_PER_BLOCK + 1); + mac_control->rx_curr_put_info[ring_no].offset = + off; + rxdp = (RxD_t *) ((unsigned long) rxdp->Control_2); + DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n", + dev->name, rxdp); + } +#ifndef CONFIG_S2IO_NAPI + spin_lock_irqsave(&nic->put_lock, flags); + nic->put_pos[ring_no] = + (block_no * (MAX_RXDS_PER_BLOCK + 1)) + off; + spin_unlock_irqrestore(&nic->put_lock, flags); +#endif +#else + if (rxdp->Host_Control == END_OF_BLOCK) { + mac_control->rx_curr_put_info[ring_no]. + block_index++; + mac_control->rx_curr_put_info[ring_no]. + block_index %= nic->block_count[ring_no]; + block_no = mac_control->rx_curr_put_info + [ring_no].block_index; + off = 0; + DBG_PRINT(INTR_DBG, "%s: block%d at: 0x%llx\n", + dev->name, block_no, + (unsigned long long) rxdp->Control_1); + mac_control->rx_curr_put_info[ring_no].offset = + off; + rxdp = nic->rx_blocks[ring_no][block_no]. + block_virt_addr; + } +#ifndef CONFIG_S2IO_NAPI + spin_lock_irqsave(&nic->put_lock, flags); + nic->put_pos[ring_no] = (block_no * + (MAX_RXDS_PER_BLOCK + 1)) + off; + spin_unlock_irqrestore(&nic->put_lock, flags); +#endif +#endif + +#ifndef CONFIG_2BUFF_MODE + if (rxdp->Control_1 & RXD_OWN_XENA) +#else + if (rxdp->Control_2 & BIT(0)) +#endif + { + mac_control->rx_curr_put_info[ring_no]. + offset = off; + goto end; + } +#ifdef CONFIG_2BUFF_MODE + /* + * RxDs Spanning cache lines will be replenished only + * if the succeeding RxD is also owned by Host. It + * will always be the ((8*i)+3) and ((8*i)+6) + * descriptors for the 48 byte descriptor. The offending + * decsriptor is of-course the 3rd descriptor. + */ + rxdpphys = nic->rx_blocks[ring_no][block_no]. + block_dma_addr + (off * sizeof(RxD_t)); + if (((u64) (rxdpphys)) % 128 > 80) { + rxdpnext = nic->rx_blocks[ring_no][block_no]. + block_virt_addr + (off + 1); + if (rxdpnext->Host_Control == END_OF_BLOCK) { + nextblk = (block_no + 1) % + (nic->block_count[ring_no]); + rxdpnext = nic->rx_blocks[ring_no] + [nextblk].block_virt_addr; + } + if (rxdpnext->Control_2 & BIT(0)) + goto end; + } +#endif + +#ifndef CONFIG_2BUFF_MODE + skb = dev_alloc_skb(size + NET_IP_ALIGN); +#else + skb = dev_alloc_skb(dev->mtu + ALIGN_SIZE + BUF0_LEN + 4); +#endif + if (!skb) { + DBG_PRINT(ERR_DBG, "%s: Out of ", dev->name); + DBG_PRINT(ERR_DBG, "memory to allocate SKBs\n"); + return -ENOMEM; + } +#ifndef CONFIG_2BUFF_MODE + skb_reserve(skb, NET_IP_ALIGN); + memset(rxdp, 0, sizeof(RxD_t)); + rxdp->Buffer0_ptr = pci_map_single + (nic->pdev, skb->data, size, PCI_DMA_FROMDEVICE); + rxdp->Control_2 &= (~MASK_BUFFER0_SIZE); + rxdp->Control_2 |= SET_BUFFER0_SIZE(size); + rxdp->Host_Control = (unsigned long) (skb); + rxdp->Control_1 |= RXD_OWN_XENA; + off++; + off %= (MAX_RXDS_PER_BLOCK + 1); + mac_control->rx_curr_put_info[ring_no].offset = off; +#else + ba = &nic->ba[ring_no][block_no][off]; + skb_reserve(skb, BUF0_LEN); + tmp = (unsigned long) skb->data; + tmp += ALIGN_SIZE; + tmp &= ~ALIGN_SIZE; + skb->data = (void *) tmp; + skb->tail = (void *) tmp; + + memset(rxdp, 0, sizeof(RxD_t)); + rxdp->Buffer2_ptr = pci_map_single + (nic->pdev, skb->data, dev->mtu + BUF0_LEN + 4, + PCI_DMA_FROMDEVICE); + rxdp->Buffer0_ptr = + pci_map_single(nic->pdev, ba->ba_0, BUF0_LEN, + PCI_DMA_FROMDEVICE); + rxdp->Buffer1_ptr = + pci_map_single(nic->pdev, ba->ba_1, BUF1_LEN, + PCI_DMA_FROMDEVICE); + + rxdp->Control_2 = SET_BUFFER2_SIZE(dev->mtu + 4); + rxdp->Control_2 |= SET_BUFFER0_SIZE(BUF0_LEN); + rxdp->Control_2 |= SET_BUFFER1_SIZE(1); /* dummy. */ + rxdp->Control_2 |= BIT(0); /* Set Buffer_Empty bit. */ + rxdp->Host_Control = (u64) ((unsigned long) (skb)); + rxdp->Control_1 |= RXD_OWN_XENA; + off++; + mac_control->rx_curr_put_info[ring_no].offset = off; +#endif + atomic_inc(&nic->rx_bufs_left[ring_no]); + alloc_tab++; + } + + end: + return SUCCESS; +} + +/** + * free_rx_buffers - Frees all Rx buffers + * @sp: device private variable. + * Description: + * This function will free all Rx buffers allocated by host. + * Return Value: + * NONE. + */ + +static void free_rx_buffers(struct s2io_nic *sp) +{ + struct net_device *dev = sp->dev; + int i, j, blk = 0, off, buf_cnt = 0; + RxD_t *rxdp; + struct sk_buff *skb; + mac_info_t *mac_control; + struct config_param *config; +#ifdef CONFIG_2BUFF_MODE + buffAdd_t *ba; +#endif + + mac_control = &sp->mac_control; + config = &sp->config; + + for (i = 0; i < config->rx_ring_num; i++) { + for (j = 0, blk = 0; j < config->rx_cfg[i].num_rxd; j++) { + off = j % (MAX_RXDS_PER_BLOCK + 1); + rxdp = sp->rx_blocks[i][blk].block_virt_addr + off; + +#ifndef CONFIG_2BUFF_MODE + if (rxdp->Control_1 == END_OF_BLOCK) { + rxdp = + (RxD_t *) ((unsigned long) rxdp-> + Control_2); + j++; + blk++; + } +#else + if (rxdp->Host_Control == END_OF_BLOCK) { + blk++; + continue; + } +#endif + + if (!(rxdp->Control_1 & RXD_OWN_XENA)) { + memset(rxdp, 0, sizeof(RxD_t)); + continue; + } + + skb = + (struct sk_buff *) ((unsigned long) rxdp-> + Host_Control); + if (skb) { +#ifndef CONFIG_2BUFF_MODE + pci_unmap_single(sp->pdev, (dma_addr_t) + rxdp->Buffer0_ptr, + dev->mtu + + HEADER_ETHERNET_II_802_3_SIZE + + HEADER_802_2_SIZE + + HEADER_SNAP_SIZE, + PCI_DMA_FROMDEVICE); +#else + ba = &sp->ba[i][blk][off]; + pci_unmap_single(sp->pdev, (dma_addr_t) + rxdp->Buffer0_ptr, + BUF0_LEN, + PCI_DMA_FROMDEVICE); + pci_unmap_single(sp->pdev, (dma_addr_t) + rxdp->Buffer1_ptr, + BUF1_LEN, + PCI_DMA_FROMDEVICE); + pci_unmap_single(sp->pdev, (dma_addr_t) + rxdp->Buffer2_ptr, + dev->mtu + BUF0_LEN + 4, + PCI_DMA_FROMDEVICE); +#endif + dev_kfree_skb(skb); + atomic_dec(&sp->rx_bufs_left[i]); + buf_cnt++; + } + memset(rxdp, 0, sizeof(RxD_t)); + } + mac_control->rx_curr_put_info[i].block_index = 0; + mac_control->rx_curr_get_info[i].block_index = 0; + mac_control->rx_curr_put_info[i].offset = 0; + mac_control->rx_curr_get_info[i].offset = 0; + atomic_set(&sp->rx_bufs_left[i], 0); + DBG_PRINT(INIT_DBG, "%s:Freed 0x%x Rx Buffers on ring%d\n", + dev->name, buf_cnt, i); + } +} + +/** + * s2io_poll - Rx interrupt handler for NAPI support + * @dev : pointer to the device structure. + * @budget : The number of packets that were budgeted to be processed + * during one pass through the 'Poll" function. + * Description: + * Comes into picture only if NAPI support has been incorporated. It does + * the same thing that rx_intr_handler does, but not in a interrupt context + * also It will process only a given number of packets. + * Return value: + * 0 on success and 1 if there are No Rx packets to be processed. + */ + +#ifdef CONFIG_S2IO_NAPI +static int s2io_poll(struct net_device *dev, int *budget) +{ + nic_t *nic = dev->priv; + XENA_dev_config_t __iomem *bar0 = nic->bar0; + int pkts_to_process = *budget, pkt_cnt = 0; + register u64 val64 = 0; + rx_curr_get_info_t get_info, put_info; + int i, get_block, put_block, get_offset, put_offset, ring_bufs; +#ifndef CONFIG_2BUFF_MODE + u16 val16, cksum; +#endif + struct sk_buff *skb; + RxD_t *rxdp; + mac_info_t *mac_control; + struct config_param *config; +#ifdef CONFIG_2BUFF_MODE + buffAdd_t *ba; +#endif + + mac_control = &nic->mac_control; + config = &nic->config; + + if (pkts_to_process > dev->quota) + pkts_to_process = dev->quota; + + val64 = readq(&bar0->rx_traffic_int); + writeq(val64, &bar0->rx_traffic_int); + + for (i = 0; i < config->rx_ring_num; i++) { + get_info = mac_control->rx_curr_get_info[i]; + get_block = get_info.block_index; + put_info = mac_control->rx_curr_put_info[i]; + put_block = put_info.block_index; + ring_bufs = config->rx_cfg[i].num_rxd; + rxdp = nic->rx_blocks[i][get_block].block_virt_addr + + get_info.offset; +#ifndef CONFIG_2BUFF_MODE + get_offset = (get_block * (MAX_RXDS_PER_BLOCK + 1)) + + get_info.offset; + put_offset = (put_block * (MAX_RXDS_PER_BLOCK + 1)) + + put_info.offset; + while ((!(rxdp->Control_1 & RXD_OWN_XENA)) && + (((get_offset + 1) % ring_bufs) != put_offset)) { + if (--pkts_to_process < 0) { + goto no_rx; + } + if (rxdp->Control_1 == END_OF_BLOCK) { + rxdp = + (RxD_t *) ((unsigned long) rxdp-> + Control_2); + get_info.offset++; + get_info.offset %= + (MAX_RXDS_PER_BLOCK + 1); + get_block++; + get_block %= nic->block_count[i]; + mac_control->rx_curr_get_info[i]. + offset = get_info.offset; + mac_control->rx_curr_get_info[i]. + block_index = get_block; + continue; + } + get_offset = + (get_block * (MAX_RXDS_PER_BLOCK + 1)) + + get_info.offset; + skb = + (struct sk_buff *) ((unsigned long) rxdp-> + Host_Control); + if (skb == NULL) { + DBG_PRINT(ERR_DBG, "%s: The skb is ", + dev->name); + DBG_PRINT(ERR_DBG, "Null in Rx Intr\n"); + goto no_rx; + } + val64 = RXD_GET_BUFFER0_SIZE(rxdp->Control_2); + val16 = (u16) (val64 >> 48); + cksum = RXD_GET_L4_CKSUM(rxdp->Control_1); + pci_unmap_single(nic->pdev, (dma_addr_t) + rxdp->Buffer0_ptr, + dev->mtu + + HEADER_ETHERNET_II_802_3_SIZE + + HEADER_802_2_SIZE + + HEADER_SNAP_SIZE, + PCI_DMA_FROMDEVICE); + rx_osm_handler(nic, val16, rxdp, i); + pkt_cnt++; + get_info.offset++; + get_info.offset %= (MAX_RXDS_PER_BLOCK + 1); + rxdp = + nic->rx_blocks[i][get_block].block_virt_addr + + get_info.offset; + mac_control->rx_curr_get_info[i].offset = + get_info.offset; + } +#else + get_offset = (get_block * (MAX_RXDS_PER_BLOCK + 1)) + + get_info.offset; + put_offset = (put_block * (MAX_RXDS_PER_BLOCK + 1)) + + put_info.offset; + while (((!(rxdp->Control_1 & RXD_OWN_XENA)) && + !(rxdp->Control_2 & BIT(0))) && + (((get_offset + 1) % ring_bufs) != put_offset)) { + if (--pkts_to_process < 0) { + goto no_rx; + } + skb = (struct sk_buff *) ((unsigned long) + rxdp->Host_Control); + if (skb == NULL) { + DBG_PRINT(ERR_DBG, "%s: The skb is ", + dev->name); + DBG_PRINT(ERR_DBG, "Null in Rx Intr\n"); + goto no_rx; + } + + pci_unmap_single(nic->pdev, (dma_addr_t) + rxdp->Buffer0_ptr, + BUF0_LEN, PCI_DMA_FROMDEVICE); + pci_unmap_single(nic->pdev, (dma_addr_t) + rxdp->Buffer1_ptr, + BUF1_LEN, PCI_DMA_FROMDEVICE); + pci_unmap_single(nic->pdev, (dma_addr_t) + rxdp->Buffer2_ptr, + dev->mtu + BUF0_LEN + 4, + PCI_DMA_FROMDEVICE); + ba = &nic->ba[i][get_block][get_info.offset]; + + rx_osm_handler(nic, rxdp, i, ba); + + get_info.offset++; + mac_control->rx_curr_get_info[i].offset = + get_info.offset; + rxdp = + nic->rx_blocks[i][get_block].block_virt_addr + + get_info.offset; + + if (get_info.offset && + (!(get_info.offset % MAX_RXDS_PER_BLOCK))) { + get_info.offset = 0; + mac_control->rx_curr_get_info[i]. + offset = get_info.offset; + get_block++; + get_block %= nic->block_count[i]; + mac_control->rx_curr_get_info[i]. + block_index = get_block; + rxdp = + nic->rx_blocks[i][get_block]. + block_virt_addr; + } + get_offset = + (get_block * (MAX_RXDS_PER_BLOCK + 1)) + + get_info.offset; + pkt_cnt++; + } +#endif + } + if (!pkt_cnt) + pkt_cnt = 1; + + dev->quota -= pkt_cnt; + *budget -= pkt_cnt; + netif_rx_complete(dev); + + for (i = 0; i < config->rx_ring_num; i++) { + if (fill_rx_buffers(nic, i) == -ENOMEM) { + DBG_PRINT(ERR_DBG, "%s:Out of memory", dev->name); + DBG_PRINT(ERR_DBG, " in Rx Poll!!\n"); + break; + } + } + /* Re enable the Rx interrupts. */ + en_dis_able_nic_intrs(nic, RX_TRAFFIC_INTR, ENABLE_INTRS); + return 0; + + no_rx: + dev->quota -= pkt_cnt; + *budget -= pkt_cnt; + + for (i = 0; i < config->rx_ring_num; i++) { + if (fill_rx_buffers(nic, i) == -ENOMEM) { + DBG_PRINT(ERR_DBG, "%s:Out of memory", dev->name); + DBG_PRINT(ERR_DBG, " in Rx Poll!!\n"); + break; + } + } + return 1; +} +#else +/** + * rx_intr_handler - Rx interrupt handler + * @nic: device private variable. + * Description: + * If the interrupt is because of a received frame or if the + * receive ring contains fresh as yet un-processed frames,this function is + * called. It picks out the RxD at which place the last Rx processing had + * stopped and sends the skb to the OSM's Rx handler and then increments + * the offset. + * Return Value: + * NONE. + */ + +static void rx_intr_handler(struct s2io_nic *nic) +{ + struct net_device *dev = (struct net_device *) nic->dev; + XENA_dev_config_t *bar0 = (XENA_dev_config_t *) nic->bar0; + rx_curr_get_info_t get_info, put_info; + RxD_t *rxdp; + struct sk_buff *skb; +#ifndef CONFIG_2BUFF_MODE + u16 val16, cksum; +#endif + register u64 val64 = 0; + int get_block, get_offset, put_block, put_offset, ring_bufs; + int i, pkt_cnt = 0; + mac_info_t *mac_control; + struct config_param *config; +#ifdef CONFIG_2BUFF_MODE + buffAdd_t *ba; +#endif + + mac_control = &nic->mac_control; + config = &nic->config; + + /* + * rx_traffic_int reg is an R1 register, hence we read and write back + * the samevalue in the register to clear it. + */ + val64 = readq(&bar0->rx_traffic_int); + writeq(val64, &bar0->rx_traffic_int); + + for (i = 0; i < config->rx_ring_num; i++) { + get_info = mac_control->rx_curr_get_info[i]; + get_block = get_info.block_index; + put_info = mac_control->rx_curr_put_info[i]; + put_block = put_info.block_index; + ring_bufs = config->rx_cfg[i].num_rxd; + rxdp = nic->rx_blocks[i][get_block].block_virt_addr + + get_info.offset; +#ifndef CONFIG_2BUFF_MODE + get_offset = (get_block * (MAX_RXDS_PER_BLOCK + 1)) + + get_info.offset; + spin_lock(&nic->put_lock); + put_offset = nic->put_pos[i]; + spin_unlock(&nic->put_lock); + while ((!(rxdp->Control_1 & RXD_OWN_XENA)) && + (((get_offset + 1) % ring_bufs) != put_offset)) { + if (rxdp->Control_1 == END_OF_BLOCK) { + rxdp = (RxD_t *) ((unsigned long) + rxdp->Control_2); + get_info.offset++; + get_info.offset %= + (MAX_RXDS_PER_BLOCK + 1); + get_block++; + get_block %= nic->block_count[i]; + mac_control->rx_curr_get_info[i]. + offset = get_info.offset; + mac_control->rx_curr_get_info[i]. + block_index = get_block; + continue; + } + get_offset = + (get_block * (MAX_RXDS_PER_BLOCK + 1)) + + get_info.offset; + skb = (struct sk_buff *) ((unsigned long) + rxdp->Host_Control); + if (skb == NULL) { + DBG_PRINT(ERR_DBG, "%s: The skb is ", + dev->name); + DBG_PRINT(ERR_DBG, "Null in Rx Intr\n"); + return; + } + val64 = RXD_GET_BUFFER0_SIZE(rxdp->Control_2); + val16 = (u16) (val64 >> 48); + cksum = RXD_GET_L4_CKSUM(rxdp->Control_1); + pci_unmap_single(nic->pdev, (dma_addr_t) + rxdp->Buffer0_ptr, + dev->mtu + + HEADER_ETHERNET_II_802_3_SIZE + + HEADER_802_2_SIZE + + HEADER_SNAP_SIZE, + PCI_DMA_FROMDEVICE); + rx_osm_handler(nic, val16, rxdp, i); + get_info.offset++; + get_info.offset %= (MAX_RXDS_PER_BLOCK + 1); + rxdp = + nic->rx_blocks[i][get_block].block_virt_addr + + get_info.offset; + mac_control->rx_curr_get_info[i].offset = + get_info.offset; + pkt_cnt++; + if ((indicate_max_pkts) + && (pkt_cnt > indicate_max_pkts)) + break; + } +#else + get_offset = (get_block * (MAX_RXDS_PER_BLOCK + 1)) + + get_info.offset; + spin_lock(&nic->put_lock); + put_offset = nic->put_pos[i]; + spin_unlock(&nic->put_lock); + while (((!(rxdp->Control_1 & RXD_OWN_XENA)) && + !(rxdp->Control_2 & BIT(0))) && + (((get_offset + 1) % ring_bufs) != put_offset)) { + skb = (struct sk_buff *) ((unsigned long) + rxdp->Host_Control); + if (skb == NULL) { + DBG_PRINT(ERR_DBG, "%s: The skb is ", + dev->name); + DBG_PRINT(ERR_DBG, "Null in Rx Intr\n"); + return; + } + + pci_unmap_single(nic->pdev, (dma_addr_t) + rxdp->Buffer0_ptr, + BUF0_LEN, PCI_DMA_FROMDEVICE); + pci_unmap_single(nic->pdev, (dma_addr_t) + rxdp->Buffer1_ptr, + BUF1_LEN, PCI_DMA_FROMDEVICE); + pci_unmap_single(nic->pdev, (dma_addr_t) + rxdp->Buffer2_ptr, + dev->mtu + BUF0_LEN + 4, + PCI_DMA_FROMDEVICE); + ba = &nic->ba[i][get_block][get_info.offset]; + + rx_osm_handler(nic, rxdp, i, ba); + + get_info.offset++; + mac_control->rx_curr_get_info[i].offset = + get_info.offset; + rxdp = + nic->rx_blocks[i][get_block].block_virt_addr + + get_info.offset; + + if (get_info.offset && + (!(get_info.offset % MAX_RXDS_PER_BLOCK))) { + get_info.offset = 0; + mac_control->rx_curr_get_info[i]. + offset = get_info.offset; + get_block++; + get_block %= nic->block_count[i]; + mac_control->rx_curr_get_info[i]. + block_index = get_block; + rxdp = + nic->rx_blocks[i][get_block]. + block_virt_addr; + } + get_offset = + (get_block * (MAX_RXDS_PER_BLOCK + 1)) + + get_info.offset; + pkt_cnt++; + if ((indicate_max_pkts) + && (pkt_cnt > indicate_max_pkts)) + break; + } +#endif + if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts)) + break; + } +} +#endif +/** + * tx_intr_handler - Transmit interrupt handler + * @nic : device private variable + * Description: + * If an interrupt was raised to indicate DMA complete of the + * Tx packet, this function is called. It identifies the last TxD + * whose buffer was freed and frees all skbs whose data have already + * DMA'ed into the NICs internal memory. + * Return Value: + * NONE + */ + +static void tx_intr_handler(struct s2io_nic *nic) +{ + XENA_dev_config_t __iomem *bar0 = nic->bar0; + struct net_device *dev = (struct net_device *) nic->dev; + tx_curr_get_info_t get_info, put_info; + struct sk_buff *skb; + TxD_t *txdlp; + register u64 val64 = 0; + int i; + u16 j, frg_cnt; + mac_info_t *mac_control; + struct config_param *config; + + mac_control = &nic->mac_control; + config = &nic->config; + + /* + * tx_traffic_int reg is an R1 register, hence we read and write + * back the samevalue in the register to clear it. + */ + val64 = readq(&bar0->tx_traffic_int); + writeq(val64, &bar0->tx_traffic_int); + + for (i = 0; i < config->tx_fifo_num; i++) { + get_info = mac_control->tx_curr_get_info[i]; + put_info = mac_control->tx_curr_put_info[i]; + txdlp = (TxD_t *) nic->list_info[i][get_info.offset]. + list_virt_addr; + while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) && + (get_info.offset != put_info.offset) && + (txdlp->Host_Control)) { + /* Check for TxD errors */ + if (txdlp->Control_1 & TXD_T_CODE) { + unsigned long long err; + err = txdlp->Control_1 & TXD_T_CODE; + DBG_PRINT(ERR_DBG, "***TxD error %llx\n", + err); + } + + skb = (struct sk_buff *) ((unsigned long) + txdlp->Host_Control); + if (skb == NULL) { + DBG_PRINT(ERR_DBG, "%s: Null skb ", + dev->name); + DBG_PRINT(ERR_DBG, "in Tx Free Intr\n"); + return; + } + nic->tx_pkt_count++; + + frg_cnt = skb_shinfo(skb)->nr_frags; + + /* For unfragmented skb */ + pci_unmap_single(nic->pdev, (dma_addr_t) + txdlp->Buffer_Pointer, + skb->len - skb->data_len, + PCI_DMA_TODEVICE); + if (frg_cnt) { + TxD_t *temp = txdlp; + txdlp++; + for (j = 0; j < frg_cnt; j++, txdlp++) { + skb_frag_t *frag = + &skb_shinfo(skb)->frags[j]; + pci_unmap_page(nic->pdev, + (dma_addr_t) + txdlp-> + Buffer_Pointer, + frag->size, + PCI_DMA_TODEVICE); + } + txdlp = temp; + } + memset(txdlp, 0, + (sizeof(TxD_t) * config->max_txds)); + + /* Updating the statistics block */ + nic->stats.tx_packets++; + nic->stats.tx_bytes += skb->len; + dev_kfree_skb_irq(skb); + + get_info.offset++; + get_info.offset %= get_info.fifo_len + 1; + txdlp = (TxD_t *) nic->list_info[i] + [get_info.offset].list_virt_addr; + mac_control->tx_curr_get_info[i].offset = + get_info.offset; + } + } + + spin_lock(&nic->tx_lock); + if (netif_queue_stopped(dev)) + netif_wake_queue(dev); + spin_unlock(&nic->tx_lock); +} + +/** + * alarm_intr_handler - Alarm Interrrupt handler + * @nic: device private variable + * Description: If the interrupt was neither because of Rx packet or Tx + * complete, this function is called. If the interrupt was to indicate + * a loss of link, the OSM link status handler is invoked for any other + * alarm interrupt the block that raised the interrupt is displayed + * and a H/W reset is issued. + * Return Value: + * NONE +*/ + +static void alarm_intr_handler(struct s2io_nic *nic) +{ + struct net_device *dev = (struct net_device *) nic->dev; + XENA_dev_config_t __iomem *bar0 = nic->bar0; + register u64 val64 = 0, err_reg = 0; + + /* Handling link status change error Intr */ + err_reg = readq(&bar0->mac_rmac_err_reg); + writeq(err_reg, &bar0->mac_rmac_err_reg); + if (err_reg & RMAC_LINK_STATE_CHANGE_INT) { + schedule_work(&nic->set_link_task); + } + + /* In case of a serious error, the device will be Reset. */ + val64 = readq(&bar0->serr_source); + if (val64 & SERR_SOURCE_ANY) { + DBG_PRINT(ERR_DBG, "%s: Device indicates ", dev->name); + DBG_PRINT(ERR_DBG, "serious error!!\n"); + netif_stop_queue(dev); + schedule_work(&nic->rst_timer_task); + } + + /* + * Also as mentioned in the latest Errata sheets if the PCC_FB_ECC + * Error occurs, the adapter will be recycled by disabling the + * adapter enable bit and enabling it again after the device + * becomes Quiescent. + */ + val64 = readq(&bar0->pcc_err_reg); + writeq(val64, &bar0->pcc_err_reg); + if (val64 & PCC_FB_ECC_DB_ERR) { + u64 ac = readq(&bar0->adapter_control); + ac &= ~(ADAPTER_CNTL_EN); + writeq(ac, &bar0->adapter_control); + ac = readq(&bar0->adapter_control); + schedule_work(&nic->set_link_task); + } + + /* Other type of interrupts are not being handled now, TODO */ +} + +/** + * wait_for_cmd_complete - waits for a command to complete. + * @sp : private member of the device structure, which is a pointer to the + * s2io_nic structure. + * Description: Function that waits for a command to Write into RMAC + * ADDR DATA registers to be completed and returns either success or + * error depending on whether the command was complete or not. + * Return value: + * SUCCESS on success and FAILURE on failure. + */ + +static int wait_for_cmd_complete(nic_t * sp) +{ + XENA_dev_config_t __iomem *bar0 = sp->bar0; + int ret = FAILURE, cnt = 0; + u64 val64; + + while (TRUE) { + val64 = readq(&bar0->rmac_addr_cmd_mem); + if (!(val64 & RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING)) { + ret = SUCCESS; + break; + } + msleep(50); + if (cnt++ > 10) + break; + } + + return ret; +} + +/** + * s2io_reset - Resets the card. + * @sp : private member of the device structure. + * Description: Function to Reset the card. This function then also + * restores the previously saved PCI configuration space registers as + * the card reset also resets the configuration space. + * Return value: + * void. + */ + +static void s2io_reset(nic_t * sp) +{ + XENA_dev_config_t __iomem *bar0 = sp->bar0; + u64 val64; + u16 subid; + + val64 = SW_RESET_ALL; + writeq(val64, &bar0->sw_reset); + + /* + * At this stage, if the PCI write is indeed completed, the + * card is reset and so is the PCI Config space of the device. + * So a read cannot be issued at this stage on any of the + * registers to ensure the write into "sw_reset" register + * has gone through. + * Question: Is there any system call that will explicitly force + * all the write commands still pending on the bus to be pushed + * through? + * As of now I'am just giving a 250ms delay and hoping that the + * PCI write to sw_reset register is done by this time. + */ + msleep(250); + + /* Restore the PCI state saved during initializarion. */ + pci_restore_state(sp->pdev); + s2io_init_pci(sp); + + msleep(250); + + /* SXE-002: Configure link and activity LED to turn it off */ + subid = sp->pdev->subsystem_device; + if ((subid & 0xFF) >= 0x07) { + val64 = readq(&bar0->gpio_control); + val64 |= 0x0000800000000000ULL; + writeq(val64, &bar0->gpio_control); + val64 = 0x0411040400000000ULL; + writeq(val64, (void __iomem *) bar0 + 0x2700); + } + + sp->device_enabled_once = FALSE; +} + +/** + * s2io_set_swapper - to set the swapper controle on the card + * @sp : private member of the device structure, + * pointer to the s2io_nic structure. + * Description: Function to set the swapper control on the card + * correctly depending on the 'endianness' of the system. + * Return value: + * SUCCESS on success and FAILURE on failure. + */ + +static int s2io_set_swapper(nic_t * sp) +{ + struct net_device *dev = sp->dev; + XENA_dev_config_t __iomem *bar0 = sp->bar0; + u64 val64, valt, valr; + + /* + * Set proper endian settings and verify the same by reading + * the PIF Feed-back register. + */ + + val64 = readq(&bar0->pif_rd_swapper_fb); + if (val64 != 0x0123456789ABCDEFULL) { + int i = 0; + u64 value[] = { 0xC30000C3C30000C3ULL, /* FE=1, SE=1 */ + 0x8100008181000081ULL, /* FE=1, SE=0 */ + 0x4200004242000042ULL, /* FE=0, SE=1 */ + 0}; /* FE=0, SE=0 */ + + while(i<4) { + writeq(value[i], &bar0->swapper_ctrl); + val64 = readq(&bar0->pif_rd_swapper_fb); + if (val64 == 0x0123456789ABCDEFULL) + break; + i++; + } + if (i == 4) { + DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ", + dev->name); + DBG_PRINT(ERR_DBG, "feedback read %llx\n", + (unsigned long long) val64); + return FAILURE; + } + valr = value[i]; + } else { + valr = readq(&bar0->swapper_ctrl); + } + + valt = 0x0123456789ABCDEFULL; + writeq(valt, &bar0->xmsi_address); + val64 = readq(&bar0->xmsi_address); + + if(val64 != valt) { + int i = 0; + u64 value[] = { 0x00C3C30000C3C300ULL, /* FE=1, SE=1 */ + 0x0081810000818100ULL, /* FE=1, SE=0 */ + 0x0042420000424200ULL, /* FE=0, SE=1 */ + 0}; /* FE=0, SE=0 */ + + while(i<4) { + writeq((value[i] | valr), &bar0->swapper_ctrl); + writeq(valt, &bar0->xmsi_address); + val64 = readq(&bar0->xmsi_address); + if(val64 == valt) + break; + i++; + } + if(i == 4) { + DBG_PRINT(ERR_DBG, "Write failed, Xmsi_addr "); + DBG_PRINT(ERR_DBG, "reads:0x%llx\n",val64); + return FAILURE; + } + } + val64 = readq(&bar0->swapper_ctrl); + val64 &= 0xFFFF000000000000ULL; + +#ifdef __BIG_ENDIAN + /* + * The device by default set to a big endian format, so a + * big endian driver need not set anything. + */ + val64 |= (SWAPPER_CTRL_TXP_FE | + SWAPPER_CTRL_TXP_SE | + SWAPPER_CTRL_TXD_R_FE | + SWAPPER_CTRL_TXD_W_FE | + SWAPPER_CTRL_TXF_R_FE | + SWAPPER_CTRL_RXD_R_FE | + SWAPPER_CTRL_RXD_W_FE | + SWAPPER_CTRL_RXF_W_FE | + SWAPPER_CTRL_XMSI_FE | + SWAPPER_CTRL_XMSI_SE | + SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE); + writeq(val64, &bar0->swapper_ctrl); +#else + /* + * Initially we enable all bits to make it accessible by the + * driver, then we selectively enable only those bits that + * we want to set. + */ + val64 |= (SWAPPER_CTRL_TXP_FE | + SWAPPER_CTRL_TXP_SE | + SWAPPER_CTRL_TXD_R_FE | + SWAPPER_CTRL_TXD_R_SE | + SWAPPER_CTRL_TXD_W_FE | + SWAPPER_CTRL_TXD_W_SE | + SWAPPER_CTRL_TXF_R_FE | + SWAPPER_CTRL_RXD_R_FE | + SWAPPER_CTRL_RXD_R_SE | + SWAPPER_CTRL_RXD_W_FE | + SWAPPER_CTRL_RXD_W_SE | + SWAPPER_CTRL_RXF_W_FE | + SWAPPER_CTRL_XMSI_FE | + SWAPPER_CTRL_XMSI_SE | + SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE); + writeq(val64, &bar0->swapper_ctrl); +#endif + val64 = readq(&bar0->swapper_ctrl); + + /* + * Verifying if endian settings are accurate by reading a + * feedback register. + */ + val64 = readq(&bar0->pif_rd_swapper_fb); + if (val64 != 0x0123456789ABCDEFULL) { + /* Endian settings are incorrect, calls for another dekko. */ + DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ", + dev->name); + DBG_PRINT(ERR_DBG, "feedback read %llx\n", + (unsigned long long) val64); + return FAILURE; + } + + return SUCCESS; +} + +/* ********************************************************* * + * Functions defined below concern the OS part of the driver * + * ********************************************************* */ + +/** + * s2io_open - open entry point of the driver + * @dev : pointer to the device structure. + * Description: + * This function is the open entry point of the driver. It mainly calls a + * function to allocate Rx buffers and inserts them into the buffer + * descriptors and then enables the Rx part of the NIC. + * Return value: + * 0 on success and an appropriate (-)ve integer as defined in errno.h + * file on failure. + */ + +static int s2io_open(struct net_device *dev) +{ + nic_t *sp = dev->priv; + int err = 0; + + /* + * Make sure you have link off by default every time + * Nic is initialized + */ + netif_carrier_off(dev); + sp->last_link_state = LINK_DOWN; + + /* Initialize H/W and enable interrupts */ + if (s2io_card_up(sp)) { + DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n", + dev->name); + return -ENODEV; + } + + /* After proper initialization of H/W, register ISR */ + err = request_irq((int) sp->irq, s2io_isr, SA_SHIRQ, + sp->name, dev); + if (err) { + s2io_reset(sp); + DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n", + dev->name); + return err; + } + + if (s2io_set_mac_addr(dev, dev->dev_addr) == FAILURE) { + DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n"); + s2io_reset(sp); + return -ENODEV; + } + + netif_start_queue(dev); + return 0; +} + +/** + * s2io_close -close entry point of the driver + * @dev : device pointer. + * Description: + * This is the stop entry point of the driver. It needs to undo exactly + * whatever was done by the open entry point,thus it's usually referred to + * as the close function.Among other things this function mainly stops the + * Rx side of the NIC and frees all the Rx buffers in the Rx rings. + * Return value: + * 0 on success and an appropriate (-)ve integer as defined in errno.h + * file on failure. + */ + +static int s2io_close(struct net_device *dev) +{ + nic_t *sp = dev->priv; + + flush_scheduled_work(); + netif_stop_queue(dev); + /* Reset card, kill tasklet and free Tx and Rx buffers. */ + s2io_card_down(sp); + + free_irq(dev->irq, dev); + sp->device_close_flag = TRUE; /* Device is shut down. */ + return 0; +} + +/** + * s2io_xmit - Tx entry point of te driver + * @skb : the socket buffer containing the Tx data. + * @dev : device pointer. + * Description : + * This function is the Tx entry point of the driver. S2IO NIC supports + * certain protocol assist features on Tx side, namely CSO, S/G, LSO. + * NOTE: when device cant queue the pkt,just the trans_start variable will + * not be upadted. + * Return value: + * 0 on success & 1 on failure. + */ + +static int s2io_xmit(struct sk_buff *skb, struct net_device *dev) +{ + nic_t *sp = dev->priv; + u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off; + register u64 val64; + TxD_t *txdp; + TxFIFO_element_t __iomem *tx_fifo; + unsigned long flags; +#ifdef NETIF_F_TSO + int mss; +#endif + mac_info_t *mac_control; + struct config_param *config; + XENA_dev_config_t __iomem *bar0 = sp->bar0; + + mac_control = &sp->mac_control; + config = &sp->config; + + DBG_PRINT(TX_DBG, "%s: In S2IO Tx routine\n", dev->name); + spin_lock_irqsave(&sp->tx_lock, flags); + + if (atomic_read(&sp->card_state) == CARD_DOWN) { + DBG_PRINT(ERR_DBG, "%s: Card going down for reset\n", + dev->name); + spin_unlock_irqrestore(&sp->tx_lock, flags); + return 1; + } + + queue = 0; + put_off = (u16) mac_control->tx_curr_put_info[queue].offset; + get_off = (u16) mac_control->tx_curr_get_info[queue].offset; + txdp = (TxD_t *) sp->list_info[queue][put_off].list_virt_addr; + + queue_len = mac_control->tx_curr_put_info[queue].fifo_len + 1; + /* Avoid "put" pointer going beyond "get" pointer */ + if (txdp->Host_Control || (((put_off + 1) % queue_len) == get_off)) { + DBG_PRINT(ERR_DBG, "Error in xmit, No free TXDs.\n"); + netif_stop_queue(dev); + dev_kfree_skb(skb); + spin_unlock_irqrestore(&sp->tx_lock, flags); + return 0; + } +#ifdef NETIF_F_TSO + mss = skb_shinfo(skb)->tso_size; + if (mss) { + txdp->Control_1 |= TXD_TCP_LSO_EN; + txdp->Control_1 |= TXD_TCP_LSO_MSS(mss); + } +#endif + + frg_cnt = skb_shinfo(skb)->nr_frags; + frg_len = skb->len - skb->data_len; + + txdp->Host_Control = (unsigned long) skb; + txdp->Buffer_Pointer = pci_map_single + (sp->pdev, skb->data, frg_len, PCI_DMA_TODEVICE); + if (skb->ip_summed == CHECKSUM_HW) { + txdp->Control_2 |= + (TXD_TX_CKO_IPV4_EN | TXD_TX_CKO_TCP_EN | + TXD_TX_CKO_UDP_EN); + } + + txdp->Control_2 |= config->tx_intr_type; + + txdp->Control_1 |= (TXD_BUFFER0_SIZE(frg_len) | + TXD_GATHER_CODE_FIRST); + txdp->Control_1 |= TXD_LIST_OWN_XENA; + + /* For fragmented SKB. */ + for (i = 0; i < frg_cnt; i++) { + skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; + txdp++; + txdp->Buffer_Pointer = (u64) pci_map_page + (sp->pdev, frag->page, frag->page_offset, + frag->size, PCI_DMA_TODEVICE); + txdp->Control_1 |= TXD_BUFFER0_SIZE(frag->size); + } + txdp->Control_1 |= TXD_GATHER_CODE_LAST; + + tx_fifo = mac_control->tx_FIFO_start[queue]; + val64 = sp->list_info[queue][put_off].list_phy_addr; + writeq(val64, &tx_fifo->TxDL_Pointer); + + val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST | + TX_FIFO_LAST_LIST); +#ifdef NETIF_F_TSO + if (mss) + val64 |= TX_FIFO_SPECIAL_FUNC; +#endif + writeq(val64, &tx_fifo->List_Control); + + /* Perform a PCI read to flush previous writes */ + val64 = readq(&bar0->general_int_status); + + put_off++; + put_off %= mac_control->tx_curr_put_info[queue].fifo_len + 1; + mac_control->tx_curr_put_info[queue].offset = put_off; + + /* Avoid "put" pointer going beyond "get" pointer */ + if (((put_off + 1) % queue_len) == get_off) { + DBG_PRINT(TX_DBG, + "No free TxDs for xmit, Put: 0x%x Get:0x%x\n", + put_off, get_off); + netif_stop_queue(dev); + } + + dev->trans_start = jiffies; + spin_unlock_irqrestore(&sp->tx_lock, flags); + + return 0; +} + +/** + * s2io_isr - ISR handler of the device . + * @irq: the irq of the device. + * @dev_id: a void pointer to the dev structure of the NIC. + * @pt_regs: pointer to the registers pushed on the stack. + * Description: This function is the ISR handler of the device. It + * identifies the reason for the interrupt and calls the relevant + * service routines. As a contongency measure, this ISR allocates the + * recv buffers, if their numbers are below the panic value which is + * presently set to 25% of the original number of rcv buffers allocated. + * Return value: + * IRQ_HANDLED: will be returned if IRQ was handled by this routine + * IRQ_NONE: will be returned if interrupt is not from our device + */ +static irqreturn_t s2io_isr(int irq, void *dev_id, struct pt_regs *regs) +{ + struct net_device *dev = (struct net_device *) dev_id; + nic_t *sp = dev->priv; + XENA_dev_config_t __iomem *bar0 = sp->bar0; +#ifndef CONFIG_S2IO_NAPI + int i, ret; +#endif + u64 reason = 0; + mac_info_t *mac_control; + struct config_param *config; + + mac_control = &sp->mac_control; + config = &sp->config; + + /* + * Identify the cause for interrupt and call the appropriate + * interrupt handler. Causes for the interrupt could be; + * 1. Rx of packet. + * 2. Tx complete. + * 3. Link down. + * 4. Error in any functional blocks of the NIC. + */ + reason = readq(&bar0->general_int_status); + + if (!reason) { + /* The interrupt was not raised by Xena. */ + return IRQ_NONE; + } + + /* If Intr is because of Tx Traffic */ + if (reason & GEN_INTR_TXTRAFFIC) { + tx_intr_handler(sp); + } + + /* If Intr is because of an error */ + if (reason & (GEN_ERROR_INTR)) + alarm_intr_handler(sp); + +#ifdef CONFIG_S2IO_NAPI + if (reason & GEN_INTR_RXTRAFFIC) { + if (netif_rx_schedule_prep(dev)) { + en_dis_able_nic_intrs(sp, RX_TRAFFIC_INTR, + DISABLE_INTRS); + __netif_rx_schedule(dev); + } + } +#else + /* If Intr is because of Rx Traffic */ + if (reason & GEN_INTR_RXTRAFFIC) { + rx_intr_handler(sp); + } +#endif + + /* + * If the Rx buffer count is below the panic threshold then + * reallocate the buffers from the interrupt handler itself, + * else schedule a tasklet to reallocate the buffers. + */ +#ifndef CONFIG_S2IO_NAPI + for (i = 0; i < config->rx_ring_num; i++) { + int rxb_size = atomic_read(&sp->rx_bufs_left[i]); + int level = rx_buffer_level(sp, rxb_size, i); + + if ((level == PANIC) && (!TASKLET_IN_USE)) { + DBG_PRINT(INTR_DBG, "%s: Rx BD hit ", dev->name); + DBG_PRINT(INTR_DBG, "PANIC levels\n"); + if ((ret = fill_rx_buffers(sp, i)) == -ENOMEM) { + DBG_PRINT(ERR_DBG, "%s:Out of memory", + dev->name); + DBG_PRINT(ERR_DBG, " in ISR!!\n"); + clear_bit(0, (&sp->tasklet_status)); + return IRQ_HANDLED; + } + clear_bit(0, (&sp->tasklet_status)); + } else if (level == LOW) { + tasklet_schedule(&sp->task); + } + } +#endif + + return IRQ_HANDLED; +} + +/** + * s2io_get_stats - Updates the device statistics structure. + * @dev : pointer to the device structure. + * Description: + * This function updates the device statistics structure in the s2io_nic + * structure and returns a pointer to the same. + * Return value: + * pointer to the updated net_device_stats structure. + */ + +static struct net_device_stats *s2io_get_stats(struct net_device *dev) +{ + nic_t *sp = dev->priv; + mac_info_t *mac_control; + struct config_param *config; + + mac_control = &sp->mac_control; + config = &sp->config; + + sp->stats.tx_errors = mac_control->stats_info->tmac_any_err_frms; + sp->stats.rx_errors = mac_control->stats_info->rmac_drop_frms; + sp->stats.multicast = mac_control->stats_info->rmac_vld_mcst_frms; + sp->stats.rx_length_errors = + mac_control->stats_info->rmac_long_frms; + + return (&sp->stats); +} + +/** + * s2io_set_multicast - entry point for multicast address enable/disable. + * @dev : pointer to the device structure + * Description: + * This function is a driver entry point which gets called by the kernel + * whenever multicast addresses must be enabled/disabled. This also gets + * called to set/reset promiscuous mode. Depending on the deivce flag, we + * determine, if multicast address must be enabled or if promiscuous mode + * is to be disabled etc. + * Return value: + * void. + */ + +static void s2io_set_multicast(struct net_device *dev) +{ + int i, j, prev_cnt; + struct dev_mc_list *mclist; + nic_t *sp = dev->priv; + XENA_dev_config_t __iomem *bar0 = sp->bar0; + u64 val64 = 0, multi_mac = 0x010203040506ULL, mask = + 0xfeffffffffffULL; + u64 dis_addr = 0xffffffffffffULL, mac_addr = 0; + void __iomem *add; + + if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) { + /* Enable all Multicast addresses */ + writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac), + &bar0->rmac_addr_data0_mem); + writeq(RMAC_ADDR_DATA1_MEM_MASK(mask), + &bar0->rmac_addr_data1_mem); + val64 = RMAC_ADDR_CMD_MEM_WE | + RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD | + RMAC_ADDR_CMD_MEM_OFFSET(MAC_MC_ALL_MC_ADDR_OFFSET); + writeq(val64, &bar0->rmac_addr_cmd_mem); + /* Wait till command completes */ + wait_for_cmd_complete(sp); + + sp->m_cast_flg = 1; + sp->all_multi_pos = MAC_MC_ALL_MC_ADDR_OFFSET; + } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) { + /* Disable all Multicast addresses */ + writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr), + &bar0->rmac_addr_data0_mem); + val64 = RMAC_ADDR_CMD_MEM_WE | + RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD | + RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos); + writeq(val64, &bar0->rmac_addr_cmd_mem); + /* Wait till command completes */ + wait_for_cmd_complete(sp); + + sp->m_cast_flg = 0; + sp->all_multi_pos = 0; + } + + if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) { + /* Put the NIC into promiscuous mode */ + add = &bar0->mac_cfg; + val64 = readq(&bar0->mac_cfg); + val64 |= MAC_CFG_RMAC_PROM_ENABLE; + + writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); + writel((u32) val64, add); + writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); + writel((u32) (val64 >> 32), (add + 4)); + + val64 = readq(&bar0->mac_cfg); + sp->promisc_flg = 1; + DBG_PRINT(ERR_DBG, "%s: entered promiscuous mode\n", + dev->name); + } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) { + /* Remove the NIC from promiscuous mode */ + add = &bar0->mac_cfg; + val64 = readq(&bar0->mac_cfg); + val64 &= ~MAC_CFG_RMAC_PROM_ENABLE; + + writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); + writel((u32) val64, add); + writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); + writel((u32) (val64 >> 32), (add + 4)); + + val64 = readq(&bar0->mac_cfg); + sp->promisc_flg = 0; + DBG_PRINT(ERR_DBG, "%s: left promiscuous mode\n", + dev->name); + } + + /* Update individual M_CAST address list */ + if ((!sp->m_cast_flg) && dev->mc_count) { + if (dev->mc_count > + (MAX_ADDRS_SUPPORTED - MAC_MC_ADDR_START_OFFSET - 1)) { + DBG_PRINT(ERR_DBG, "%s: No more Rx filters ", + dev->name); + DBG_PRINT(ERR_DBG, "can be added, please enable "); + DBG_PRINT(ERR_DBG, "ALL_MULTI instead\n"); + return; + } + + prev_cnt = sp->mc_addr_count; + sp->mc_addr_count = dev->mc_count; + + /* Clear out the previous list of Mc in the H/W. */ + for (i = 0; i < prev_cnt; i++) { + writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr), + &bar0->rmac_addr_data0_mem); + writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL), + &bar0->rmac_addr_data1_mem); + val64 = RMAC_ADDR_CMD_MEM_WE | + RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD | + RMAC_ADDR_CMD_MEM_OFFSET + (MAC_MC_ADDR_START_OFFSET + i); + writeq(val64, &bar0->rmac_addr_cmd_mem); + + /* Wait for command completes */ + if (wait_for_cmd_complete(sp)) { + DBG_PRINT(ERR_DBG, "%s: Adding ", + dev->name); + DBG_PRINT(ERR_DBG, "Multicasts failed\n"); + return; + } + } + + /* Create the new Rx filter list and update the same in H/W. */ + for (i = 0, mclist = dev->mc_list; i < dev->mc_count; + i++, mclist = mclist->next) { + memcpy(sp->usr_addrs[i].addr, mclist->dmi_addr, + ETH_ALEN); + for (j = 0; j < ETH_ALEN; j++) { + mac_addr |= mclist->dmi_addr[j]; + mac_addr <<= 8; + } + mac_addr >>= 8; + writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr), + &bar0->rmac_addr_data0_mem); + writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL), + &bar0->rmac_addr_data1_mem); + + val64 = RMAC_ADDR_CMD_MEM_WE | + RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD | + RMAC_ADDR_CMD_MEM_OFFSET + (i + MAC_MC_ADDR_START_OFFSET); + writeq(val64, &bar0->rmac_addr_cmd_mem); + + /* Wait for command completes */ + if (wait_for_cmd_complete(sp)) { + DBG_PRINT(ERR_DBG, "%s: Adding ", + dev->name); + DBG_PRINT(ERR_DBG, "Multicasts failed\n"); + return; + } + } + } +} + +/** + * s2io_set_mac_addr - Programs the Xframe mac address + * @dev : pointer to the device structure. + * @addr: a uchar pointer to the new mac address which is to be set. + * Description : This procedure will program the Xframe to receive + * frames with new Mac Address + * Return value: SUCCESS on success and an appropriate (-)ve integer + * as defined in errno.h file on failure. + */ + +int s2io_set_mac_addr(struct net_device *dev, u8 * addr) +{ + nic_t *sp = dev->priv; + XENA_dev_config_t __iomem *bar0 = sp->bar0; + register u64 val64, mac_addr = 0; + int i; + + /* + * Set the new MAC address as the new unicast filter and reflect this + * change on the device address registered with the OS. It will be + * at offset 0. + */ + for (i = 0; i < ETH_ALEN; i++) { + mac_addr <<= 8; + mac_addr |= addr[i]; + } + + writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr), + &bar0->rmac_addr_data0_mem); + + val64 = + RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD | + RMAC_ADDR_CMD_MEM_OFFSET(0); + writeq(val64, &bar0->rmac_addr_cmd_mem); + /* Wait till command completes */ + if (wait_for_cmd_complete(sp)) { + DBG_PRINT(ERR_DBG, "%s: set_mac_addr failed\n", dev->name); + return FAILURE; + } + + return SUCCESS; +} + +/** + * s2io_ethtool_sset - Sets different link parameters. + * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure. + * @info: pointer to the structure with parameters given by ethtool to set + * link information. + * Description: + * The function sets different link parameters provided by the user onto + * the NIC. + * Return value: + * 0 on success. +*/ + +static int s2io_ethtool_sset(struct net_device *dev, + struct ethtool_cmd *info) +{ + nic_t *sp = dev->priv; + if ((info->autoneg == AUTONEG_ENABLE) || + (info->speed != SPEED_10000) || (info->duplex != DUPLEX_FULL)) + return -EINVAL; + else { + s2io_close(sp->dev); + s2io_open(sp->dev); + } + + return 0; +} + +/** + * s2io_ethtol_gset - Return link specific information. + * @sp : private member of the device structure, pointer to the + * s2io_nic structure. + * @info : pointer to the structure with parameters given by ethtool + * to return link information. + * Description: + * Returns link specific information like speed, duplex etc.. to ethtool. + * Return value : + * return 0 on success. + */ + +static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info) +{ + nic_t *sp = dev->priv; + info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE); + info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE); + info->port = PORT_FIBRE; + /* info->transceiver?? TODO */ + + if (netif_carrier_ok(sp->dev)) { + info->speed = 10000; + info->duplex = DUPLEX_FULL; + } else { + info->speed = -1; + info->duplex = -1; + } + + info->autoneg = AUTONEG_DISABLE; + return 0; +} + +/** + * s2io_ethtool_gdrvinfo - Returns driver specific information. + * @sp : private member of the device structure, which is a pointer to the + * s2io_nic structure. + * @info : pointer to the structure with parameters given by ethtool to + * return driver information. + * Description: + * Returns driver specefic information like name, version etc.. to ethtool. + * Return value: + * void + */ + +static void s2io_ethtool_gdrvinfo(struct net_device *dev, + struct ethtool_drvinfo *info) +{ + nic_t *sp = dev->priv; + + strncpy(info->driver, s2io_driver_name, sizeof(s2io_driver_name)); + strncpy(info->version, s2io_driver_version, + sizeof(s2io_driver_version)); + strncpy(info->fw_version, "", 32); + strncpy(info->bus_info, pci_name(sp->pdev), 32); + info->regdump_len = XENA_REG_SPACE; + info->eedump_len = XENA_EEPROM_SPACE; + info->testinfo_len = S2IO_TEST_LEN; + info->n_stats = S2IO_STAT_LEN; +} + +/** + * s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer. + * @sp: private member of the device structure, which is a pointer to the + * s2io_nic structure. + * @regs : pointer to the structure with parameters given by ethtool for + * dumping the registers. + * @reg_space: The input argumnet into which all the registers are dumped. + * Description: + * Dumps the entire register space of xFrame NIC into the user given + * buffer area. + * Return value : + * void . +*/ + +static void s2io_ethtool_gregs(struct net_device *dev, + struct ethtool_regs *regs, void *space) +{ + int i; + u64 reg; + u8 *reg_space = (u8 *) space; + nic_t *sp = dev->priv; + + regs->len = XENA_REG_SPACE; + regs->version = sp->pdev->subsystem_device; + + for (i = 0; i < regs->len; i += 8) { + reg = readq(sp->bar0 + i); + memcpy((reg_space + i), ®, 8); + } +} + +/** + * s2io_phy_id - timer function that alternates adapter LED. + * @data : address of the private member of the device structure, which + * is a pointer to the s2io_nic structure, provided as an u32. + * Description: This is actually the timer function that alternates the + * adapter LED bit of the adapter control bit to set/reset every time on + * invocation. The timer is set for 1/2 a second, hence tha NIC blinks + * once every second. +*/ +static void s2io_phy_id(unsigned long data) +{ + nic_t *sp = (nic_t *) data; + XENA_dev_config_t __iomem *bar0 = sp->bar0; + u64 val64 = 0; + u16 subid; + + subid = sp->pdev->subsystem_device; + if ((subid & 0xFF) >= 0x07) { + val64 = readq(&bar0->gpio_control); + val64 ^= GPIO_CTRL_GPIO_0; + writeq(val64, &bar0->gpio_control); + } else { + val64 = readq(&bar0->adapter_control); + val64 ^= ADAPTER_LED_ON; + writeq(val64, &bar0->adapter_control); + } + + mod_timer(&sp->id_timer, jiffies + HZ / 2); +} + +/** + * s2io_ethtool_idnic - To physically identify the nic on the system. + * @sp : private member of the device structure, which is a pointer to the + * s2io_nic structure. + * @id : pointer to the structure with identification parameters given by + * ethtool. + * Description: Used to physically identify the NIC on the system. + * The Link LED will blink for a time specified by the user for + * identification. + * NOTE: The Link has to be Up to be able to blink the LED. Hence + * identification is possible only if it's link is up. + * Return value: + * int , returns 0 on success + */ + +static int s2io_ethtool_idnic(struct net_device *dev, u32 data) +{ + u64 val64 = 0, last_gpio_ctrl_val; + nic_t *sp = dev->priv; + XENA_dev_config_t __iomem *bar0 = sp->bar0; + u16 subid; + + subid = sp->pdev->subsystem_device; + last_gpio_ctrl_val = readq(&bar0->gpio_control); + if ((subid & 0xFF) < 0x07) { + val64 = readq(&bar0->adapter_control); + if (!(val64 & ADAPTER_CNTL_EN)) { + printk(KERN_ERR + "Adapter Link down, cannot blink LED\n"); + return -EFAULT; + } + } + if (sp->id_timer.function == NULL) { + init_timer(&sp->id_timer); + sp->id_timer.function = s2io_phy_id; + sp->id_timer.data = (unsigned long) sp; + } + mod_timer(&sp->id_timer, jiffies); + if (data) + msleep(data * 1000); + else + msleep(0xFFFFFFFF); + del_timer_sync(&sp->id_timer); + + if (CARDS_WITH_FAULTY_LINK_INDICATORS(subid)) { + writeq(last_gpio_ctrl_val, &bar0->gpio_control); + last_gpio_ctrl_val = readq(&bar0->gpio_control); + } + + return 0; +} + +/** + * s2io_ethtool_getpause_data -Pause frame frame generation and reception. + * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure. + * @ep : pointer to the structure with pause parameters given by ethtool. + * Description: + * Returns the Pause frame generation and reception capability of the NIC. + * Return value: + * void + */ +static void s2io_ethtool_getpause_data(struct net_device *dev, + struct ethtool_pauseparam *ep) +{ + u64 val64; + nic_t *sp = dev->priv; + XENA_dev_config_t __iomem *bar0 = sp->bar0; + + val64 = readq(&bar0->rmac_pause_cfg); + if (val64 & RMAC_PAUSE_GEN_ENABLE) + ep->tx_pause = TRUE; + if (val64 & RMAC_PAUSE_RX_ENABLE) + ep->rx_pause = TRUE; + ep->autoneg = FALSE; +} + +/** + * s2io_ethtool_setpause_data - set/reset pause frame generation. + * @sp : private member of the device structure, which is a pointer to the + * s2io_nic structure. + * @ep : pointer to the structure with pause parameters given by ethtool. + * Description: + * It can be used to set or reset Pause frame generation or reception + * support of the NIC. + * Return value: + * int, returns 0 on Success + */ + +static int s2io_ethtool_setpause_data(struct net_device *dev, + struct ethtool_pauseparam *ep) +{ + u64 val64; + nic_t *sp = dev->priv; + XENA_dev_config_t __iomem *bar0 = sp->bar0; + + val64 = readq(&bar0->rmac_pause_cfg); + if (ep->tx_pause) + val64 |= RMAC_PAUSE_GEN_ENABLE; + else + val64 &= ~RMAC_PAUSE_GEN_ENABLE; + if (ep->rx_pause) + val64 |= RMAC_PAUSE_RX_ENABLE; + else + val64 &= ~RMAC_PAUSE_RX_ENABLE; + writeq(val64, &bar0->rmac_pause_cfg); + return 0; +} + +/** + * read_eeprom - reads 4 bytes of data from user given offset. + * @sp : private member of the device structure, which is a pointer to the + * s2io_nic structure. + * @off : offset at which the data must be written + * @data : Its an output parameter where the data read at the given + * offset is stored. + * Description: + * Will read 4 bytes of data from the user given offset and return the + * read data. + * NOTE: Will allow to read only part of the EEPROM visible through the + * I2C bus. + * Return value: + * -1 on failure and 0 on success. + */ + +#define S2IO_DEV_ID 5 +static int read_eeprom(nic_t * sp, int off, u32 * data) +{ + int ret = -1; + u32 exit_cnt = 0; + u64 val64; + XENA_dev_config_t __iomem *bar0 = sp->bar0; + + val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) | + I2C_CONTROL_BYTE_CNT(0x3) | I2C_CONTROL_READ | + I2C_CONTROL_CNTL_START; + SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF); + + while (exit_cnt < 5) { + val64 = readq(&bar0->i2c_control); + if (I2C_CONTROL_CNTL_END(val64)) { + *data = I2C_CONTROL_GET_DATA(val64); + ret = 0; + break; + } + msleep(50); + exit_cnt++; + } + + return ret; +} + +/** + * write_eeprom - actually writes the relevant part of the data value. + * @sp : private member of the device structure, which is a pointer to the + * s2io_nic structure. + * @off : offset at which the data must be written + * @data : The data that is to be written + * @cnt : Number of bytes of the data that are actually to be written into + * the Eeprom. (max of 3) + * Description: + * Actually writes the relevant part of the data value into the Eeprom + * through the I2C bus. + * Return value: + * 0 on success, -1 on failure. + */ + +static int write_eeprom(nic_t * sp, int off, u32 data, int cnt) +{ + int exit_cnt = 0, ret = -1; + u64 val64; + XENA_dev_config_t __iomem *bar0 = sp->bar0; + + val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) | + I2C_CONTROL_BYTE_CNT(cnt) | I2C_CONTROL_SET_DATA(data) | + I2C_CONTROL_CNTL_START; + SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF); + + while (exit_cnt < 5) { + val64 = readq(&bar0->i2c_control); + if (I2C_CONTROL_CNTL_END(val64)) { + if (!(val64 & I2C_CONTROL_NACK)) + ret = 0; + break; + } + msleep(50); + exit_cnt++; + } + + return ret; +} + +/** + * s2io_ethtool_geeprom - reads the value stored in the Eeprom. + * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure. + * @eeprom : pointer to the user level structure provided by ethtool, + * containing all relevant information. + * @data_buf : user defined value to be written into Eeprom. + * Description: Reads the values stored in the Eeprom at given offset + * for a given length. Stores these values int the input argument data + * buffer 'data_buf' and returns these to the caller (ethtool.) + * Return value: + * int 0 on success + */ + +static int s2io_ethtool_geeprom(struct net_device *dev, + struct ethtool_eeprom *eeprom, u8 * data_buf) +{ + u32 data, i, valid; + nic_t *sp = dev->priv; + + eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16); + + if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE)) + eeprom->len = XENA_EEPROM_SPACE - eeprom->offset; + + for (i = 0; i < eeprom->len; i += 4) { + if (read_eeprom(sp, (eeprom->offset + i), &data)) { + DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n"); + return -EFAULT; + } + valid = INV(data); + memcpy((data_buf + i), &valid, 4); + } + return 0; +} + +/** + * s2io_ethtool_seeprom - tries to write the user provided value in Eeprom + * @sp : private member of the device structure, which is a pointer to the + * s2io_nic structure. + * @eeprom : pointer to the user level structure provided by ethtool, + * containing all relevant information. + * @data_buf ; user defined value to be written into Eeprom. + * Description: + * Tries to write the user provided value in the Eeprom, at the offset + * given by the user. + * Return value: + * 0 on success, -EFAULT on failure. + */ + +static int s2io_ethtool_seeprom(struct net_device *dev, + struct ethtool_eeprom *eeprom, + u8 * data_buf) +{ + int len = eeprom->len, cnt = 0; + u32 valid = 0, data; + nic_t *sp = dev->priv; + + if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) { + DBG_PRINT(ERR_DBG, + "ETHTOOL_WRITE_EEPROM Err: Magic value "); + DBG_PRINT(ERR_DBG, "is wrong, Its not 0x%x\n", + eeprom->magic); + return -EFAULT; + } + + while (len) { + data = (u32) data_buf[cnt] & 0x000000FF; + if (data) { + valid = (u32) (data << 24); + } else + valid = data; + + if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) { + DBG_PRINT(ERR_DBG, + "ETHTOOL_WRITE_EEPROM Err: Cannot "); + DBG_PRINT(ERR_DBG, + "write into the specified offset\n"); + return -EFAULT; + } + cnt++; + len--; + } + + return 0; +} + +/** + * s2io_register_test - reads and writes into all clock domains. + * @sp : private member of the device structure, which is a pointer to the + * s2io_nic structure. + * @data : variable that returns the result of each of the test conducted b + * by the driver. + * Description: + * Read and write into all clock domains. The NIC has 3 clock domains, + * see that registers in all the three regions are accessible. + * Return value: + * 0 on success. + */ + +static int s2io_register_test(nic_t * sp, uint64_t * data) +{ + XENA_dev_config_t __iomem *bar0 = sp->bar0; + u64 val64 = 0; + int fail = 0; + + val64 = readq(&bar0->pcc_enable); + if (val64 != 0xff00000000000000ULL) { + fail = 1; + DBG_PRINT(INFO_DBG, "Read Test level 1 fails\n"); + } + + val64 = readq(&bar0->rmac_pause_cfg); + if (val64 != 0xc000ffff00000000ULL) { + fail = 1; + DBG_PRINT(INFO_DBG, "Read Test level 2 fails\n"); + } + + val64 = readq(&bar0->rx_queue_cfg); + if (val64 != 0x0808080808080808ULL) { + fail = 1; + DBG_PRINT(INFO_DBG, "Read Test level 3 fails\n"); + } + + val64 = readq(&bar0->xgxs_efifo_cfg); + if (val64 != 0x000000001923141EULL) { + fail = 1; + DBG_PRINT(INFO_DBG, "Read Test level 4 fails\n"); + } + + val64 = 0x5A5A5A5A5A5A5A5AULL; + writeq(val64, &bar0->xmsi_data); + val64 = readq(&bar0->xmsi_data); + if (val64 != 0x5A5A5A5A5A5A5A5AULL) { + fail = 1; + DBG_PRINT(ERR_DBG, "Write Test level 1 fails\n"); + } + + val64 = 0xA5A5A5A5A5A5A5A5ULL; + writeq(val64, &bar0->xmsi_data); + val64 = readq(&bar0->xmsi_data); + if (val64 != 0xA5A5A5A5A5A5A5A5ULL) { + fail = 1; + DBG_PRINT(ERR_DBG, "Write Test level 2 fails\n"); + } + + *data = fail; + return 0; +} + +/** + * s2io_eeprom_test - to verify that EEprom in the xena can be programmed. + * @sp : private member of the device structure, which is a pointer to the + * s2io_nic structure. + * @data:variable that returns the result of each of the test conducted by + * the driver. + * Description: + * Verify that EEPROM in the xena can be programmed using I2C_CONTROL + * register. + * Return value: + * 0 on success. + */ + +static int s2io_eeprom_test(nic_t * sp, uint64_t * data) +{ + int fail = 0; + u32 ret_data; + + /* Test Write Error at offset 0 */ + if (!write_eeprom(sp, 0, 0, 3)) + fail = 1; + + /* Test Write at offset 4f0 */ + if (write_eeprom(sp, 0x4F0, 0x01234567, 3)) + fail = 1; + if (read_eeprom(sp, 0x4F0, &ret_data)) + fail = 1; + + if (ret_data != 0x01234567) + fail = 1; + + /* Reset the EEPROM data go FFFF */ + write_eeprom(sp, 0x4F0, 0xFFFFFFFF, 3); + + /* Test Write Request Error at offset 0x7c */ + if (!write_eeprom(sp, 0x07C, 0, 3)) + fail = 1; + + /* Test Write Request at offset 0x7fc */ + if (write_eeprom(sp, 0x7FC, 0x01234567, 3)) + fail = 1; + if (read_eeprom(sp, 0x7FC, &ret_data)) + fail = 1; + + if (ret_data != 0x01234567) + fail = 1; + + /* Reset the EEPROM data go FFFF */ + write_eeprom(sp, 0x7FC, 0xFFFFFFFF, 3); + + /* Test Write Error at offset 0x80 */ + if (!write_eeprom(sp, 0x080, 0, 3)) + fail = 1; + + /* Test Write Error at offset 0xfc */ + if (!write_eeprom(sp, 0x0FC, 0, 3)) + fail = 1; + + /* Test Write Error at offset 0x100 */ + if (!write_eeprom(sp, 0x100, 0, 3)) + fail = 1; + + /* Test Write Error at offset 4ec */ + if (!write_eeprom(sp, 0x4EC, 0, 3)) + fail = 1; + + *data = fail; + return 0; +} + +/** + * s2io_bist_test - invokes the MemBist test of the card . + * @sp : private member of the device structure, which is a pointer to the + * s2io_nic structure. + * @data:variable that returns the result of each of the test conducted by + * the driver. + * Description: + * This invokes the MemBist test of the card. We give around + * 2 secs time for the Test to complete. If it's still not complete + * within this peiod, we consider that the test failed. + * Return value: + * 0 on success and -1 on failure. + */ + +static int s2io_bist_test(nic_t * sp, uint64_t * data) +{ + u8 bist = 0; + int cnt = 0, ret = -1; + + pci_read_config_byte(sp->pdev, PCI_BIST, &bist); + bist |= PCI_BIST_START; + pci_write_config_word(sp->pdev, PCI_BIST, bist); + + while (cnt < 20) { + pci_read_config_byte(sp->pdev, PCI_BIST, &bist); + if (!(bist & PCI_BIST_START)) { + *data = (bist & PCI_BIST_CODE_MASK); + ret = 0; + break; + } + msleep(100); + cnt++; + } + + return ret; +} + +/** + * s2io-link_test - verifies the link state of the nic + * @sp ; private member of the device structure, which is a pointer to the + * s2io_nic structure. + * @data: variable that returns the result of each of the test conducted by + * the driver. + * Description: + * The function verifies the link state of the NIC and updates the input + * argument 'data' appropriately. + * Return value: + * 0 on success. + */ + +static int s2io_link_test(nic_t * sp, uint64_t * data) +{ + XENA_dev_config_t __iomem *bar0 = sp->bar0; + u64 val64; + + val64 = readq(&bar0->adapter_status); + if (val64 & ADAPTER_STATUS_RMAC_LOCAL_FAULT) + *data = 1; + + return 0; +} + +/** + * s2io_rldram_test - offline test for access to the RldRam chip on the NIC + * @sp - private member of the device structure, which is a pointer to the + * s2io_nic structure. + * @data - variable that returns the result of each of the test + * conducted by the driver. + * Description: + * This is one of the offline test that tests the read and write + * access to the RldRam chip on the NIC. + * Return value: + * 0 on success. + */ + +static int s2io_rldram_test(nic_t * sp, uint64_t * data) +{ + XENA_dev_config_t __iomem *bar0 = sp->bar0; + u64 val64; + int cnt, iteration = 0, test_pass = 0; + + val64 = readq(&bar0->adapter_control); + val64 &= ~ADAPTER_ECC_EN; + writeq(val64, &bar0->adapter_control); + + val64 = readq(&bar0->mc_rldram_test_ctrl); + val64 |= MC_RLDRAM_TEST_MODE; + writeq(val64, &bar0->mc_rldram_test_ctrl); + + val64 = readq(&bar0->mc_rldram_mrs); + val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE; + SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF); + + val64 |= MC_RLDRAM_MRS_ENABLE; + SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF); + + while (iteration < 2) { + val64 = 0x55555555aaaa0000ULL; + if (iteration == 1) { + val64 ^= 0xFFFFFFFFFFFF0000ULL; + } + writeq(val64, &bar0->mc_rldram_test_d0); + + val64 = 0xaaaa5a5555550000ULL; + if (iteration == 1) { + val64 ^= 0xFFFFFFFFFFFF0000ULL; + } + writeq(val64, &bar0->mc_rldram_test_d1); + + val64 = 0x55aaaaaaaa5a0000ULL; + if (iteration == 1) { + val64 ^= 0xFFFFFFFFFFFF0000ULL; + } + writeq(val64, &bar0->mc_rldram_test_d2); + + val64 = (u64) (0x0000003fffff0000ULL); + writeq(val64, &bar0->mc_rldram_test_add); + + + val64 = MC_RLDRAM_TEST_MODE; + writeq(val64, &bar0->mc_rldram_test_ctrl); + + val64 |= + MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_WRITE | + MC_RLDRAM_TEST_GO; + writeq(val64, &bar0->mc_rldram_test_ctrl); + + for (cnt = 0; cnt < 5; cnt++) { + val64 = readq(&bar0->mc_rldram_test_ctrl); + if (val64 & MC_RLDRAM_TEST_DONE) + break; + msleep(200); + } + + if (cnt == 5) + break; + + val64 = MC_RLDRAM_TEST_MODE; + writeq(val64, &bar0->mc_rldram_test_ctrl); + + val64 |= MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO; + writeq(val64, &bar0->mc_rldram_test_ctrl); + + for (cnt = 0; cnt < 5; cnt++) { + val64 = readq(&bar0->mc_rldram_test_ctrl); + if (val64 & MC_RLDRAM_TEST_DONE) + break; + msleep(500); + } + + if (cnt == 5) + break; + + val64 = readq(&bar0->mc_rldram_test_ctrl); + if (val64 & MC_RLDRAM_TEST_PASS) + test_pass = 1; + + iteration++; + } + + if (!test_pass) + *data = 1; + else + *data = 0; + + return 0; +} + +/** + * s2io_ethtool_test - conducts 6 tsets to determine the health of card. + * @sp : private member of the device structure, which is a pointer to the + * s2io_nic structure. + * @ethtest : pointer to a ethtool command specific structure that will be + * returned to the user. + * @data : variable that returns the result of each of the test + * conducted by the driver. + * Description: + * This function conducts 6 tests ( 4 offline and 2 online) to determine + * the health of the card. + * Return value: + * void + */ + +static void s2io_ethtool_test(struct net_device *dev, + struct ethtool_test *ethtest, + uint64_t * data) +{ + nic_t *sp = dev->priv; + int orig_state = netif_running(sp->dev); + + if (ethtest->flags == ETH_TEST_FL_OFFLINE) { + /* Offline Tests. */ + if (orig_state) { + s2io_close(sp->dev); + s2io_set_swapper(sp); + } else + s2io_set_swapper(sp); + + if (s2io_register_test(sp, &data[0])) + ethtest->flags |= ETH_TEST_FL_FAILED; + + s2io_reset(sp); + s2io_set_swapper(sp); + + if (s2io_rldram_test(sp, &data[3])) + ethtest->flags |= ETH_TEST_FL_FAILED; + + s2io_reset(sp); + s2io_set_swapper(sp); + + if (s2io_eeprom_test(sp, &data[1])) + ethtest->flags |= ETH_TEST_FL_FAILED; + + if (s2io_bist_test(sp, &data[4])) + ethtest->flags |= ETH_TEST_FL_FAILED; + + if (orig_state) + s2io_open(sp->dev); + + data[2] = 0; + } else { + /* Online Tests. */ + if (!orig_state) { + DBG_PRINT(ERR_DBG, + "%s: is not up, cannot run test\n", + dev->name); + data[0] = -1; + data[1] = -1; + data[2] = -1; + data[3] = -1; + data[4] = -1; + } + + if (s2io_link_test(sp, &data[2])) + ethtest->flags |= ETH_TEST_FL_FAILED; + + data[0] = 0; + data[1] = 0; + data[3] = 0; + data[4] = 0; + } +} + +static void s2io_get_ethtool_stats(struct net_device *dev, + struct ethtool_stats *estats, + u64 * tmp_stats) +{ + int i = 0; + nic_t *sp = dev->priv; + StatInfo_t *stat_info = sp->mac_control.stats_info; + + tmp_stats[i++] = le32_to_cpu(stat_info->tmac_frms); + tmp_stats[i++] = le32_to_cpu(stat_info->tmac_data_octets); + tmp_stats[i++] = le64_to_cpu(stat_info->tmac_drop_frms); + tmp_stats[i++] = le32_to_cpu(stat_info->tmac_mcst_frms); + tmp_stats[i++] = le32_to_cpu(stat_info->tmac_bcst_frms); + tmp_stats[i++] = le64_to_cpu(stat_info->tmac_pause_ctrl_frms); + tmp_stats[i++] = le32_to_cpu(stat_info->tmac_any_err_frms); + tmp_stats[i++] = le64_to_cpu(stat_info->tmac_vld_ip_octets); + tmp_stats[i++] = le32_to_cpu(stat_info->tmac_vld_ip); + tmp_stats[i++] = le32_to_cpu(stat_info->tmac_drop_ip); + tmp_stats[i++] = le32_to_cpu(stat_info->tmac_icmp); + tmp_stats[i++] = le32_to_cpu(stat_info->tmac_rst_tcp); + tmp_stats[i++] = le64_to_cpu(stat_info->tmac_tcp); + tmp_stats[i++] = le32_to_cpu(stat_info->tmac_udp); + tmp_stats[i++] = le32_to_cpu(stat_info->rmac_vld_frms); + tmp_stats[i++] = le32_to_cpu(stat_info->rmac_data_octets); + tmp_stats[i++] = le64_to_cpu(stat_info->rmac_fcs_err_frms); + tmp_stats[i++] = le64_to_cpu(stat_info->rmac_drop_frms); + tmp_stats[i++] = le32_to_cpu(stat_info->rmac_vld_mcst_frms); + tmp_stats[i++] = le32_to_cpu(stat_info->rmac_vld_bcst_frms); + tmp_stats[i++] = le32_to_cpu(stat_info->rmac_in_rng_len_err_frms); + tmp_stats[i++] = le64_to_cpu(stat_info->rmac_long_frms); + tmp_stats[i++] = le64_to_cpu(stat_info->rmac_pause_ctrl_frms); + tmp_stats[i++] = le32_to_cpu(stat_info->rmac_discarded_frms); + tmp_stats[i++] = le32_to_cpu(stat_info->rmac_usized_frms); + tmp_stats[i++] = le32_to_cpu(stat_info->rmac_osized_frms); + tmp_stats[i++] = le32_to_cpu(stat_info->rmac_frag_frms); + tmp_stats[i++] = le32_to_cpu(stat_info->rmac_jabber_frms); + tmp_stats[i++] = le32_to_cpu(stat_info->rmac_ip); + tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ip_octets); + tmp_stats[i++] = le32_to_cpu(stat_info->rmac_hdr_err_ip); + tmp_stats[i++] = le32_to_cpu(stat_info->rmac_drop_ip); + tmp_stats[i++] = le32_to_cpu(stat_info->rmac_icmp); + tmp_stats[i++] = le64_to_cpu(stat_info->rmac_tcp); + tmp_stats[i++] = le32_to_cpu(stat_info->rmac_udp); + tmp_stats[i++] = le32_to_cpu(stat_info->rmac_err_drp_udp); + tmp_stats[i++] = le32_to_cpu(stat_info->rmac_pause_cnt); + tmp_stats[i++] = le32_to_cpu(stat_info->rmac_accepted_ip); + tmp_stats[i++] = le32_to_cpu(stat_info->rmac_err_tcp); +} + +static int s2io_ethtool_get_regs_len(struct net_device *dev) +{ + return (XENA_REG_SPACE); +} + + +static u32 s2io_ethtool_get_rx_csum(struct net_device * dev) +{ + nic_t *sp = dev->priv; + + return (sp->rx_csum); +} + +static int s2io_ethtool_set_rx_csum(struct net_device *dev, u32 data) +{ + nic_t *sp = dev->priv; + + if (data) + sp->rx_csum = 1; + else + sp->rx_csum = 0; + + return 0; +} + +static int s2io_get_eeprom_len(struct net_device *dev) +{ + return (XENA_EEPROM_SPACE); +} + +static int s2io_ethtool_self_test_count(struct net_device *dev) +{ + return (S2IO_TEST_LEN); +} + +static void s2io_ethtool_get_strings(struct net_device *dev, + u32 stringset, u8 * data) +{ + switch (stringset) { + case ETH_SS_TEST: + memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN); + break; + case ETH_SS_STATS: + memcpy(data, ðtool_stats_keys, + sizeof(ethtool_stats_keys)); + } +} + +static int s2io_ethtool_get_stats_count(struct net_device *dev) +{ + return (S2IO_STAT_LEN); +} + +static int s2io_ethtool_op_set_tx_csum(struct net_device *dev, u32 data) +{ + if (data) + dev->features |= NETIF_F_IP_CSUM; + else + dev->features &= ~NETIF_F_IP_CSUM; + + return 0; +} + + +static struct ethtool_ops netdev_ethtool_ops = { + .get_settings = s2io_ethtool_gset, + .set_settings = s2io_ethtool_sset, + .get_drvinfo = s2io_ethtool_gdrvinfo, + .get_regs_len = s2io_ethtool_get_regs_len, + .get_regs = s2io_ethtool_gregs, + .get_link = ethtool_op_get_link, + .get_eeprom_len = s2io_get_eeprom_len, + .get_eeprom = s2io_ethtool_geeprom, + .set_eeprom = s2io_ethtool_seeprom, + .get_pauseparam = s2io_ethtool_getpause_data, + .set_pauseparam = s2io_ethtool_setpause_data, + .get_rx_csum = s2io_ethtool_get_rx_csum, + .set_rx_csum = s2io_ethtool_set_rx_csum, + .get_tx_csum = ethtool_op_get_tx_csum, + .set_tx_csum = s2io_ethtool_op_set_tx_csum, + .get_sg = ethtool_op_get_sg, + .set_sg = ethtool_op_set_sg, +#ifdef NETIF_F_TSO + .get_tso = ethtool_op_get_tso, + .set_tso = ethtool_op_set_tso, +#endif + .self_test_count = s2io_ethtool_self_test_count, + .self_test = s2io_ethtool_test, + .get_strings = s2io_ethtool_get_strings, + .phys_id = s2io_ethtool_idnic, + .get_stats_count = s2io_ethtool_get_stats_count, + .get_ethtool_stats = s2io_get_ethtool_stats +}; + +/** + * s2io_ioctl - Entry point for the Ioctl + * @dev : Device pointer. + * @ifr : An IOCTL specefic structure, that can contain a pointer to + * a proprietary structure used to pass information to the driver. + * @cmd : This is used to distinguish between the different commands that + * can be passed to the IOCTL functions. + * Description: + * This function has support for ethtool, adding multiple MAC addresses on + * the NIC and some DBG commands for the util tool. + * Return value: + * Currently the IOCTL supports no operations, hence by default this + * function returns OP NOT SUPPORTED value. + */ + +static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) +{ + return -EOPNOTSUPP; +} + +/** + * s2io_change_mtu - entry point to change MTU size for the device. + * @dev : device pointer. + * @new_mtu : the new MTU size for the device. + * Description: A driver entry point to change MTU size for the device. + * Before changing the MTU the device must be stopped. + * Return value: + * 0 on success and an appropriate (-)ve integer as defined in errno.h + * file on failure. + */ + +static int s2io_change_mtu(struct net_device *dev, int new_mtu) +{ + nic_t *sp = dev->priv; + XENA_dev_config_t __iomem *bar0 = sp->bar0; + register u64 val64; + + if (netif_running(dev)) { + DBG_PRINT(ERR_DBG, "%s: Must be stopped to ", dev->name); + DBG_PRINT(ERR_DBG, "change its MTU \n"); + return -EBUSY; + } + + if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) { + DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n", + dev->name); + return -EPERM; + } + + /* Set the new MTU into the PYLD register of the NIC */ + val64 = new_mtu; + writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len); + + dev->mtu = new_mtu; + + return 0; +} + +/** + * s2io_tasklet - Bottom half of the ISR. + * @dev_adr : address of the device structure in dma_addr_t format. + * Description: + * This is the tasklet or the bottom half of the ISR. This is + * an extension of the ISR which is scheduled by the scheduler to be run + * when the load on the CPU is low. All low priority tasks of the ISR can + * be pushed into the tasklet. For now the tasklet is used only to + * replenish the Rx buffers in the Rx buffer descriptors. + * Return value: + * void. + */ + +static void s2io_tasklet(unsigned long dev_addr) +{ + struct net_device *dev = (struct net_device *) dev_addr; + nic_t *sp = dev->priv; + int i, ret; + mac_info_t *mac_control; + struct config_param *config; + + mac_control = &sp->mac_control; + config = &sp->config; + + if (!TASKLET_IN_USE) { + for (i = 0; i < config->rx_ring_num; i++) { + ret = fill_rx_buffers(sp, i); + if (ret == -ENOMEM) { + DBG_PRINT(ERR_DBG, "%s: Out of ", + dev->name); + DBG_PRINT(ERR_DBG, "memory in tasklet\n"); + break; + } else if (ret == -EFILL) { + DBG_PRINT(ERR_DBG, + "%s: Rx Ring %d is full\n", + dev->name, i); + break; + } + } + clear_bit(0, (&sp->tasklet_status)); + } +} + +/** + * s2io_set_link - Set the LInk status + * @data: long pointer to device private structue + * Description: Sets the link status for the adapter + */ + +static void s2io_set_link(unsigned long data) +{ + nic_t *nic = (nic_t *) data; + struct net_device *dev = nic->dev; + XENA_dev_config_t __iomem *bar0 = nic->bar0; + register u64 val64; + u16 subid; + + if (test_and_set_bit(0, &(nic->link_state))) { + /* The card is being reset, no point doing anything */ + return; + } + + subid = nic->pdev->subsystem_device; + /* + * Allow a small delay for the NICs self initiated + * cleanup to complete. + */ + msleep(100); + + val64 = readq(&bar0->adapter_status); + if (verify_xena_quiescence(val64, nic->device_enabled_once)) { + if (LINK_IS_UP(val64)) { + val64 = readq(&bar0->adapter_control); + val64 |= ADAPTER_CNTL_EN; + writeq(val64, &bar0->adapter_control); + if (CARDS_WITH_FAULTY_LINK_INDICATORS(subid)) { + val64 = readq(&bar0->gpio_control); + val64 |= GPIO_CTRL_GPIO_0; + writeq(val64, &bar0->gpio_control); + val64 = readq(&bar0->gpio_control); + } else { + val64 |= ADAPTER_LED_ON; + writeq(val64, &bar0->adapter_control); + } + val64 = readq(&bar0->adapter_status); + if (!LINK_IS_UP(val64)) { + DBG_PRINT(ERR_DBG, "%s:", dev->name); + DBG_PRINT(ERR_DBG, " Link down"); + DBG_PRINT(ERR_DBG, "after "); + DBG_PRINT(ERR_DBG, "enabling "); + DBG_PRINT(ERR_DBG, "device \n"); + } + if (nic->device_enabled_once == FALSE) { + nic->device_enabled_once = TRUE; + } + s2io_link(nic, LINK_UP); + } else { + if (CARDS_WITH_FAULTY_LINK_INDICATORS(subid)) { + val64 = readq(&bar0->gpio_control); + val64 &= ~GPIO_CTRL_GPIO_0; + writeq(val64, &bar0->gpio_control); + val64 = readq(&bar0->gpio_control); + } + s2io_link(nic, LINK_DOWN); + } + } else { /* NIC is not Quiescent. */ + DBG_PRINT(ERR_DBG, "%s: Error: ", dev->name); + DBG_PRINT(ERR_DBG, "device is not Quiescent\n"); + netif_stop_queue(dev); + } + clear_bit(0, &(nic->link_state)); +} + +static void s2io_card_down(nic_t * sp) +{ + int cnt = 0; + XENA_dev_config_t __iomem *bar0 = sp->bar0; + unsigned long flags; + register u64 val64 = 0; + + /* If s2io_set_link task is executing, wait till it completes. */ + while (test_and_set_bit(0, &(sp->link_state))) + msleep(50); + atomic_set(&sp->card_state, CARD_DOWN); + + /* disable Tx and Rx traffic on the NIC */ + stop_nic(sp); + + /* Kill tasklet. */ + tasklet_kill(&sp->task); + + /* Check if the device is Quiescent and then Reset the NIC */ + do { + val64 = readq(&bar0->adapter_status); + if (verify_xena_quiescence(val64, sp->device_enabled_once)) { + break; + } + + msleep(50); + cnt++; + if (cnt == 10) { + DBG_PRINT(ERR_DBG, + "s2io_close:Device not Quiescent "); + DBG_PRINT(ERR_DBG, "adaper status reads 0x%llx\n", + (unsigned long long) val64); + break; + } + } while (1); + spin_lock_irqsave(&sp->tx_lock, flags); + s2io_reset(sp); + + /* Free all unused Tx and Rx buffers */ + free_tx_buffers(sp); + free_rx_buffers(sp); + + spin_unlock_irqrestore(&sp->tx_lock, flags); + clear_bit(0, &(sp->link_state)); +} + +static int s2io_card_up(nic_t * sp) +{ + int i, ret; + mac_info_t *mac_control; + struct config_param *config; + struct net_device *dev = (struct net_device *) sp->dev; + + /* Initialize the H/W I/O registers */ + if (init_nic(sp) != 0) { + DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n", + dev->name); + return -ENODEV; + } + + /* + * Initializing the Rx buffers. For now we are considering only 1 + * Rx ring and initializing buffers into 30 Rx blocks + */ + mac_control = &sp->mac_control; + config = &sp->config; + + for (i = 0; i < config->rx_ring_num; i++) { + if ((ret = fill_rx_buffers(sp, i))) { + DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n", + dev->name); + s2io_reset(sp); + free_rx_buffers(sp); + return -ENOMEM; + } + DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i, + atomic_read(&sp->rx_bufs_left[i])); + } + + /* Setting its receive mode */ + s2io_set_multicast(dev); + + /* Enable tasklet for the device */ + tasklet_init(&sp->task, s2io_tasklet, (unsigned long) dev); + + /* Enable Rx Traffic and interrupts on the NIC */ + if (start_nic(sp)) { + DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name); + tasklet_kill(&sp->task); + s2io_reset(sp); + free_irq(dev->irq, dev); + free_rx_buffers(sp); + return -ENODEV; + } + + atomic_set(&sp->card_state, CARD_UP); + return 0; +} + +/** + * s2io_restart_nic - Resets the NIC. + * @data : long pointer to the device private structure + * Description: + * This function is scheduled to be run by the s2io_tx_watchdog + * function after 0.5 secs to reset the NIC. The idea is to reduce + * the run time of the watch dog routine which is run holding a + * spin lock. + */ + +static void s2io_restart_nic(unsigned long data) +{ + struct net_device *dev = (struct net_device *) data; + nic_t *sp = dev->priv; + + s2io_card_down(sp); + if (s2io_card_up(sp)) { + DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n", + dev->name); + } + netif_wake_queue(dev); + DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n", + dev->name); +} + +/** + * s2io_tx_watchdog - Watchdog for transmit side. + * @dev : Pointer to net device structure + * Description: + * This function is triggered if the Tx Queue is stopped + * for a pre-defined amount of time when the Interface is still up. + * If the Interface is jammed in such a situation, the hardware is + * reset (by s2io_close) and restarted again (by s2io_open) to + * overcome any problem that might have been caused in the hardware. + * Return value: + * void + */ + +static void s2io_tx_watchdog(struct net_device *dev) +{ + nic_t *sp = dev->priv; + + if (netif_carrier_ok(dev)) { + schedule_work(&sp->rst_timer_task); + } +} + +/** + * rx_osm_handler - To perform some OS related operations on SKB. + * @sp: private member of the device structure,pointer to s2io_nic structure. + * @skb : the socket buffer pointer. + * @len : length of the packet + * @cksum : FCS checksum of the frame. + * @ring_no : the ring from which this RxD was extracted. + * Description: + * This function is called by the Tx interrupt serivce routine to perform + * some OS related operations on the SKB before passing it to the upper + * layers. It mainly checks if the checksum is OK, if so adds it to the + * SKBs cksum variable, increments the Rx packet count and passes the SKB + * to the upper layer. If the checksum is wrong, it increments the Rx + * packet error count, frees the SKB and returns error. + * Return value: + * SUCCESS on success and -1 on failure. + */ +#ifndef CONFIG_2BUFF_MODE +static int rx_osm_handler(nic_t * sp, u16 len, RxD_t * rxdp, int ring_no) +#else +static int rx_osm_handler(nic_t * sp, RxD_t * rxdp, int ring_no, + buffAdd_t * ba) +#endif +{ + struct net_device *dev = (struct net_device *) sp->dev; + struct sk_buff *skb = + (struct sk_buff *) ((unsigned long) rxdp->Host_Control); + u16 l3_csum, l4_csum; +#ifdef CONFIG_2BUFF_MODE + int buf0_len, buf2_len; + unsigned char *buff; +#endif + + l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1); + if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) && (sp->rx_csum)) { + l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1); + if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) { + /* + * NIC verifies if the Checksum of the received + * frame is Ok or not and accordingly returns + * a flag in the RxD. + */ + skb->ip_summed = CHECKSUM_UNNECESSARY; + } else { + /* + * Packet with erroneous checksum, let the + * upper layers deal with it. + */ + skb->ip_summed = CHECKSUM_NONE; + } + } else { + skb->ip_summed = CHECKSUM_NONE; + } + + if (rxdp->Control_1 & RXD_T_CODE) { + unsigned long long err = rxdp->Control_1 & RXD_T_CODE; + DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%llx\n", + dev->name, err); + } +#ifdef CONFIG_2BUFF_MODE + buf0_len = RXD_GET_BUFFER0_SIZE(rxdp->Control_2); + buf2_len = RXD_GET_BUFFER2_SIZE(rxdp->Control_2); +#endif + + skb->dev = dev; +#ifndef CONFIG_2BUFF_MODE + skb_put(skb, len); + skb->protocol = eth_type_trans(skb, dev); +#else + buff = skb_push(skb, buf0_len); + memcpy(buff, ba->ba_0, buf0_len); + skb_put(skb, buf2_len); + skb->protocol = eth_type_trans(skb, dev); +#endif + +#ifdef CONFIG_S2IO_NAPI + netif_receive_skb(skb); +#else + netif_rx(skb); +#endif + + dev->last_rx = jiffies; + sp->rx_pkt_count++; + sp->stats.rx_packets++; +#ifndef CONFIG_2BUFF_MODE + sp->stats.rx_bytes += len; +#else + sp->stats.rx_bytes += buf0_len + buf2_len; +#endif + + atomic_dec(&sp->rx_bufs_left[ring_no]); + rxdp->Host_Control = 0; + return SUCCESS; +} + +/** + * s2io_link - stops/starts the Tx queue. + * @sp : private member of the device structure, which is a pointer to the + * s2io_nic structure. + * @link : inidicates whether link is UP/DOWN. + * Description: + * This function stops/starts the Tx queue depending on whether the link + * status of the NIC is is down or up. This is called by the Alarm + * interrupt handler whenever a link change interrupt comes up. + * Return value: + * void. + */ + +static void s2io_link(nic_t * sp, int link) +{ + struct net_device *dev = (struct net_device *) sp->dev; + + if (link != sp->last_link_state) { + if (link == LINK_DOWN) { + DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name); + netif_carrier_off(dev); + } else { + DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name); + netif_carrier_on(dev); + } + } + sp->last_link_state = link; +} + +/** + * s2io_init_pci -Initialization of PCI and PCI-X configuration registers . + * @sp : private member of the device structure, which is a pointer to the + * s2io_nic structure. + * Description: + * This function initializes a few of the PCI and PCI-X configuration registers + * with recommended values. + * Return value: + * void + */ + +static void s2io_init_pci(nic_t * sp) +{ + u16 pci_cmd = 0; + + /* Enable Data Parity Error Recovery in PCI-X command register. */ + pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, + &(sp->pcix_cmd)); + pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, + (sp->pcix_cmd | 1)); + pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, + &(sp->pcix_cmd)); + + /* Set the PErr Response bit in PCI command register. */ + pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd); + pci_write_config_word(sp->pdev, PCI_COMMAND, + (pci_cmd | PCI_COMMAND_PARITY)); + pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd); + + /* Set MMRB count to 1024 in PCI-X Command register. */ + sp->pcix_cmd &= 0xFFF3; + pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, (sp->pcix_cmd | (0x1 << 2))); /* MMRBC 1K */ + pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, + &(sp->pcix_cmd)); + + /* Setting Maximum outstanding splits based on system type. */ + sp->pcix_cmd &= 0xFF8F; + + sp->pcix_cmd |= XENA_MAX_OUTSTANDING_SPLITS(0x1); /* 2 splits. */ + pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, + sp->pcix_cmd); + pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, + &(sp->pcix_cmd)); + /* Forcibly disabling relaxed ordering capability of the card. */ + sp->pcix_cmd &= 0xfffd; + pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, + sp->pcix_cmd); + pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, + &(sp->pcix_cmd)); +} + +MODULE_AUTHOR("Raghavendra Koushik <raghavendra.koushik@neterion.com>"); +MODULE_LICENSE("GPL"); +module_param(tx_fifo_num, int, 0); +module_param_array(tx_fifo_len, int, NULL, 0); +module_param(rx_ring_num, int, 0); +module_param_array(rx_ring_sz, int, NULL, 0); +module_param(Stats_refresh_time, int, 0); +module_param(rmac_pause_time, int, 0); +module_param(mc_pause_threshold_q0q3, int, 0); +module_param(mc_pause_threshold_q4q7, int, 0); +module_param(shared_splits, int, 0); +module_param(tmac_util_period, int, 0); +module_param(rmac_util_period, int, 0); +#ifndef CONFIG_S2IO_NAPI +module_param(indicate_max_pkts, int, 0); +#endif +/** + * s2io_init_nic - Initialization of the adapter . + * @pdev : structure containing the PCI related information of the device. + * @pre: List of PCI devices supported by the driver listed in s2io_tbl. + * Description: + * The function initializes an adapter identified by the pci_dec structure. + * All OS related initialization including memory and device structure and + * initlaization of the device private variable is done. Also the swapper + * control register is initialized to enable read and write into the I/O + * registers of the device. + * Return value: + * returns 0 on success and negative on failure. + */ + +static int __devinit +s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre) +{ + nic_t *sp; + struct net_device *dev; + char *dev_name = "S2IO 10GE NIC"; + int i, j, ret; + int dma_flag = FALSE; + u32 mac_up, mac_down; + u64 val64 = 0, tmp64 = 0; + XENA_dev_config_t __iomem *bar0 = NULL; + u16 subid; + mac_info_t *mac_control; + struct config_param *config; + + + DBG_PRINT(ERR_DBG, "Loading S2IO driver with %s\n", + s2io_driver_version); + + if ((ret = pci_enable_device(pdev))) { + DBG_PRINT(ERR_DBG, + "s2io_init_nic: pci_enable_device failed\n"); + return ret; + } + + if (!pci_set_dma_mask(pdev, 0xffffffffffffffffULL)) { + DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 64bit DMA\n"); + dma_flag = TRUE; + + if (pci_set_consistent_dma_mask + (pdev, 0xffffffffffffffffULL)) { + DBG_PRINT(ERR_DBG, + "Unable to obtain 64bit DMA for \ + consistent allocations\n"); + pci_disable_device(pdev); + return -ENOMEM; + } + } else if (!pci_set_dma_mask(pdev, 0xffffffffUL)) { + DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 32bit DMA\n"); + } else { + pci_disable_device(pdev); + return -ENOMEM; + } + + if (pci_request_regions(pdev, s2io_driver_name)) { + DBG_PRINT(ERR_DBG, "Request Regions failed\n"), + pci_disable_device(pdev); + return -ENODEV; + } + + dev = alloc_etherdev(sizeof(nic_t)); + if (dev == NULL) { + DBG_PRINT(ERR_DBG, "Device allocation failed\n"); + pci_disable_device(pdev); + pci_release_regions(pdev); + return -ENODEV; + } + + pci_set_master(pdev); + pci_set_drvdata(pdev, dev); + SET_MODULE_OWNER(dev); + SET_NETDEV_DEV(dev, &pdev->dev); + + /* Private member variable initialized to s2io NIC structure */ + sp = dev->priv; + memset(sp, 0, sizeof(nic_t)); + sp->dev = dev; + sp->pdev = pdev; + sp->vendor_id = pdev->vendor; + sp->device_id = pdev->device; + sp->high_dma_flag = dma_flag; + sp->irq = pdev->irq; + sp->device_enabled_once = FALSE; + strcpy(sp->name, dev_name); + + /* Initialize some PCI/PCI-X fields of the NIC. */ + s2io_init_pci(sp); + + /* + * Setting the device configuration parameters. + * Most of these parameters can be specified by the user during + * module insertion as they are module loadable parameters. If + * these parameters are not not specified during load time, they + * are initialized with default values. + */ + mac_control = &sp->mac_control; + config = &sp->config; + + /* Tx side parameters. */ + tx_fifo_len[0] = DEFAULT_FIFO_LEN; /* Default value. */ + config->tx_fifo_num = tx_fifo_num; + for (i = 0; i < MAX_TX_FIFOS; i++) { + config->tx_cfg[i].fifo_len = tx_fifo_len[i]; + config->tx_cfg[i].fifo_priority = i; + } + + config->tx_intr_type = TXD_INT_TYPE_UTILZ; + for (i = 0; i < config->tx_fifo_num; i++) { + config->tx_cfg[i].f_no_snoop = + (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER); + if (config->tx_cfg[i].fifo_len < 65) { + config->tx_intr_type = TXD_INT_TYPE_PER_LIST; + break; + } + } + config->max_txds = MAX_SKB_FRAGS; + + /* Rx side parameters. */ + rx_ring_sz[0] = SMALL_BLK_CNT; /* Default value. */ + config->rx_ring_num = rx_ring_num; + for (i = 0; i < MAX_RX_RINGS; i++) { + config->rx_cfg[i].num_rxd = rx_ring_sz[i] * + (MAX_RXDS_PER_BLOCK + 1); + config->rx_cfg[i].ring_priority = i; + } + + for (i = 0; i < rx_ring_num; i++) { + config->rx_cfg[i].ring_org = RING_ORG_BUFF1; + config->rx_cfg[i].f_no_snoop = + (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER); + } + + /* Setting Mac Control parameters */ + mac_control->rmac_pause_time = rmac_pause_time; + mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3; + mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7; + + + /* Initialize Ring buffer parameters. */ + for (i = 0; i < config->rx_ring_num; i++) + atomic_set(&sp->rx_bufs_left[i], 0); + + /* initialize the shared memory used by the NIC and the host */ + if (init_shared_mem(sp)) { + DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n", + dev->name); + ret = -ENOMEM; + goto mem_alloc_failed; + } + + sp->bar0 = ioremap(pci_resource_start(pdev, 0), + pci_resource_len(pdev, 0)); + if (!sp->bar0) { + DBG_PRINT(ERR_DBG, "%s: S2IO: cannot remap io mem1\n", + dev->name); + ret = -ENOMEM; + goto bar0_remap_failed; + } + + sp->bar1 = ioremap(pci_resource_start(pdev, 2), + pci_resource_len(pdev, 2)); + if (!sp->bar1) { + DBG_PRINT(ERR_DBG, "%s: S2IO: cannot remap io mem2\n", + dev->name); + ret = -ENOMEM; + goto bar1_remap_failed; + } + + dev->irq = pdev->irq; + dev->base_addr = (unsigned long) sp->bar0; + + /* Initializing the BAR1 address as the start of the FIFO pointer. */ + for (j = 0; j < MAX_TX_FIFOS; j++) { + mac_control->tx_FIFO_start[j] = (TxFIFO_element_t __iomem *) + (sp->bar1 + (j * 0x00020000)); + } + + /* Driver entry points */ + dev->open = &s2io_open; + dev->stop = &s2io_close; + dev->hard_start_xmit = &s2io_xmit; + dev->get_stats = &s2io_get_stats; + dev->set_multicast_list = &s2io_set_multicast; + dev->do_ioctl = &s2io_ioctl; + dev->change_mtu = &s2io_change_mtu; + SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops); + /* + * will use eth_mac_addr() for dev->set_mac_address + * mac address will be set every time dev->open() is called + */ +#ifdef CONFIG_S2IO_NAPI + dev->poll = s2io_poll; + dev->weight = 90; +#endif + + dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM; + if (sp->high_dma_flag == TRUE) + dev->features |= NETIF_F_HIGHDMA; +#ifdef NETIF_F_TSO + dev->features |= NETIF_F_TSO; +#endif + + dev->tx_timeout = &s2io_tx_watchdog; + dev->watchdog_timeo = WATCH_DOG_TIMEOUT; + INIT_WORK(&sp->rst_timer_task, + (void (*)(void *)) s2io_restart_nic, dev); + INIT_WORK(&sp->set_link_task, + (void (*)(void *)) s2io_set_link, sp); + + pci_save_state(sp->pdev); + + /* Setting swapper control on the NIC, for proper reset operation */ + if (s2io_set_swapper(sp)) { + DBG_PRINT(ERR_DBG, "%s:swapper settings are wrong\n", + dev->name); + ret = -EAGAIN; + goto set_swap_failed; + } + + /* Fix for all "FFs" MAC address problems observed on Alpha platforms */ + fix_mac_address(sp); + s2io_reset(sp); + + /* + * Setting swapper control on the NIC, so the MAC address can be read. + */ + if (s2io_set_swapper(sp)) { + DBG_PRINT(ERR_DBG, + "%s: S2IO: swapper settings are wrong\n", + dev->name); + ret = -EAGAIN; + goto set_swap_failed; + } + + /* + * MAC address initialization. + * For now only one mac address will be read and used. + */ + bar0 = sp->bar0; + val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD | + RMAC_ADDR_CMD_MEM_OFFSET(0 + MAC_MAC_ADDR_START_OFFSET); + writeq(val64, &bar0->rmac_addr_cmd_mem); + wait_for_cmd_complete(sp); + + tmp64 = readq(&bar0->rmac_addr_data0_mem); + mac_down = (u32) tmp64; + mac_up = (u32) (tmp64 >> 32); + + memset(sp->def_mac_addr[0].mac_addr, 0, sizeof(ETH_ALEN)); + + sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up); + sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8); + sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16); + sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24); + sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16); + sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24); + + DBG_PRINT(INIT_DBG, + "DEFAULT MAC ADDR:0x%02x-%02x-%02x-%02x-%02x-%02x\n", + sp->def_mac_addr[0].mac_addr[0], + sp->def_mac_addr[0].mac_addr[1], + sp->def_mac_addr[0].mac_addr[2], + sp->def_mac_addr[0].mac_addr[3], + sp->def_mac_addr[0].mac_addr[4], + sp->def_mac_addr[0].mac_addr[5]); + + /* Set the factory defined MAC address initially */ + dev->addr_len = ETH_ALEN; + memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN); + + /* + * Initialize the tasklet status and link state flags + * and the card statte parameter + */ + atomic_set(&(sp->card_state), 0); + sp->tasklet_status = 0; + sp->link_state = 0; + + + /* Initialize spinlocks */ + spin_lock_init(&sp->tx_lock); +#ifndef CONFIG_S2IO_NAPI + spin_lock_init(&sp->put_lock); +#endif + + /* + * SXE-002: Configure link and activity LED to init state + * on driver load. + */ + subid = sp->pdev->subsystem_device; + if ((subid & 0xFF) >= 0x07) { + val64 = readq(&bar0->gpio_control); + val64 |= 0x0000800000000000ULL; + writeq(val64, &bar0->gpio_control); + val64 = 0x0411040400000000ULL; + writeq(val64, (void __iomem *) bar0 + 0x2700); + val64 = readq(&bar0->gpio_control); + } + + sp->rx_csum = 1; /* Rx chksum verify enabled by default */ + + if (register_netdev(dev)) { + DBG_PRINT(ERR_DBG, "Device registration failed\n"); + ret = -ENODEV; + goto register_failed; + } + + /* + * Make Link state as off at this point, when the Link change + * interrupt comes the state will be automatically changed to + * the right state. + */ + netif_carrier_off(dev); + sp->last_link_state = LINK_DOWN; + + return 0; + + register_failed: + set_swap_failed: + iounmap(sp->bar1); + bar1_remap_failed: + iounmap(sp->bar0); + bar0_remap_failed: + mem_alloc_failed: + free_shared_mem(sp); + pci_disable_device(pdev); + pci_release_regions(pdev); + pci_set_drvdata(pdev, NULL); + free_netdev(dev); + + return ret; +} + +/** + * s2io_rem_nic - Free the PCI device + * @pdev: structure containing the PCI related information of the device. + * Description: This function is called by the Pci subsystem to release a + * PCI device and free up all resource held up by the device. This could + * be in response to a Hot plug event or when the driver is to be removed + * from memory. + */ + +static void __devexit s2io_rem_nic(struct pci_dev *pdev) +{ + struct net_device *dev = + (struct net_device *) pci_get_drvdata(pdev); + nic_t *sp; + + if (dev == NULL) { + DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n"); + return; + } + + sp = dev->priv; + unregister_netdev(dev); + + free_shared_mem(sp); + iounmap(sp->bar0); + iounmap(sp->bar1); + pci_disable_device(pdev); + pci_release_regions(pdev); + pci_set_drvdata(pdev, NULL); + + free_netdev(dev); +} + +/** + * s2io_starter - Entry point for the driver + * Description: This function is the entry point for the driver. It verifies + * the module loadable parameters and initializes PCI configuration space. + */ + +int __init s2io_starter(void) +{ + return pci_module_init(&s2io_driver); +} + +/** + * s2io_closer - Cleanup routine for the driver + * Description: This function is the cleanup routine for the driver. It unregist * ers the driver. + */ + +static void s2io_closer(void) +{ + pci_unregister_driver(&s2io_driver); + DBG_PRINT(INIT_DBG, "cleanup done\n"); +} + +module_init(s2io_starter); +module_exit(s2io_closer); |