diff options
author | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-17 02:20:36 +0400 |
---|---|---|
committer | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-17 02:20:36 +0400 |
commit | 1da177e4c3f41524e886b7f1b8a0c1fc7321cac2 (patch) | |
tree | 0bba044c4ce775e45a88a51686b5d9f90697ea9d /drivers/net/defxx.c | |
download | linux-1da177e4c3f41524e886b7f1b8a0c1fc7321cac2.tar.xz |
Linux-2.6.12-rc2v2.6.12-rc2
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!
Diffstat (limited to 'drivers/net/defxx.c')
-rw-r--r-- | drivers/net/defxx.c | 3463 |
1 files changed, 3463 insertions, 0 deletions
diff --git a/drivers/net/defxx.c b/drivers/net/defxx.c new file mode 100644 index 000000000000..a6aa56598f27 --- /dev/null +++ b/drivers/net/defxx.c @@ -0,0 +1,3463 @@ +/* + * File Name: + * defxx.c + * + * Copyright Information: + * Copyright Digital Equipment Corporation 1996. + * + * This software may be used and distributed according to the terms of + * the GNU General Public License, incorporated herein by reference. + * + * Abstract: + * A Linux device driver supporting the Digital Equipment Corporation + * FDDI EISA and PCI controller families. Supported adapters include: + * + * DEC FDDIcontroller/EISA (DEFEA) + * DEC FDDIcontroller/PCI (DEFPA) + * + * The original author: + * LVS Lawrence V. Stefani <lstefani@yahoo.com> + * + * Maintainers: + * macro Maciej W. Rozycki <macro@linux-mips.org> + * + * Credits: + * I'd like to thank Patricia Cross for helping me get started with + * Linux, David Davies for a lot of help upgrading and configuring + * my development system and for answering many OS and driver + * development questions, and Alan Cox for recommendations and + * integration help on getting FDDI support into Linux. LVS + * + * Driver Architecture: + * The driver architecture is largely based on previous driver work + * for other operating systems. The upper edge interface and + * functions were largely taken from existing Linux device drivers + * such as David Davies' DE4X5.C driver and Donald Becker's TULIP.C + * driver. + * + * Adapter Probe - + * The driver scans for supported EISA adapters by reading the + * SLOT ID register for each EISA slot and making a match + * against the expected value. + * + * Bus-Specific Initialization - + * This driver currently supports both EISA and PCI controller + * families. While the custom DMA chip and FDDI logic is similar + * or identical, the bus logic is very different. After + * initialization, the only bus-specific differences is in how the + * driver enables and disables interrupts. Other than that, the + * run-time critical code behaves the same on both families. + * It's important to note that both adapter families are configured + * to I/O map, rather than memory map, the adapter registers. + * + * Driver Open/Close - + * In the driver open routine, the driver ISR (interrupt service + * routine) is registered and the adapter is brought to an + * operational state. In the driver close routine, the opposite + * occurs; the driver ISR is deregistered and the adapter is + * brought to a safe, but closed state. Users may use consecutive + * commands to bring the adapter up and down as in the following + * example: + * ifconfig fddi0 up + * ifconfig fddi0 down + * ifconfig fddi0 up + * + * Driver Shutdown - + * Apparently, there is no shutdown or halt routine support under + * Linux. This routine would be called during "reboot" or + * "shutdown" to allow the driver to place the adapter in a safe + * state before a warm reboot occurs. To be really safe, the user + * should close the adapter before shutdown (eg. ifconfig fddi0 down) + * to ensure that the adapter DMA engine is taken off-line. However, + * the current driver code anticipates this problem and always issues + * a soft reset of the adapter at the beginning of driver initialization. + * A future driver enhancement in this area may occur in 2.1.X where + * Alan indicated that a shutdown handler may be implemented. + * + * Interrupt Service Routine - + * The driver supports shared interrupts, so the ISR is registered for + * each board with the appropriate flag and the pointer to that board's + * device structure. This provides the context during interrupt + * processing to support shared interrupts and multiple boards. + * + * Interrupt enabling/disabling can occur at many levels. At the host + * end, you can disable system interrupts, or disable interrupts at the + * PIC (on Intel systems). Across the bus, both EISA and PCI adapters + * have a bus-logic chip interrupt enable/disable as well as a DMA + * controller interrupt enable/disable. + * + * The driver currently enables and disables adapter interrupts at the + * bus-logic chip and assumes that Linux will take care of clearing or + * acknowledging any host-based interrupt chips. + * + * Control Functions - + * Control functions are those used to support functions such as adding + * or deleting multicast addresses, enabling or disabling packet + * reception filters, or other custom/proprietary commands. Presently, + * the driver supports the "get statistics", "set multicast list", and + * "set mac address" functions defined by Linux. A list of possible + * enhancements include: + * + * - Custom ioctl interface for executing port interface commands + * - Custom ioctl interface for adding unicast addresses to + * adapter CAM (to support bridge functions). + * - Custom ioctl interface for supporting firmware upgrades. + * + * Hardware (port interface) Support Routines - + * The driver function names that start with "dfx_hw_" represent + * low-level port interface routines that are called frequently. They + * include issuing a DMA or port control command to the adapter, + * resetting the adapter, or reading the adapter state. Since the + * driver initialization and run-time code must make calls into the + * port interface, these routines were written to be as generic and + * usable as possible. + * + * Receive Path - + * The adapter DMA engine supports a 256 entry receive descriptor block + * of which up to 255 entries can be used at any given time. The + * architecture is a standard producer, consumer, completion model in + * which the driver "produces" receive buffers to the adapter, the + * adapter "consumes" the receive buffers by DMAing incoming packet data, + * and the driver "completes" the receive buffers by servicing the + * incoming packet, then "produces" a new buffer and starts the cycle + * again. Receive buffers can be fragmented in up to 16 fragments + * (descriptor entries). For simplicity, this driver posts + * single-fragment receive buffers of 4608 bytes, then allocates a + * sk_buff, copies the data, then reposts the buffer. To reduce CPU + * utilization, a better approach would be to pass up the receive + * buffer (no extra copy) then allocate and post a replacement buffer. + * This is a performance enhancement that should be looked into at + * some point. + * + * Transmit Path - + * Like the receive path, the adapter DMA engine supports a 256 entry + * transmit descriptor block of which up to 255 entries can be used at + * any given time. Transmit buffers can be fragmented in up to 255 + * fragments (descriptor entries). This driver always posts one + * fragment per transmit packet request. + * + * The fragment contains the entire packet from FC to end of data. + * Before posting the buffer to the adapter, the driver sets a three-byte + * packet request header (PRH) which is required by the Motorola MAC chip + * used on the adapters. The PRH tells the MAC the type of token to + * receive/send, whether or not to generate and append the CRC, whether + * synchronous or asynchronous framing is used, etc. Since the PRH + * definition is not necessarily consistent across all FDDI chipsets, + * the driver, rather than the common FDDI packet handler routines, + * sets these bytes. + * + * To reduce the amount of descriptor fetches needed per transmit request, + * the driver takes advantage of the fact that there are at least three + * bytes available before the skb->data field on the outgoing transmit + * request. This is guaranteed by having fddi_setup() in net_init.c set + * dev->hard_header_len to 24 bytes. 21 bytes accounts for the largest + * header in an 802.2 SNAP frame. The other 3 bytes are the extra "pad" + * bytes which we'll use to store the PRH. + * + * There's a subtle advantage to adding these pad bytes to the + * hard_header_len, it ensures that the data portion of the packet for + * an 802.2 SNAP frame is longword aligned. Other FDDI driver + * implementations may not need the extra padding and can start copying + * or DMAing directly from the FC byte which starts at skb->data. Should + * another driver implementation need ADDITIONAL padding, the net_init.c + * module should be updated and dev->hard_header_len should be increased. + * NOTE: To maintain the alignment on the data portion of the packet, + * dev->hard_header_len should always be evenly divisible by 4 and at + * least 24 bytes in size. + * + * Modification History: + * Date Name Description + * 16-Aug-96 LVS Created. + * 20-Aug-96 LVS Updated dfx_probe so that version information + * string is only displayed if 1 or more cards are + * found. Changed dfx_rcv_queue_process to copy + * 3 NULL bytes before FC to ensure that data is + * longword aligned in receive buffer. + * 09-Sep-96 LVS Updated dfx_ctl_set_multicast_list to enable + * LLC group promiscuous mode if multicast list + * is too large. LLC individual/group promiscuous + * mode is now disabled if IFF_PROMISC flag not set. + * dfx_xmt_queue_pkt no longer checks for NULL skb + * on Alan Cox recommendation. Added node address + * override support. + * 12-Sep-96 LVS Reset current address to factory address during + * device open. Updated transmit path to post a + * single fragment which includes PRH->end of data. + * Mar 2000 AC Did various cleanups for 2.3.x + * Jun 2000 jgarzik PCI and resource alloc cleanups + * Jul 2000 tjeerd Much cleanup and some bug fixes + * Sep 2000 tjeerd Fix leak on unload, cosmetic code cleanup + * Feb 2001 Skb allocation fixes + * Feb 2001 davej PCI enable cleanups. + * 04 Aug 2003 macro Converted to the DMA API. + * 14 Aug 2004 macro Fix device names reported. + */ + +/* Include files */ + +#include <linux/module.h> +#include <linux/kernel.h> +#include <linux/string.h> +#include <linux/errno.h> +#include <linux/ioport.h> +#include <linux/slab.h> +#include <linux/interrupt.h> +#include <linux/pci.h> +#include <linux/delay.h> +#include <linux/init.h> +#include <linux/netdevice.h> +#include <linux/fddidevice.h> +#include <linux/skbuff.h> +#include <linux/bitops.h> + +#include <asm/byteorder.h> +#include <asm/io.h> + +#include "defxx.h" + +/* Version information string should be updated prior to each new release! */ +#define DRV_NAME "defxx" +#define DRV_VERSION "v1.07" +#define DRV_RELDATE "2004/08/14" + +static char version[] __devinitdata = + DRV_NAME ": " DRV_VERSION " " DRV_RELDATE + " Lawrence V. Stefani and others\n"; + +#define DYNAMIC_BUFFERS 1 + +#define SKBUFF_RX_COPYBREAK 200 +/* + * NEW_SKB_SIZE = PI_RCV_DATA_K_SIZE_MAX+128 to allow 128 byte + * alignment for compatibility with old EISA boards. + */ +#define NEW_SKB_SIZE (PI_RCV_DATA_K_SIZE_MAX+128) + +/* Define module-wide (static) routines */ + +static void dfx_bus_init(struct net_device *dev); +static void dfx_bus_config_check(DFX_board_t *bp); + +static int dfx_driver_init(struct net_device *dev, const char *print_name); +static int dfx_adap_init(DFX_board_t *bp, int get_buffers); + +static int dfx_open(struct net_device *dev); +static int dfx_close(struct net_device *dev); + +static void dfx_int_pr_halt_id(DFX_board_t *bp); +static void dfx_int_type_0_process(DFX_board_t *bp); +static void dfx_int_common(struct net_device *dev); +static void dfx_interrupt(int irq, void *dev_id, struct pt_regs *regs); + +static struct net_device_stats *dfx_ctl_get_stats(struct net_device *dev); +static void dfx_ctl_set_multicast_list(struct net_device *dev); +static int dfx_ctl_set_mac_address(struct net_device *dev, void *addr); +static int dfx_ctl_update_cam(DFX_board_t *bp); +static int dfx_ctl_update_filters(DFX_board_t *bp); + +static int dfx_hw_dma_cmd_req(DFX_board_t *bp); +static int dfx_hw_port_ctrl_req(DFX_board_t *bp, PI_UINT32 command, PI_UINT32 data_a, PI_UINT32 data_b, PI_UINT32 *host_data); +static void dfx_hw_adap_reset(DFX_board_t *bp, PI_UINT32 type); +static int dfx_hw_adap_state_rd(DFX_board_t *bp); +static int dfx_hw_dma_uninit(DFX_board_t *bp, PI_UINT32 type); + +static int dfx_rcv_init(DFX_board_t *bp, int get_buffers); +static void dfx_rcv_queue_process(DFX_board_t *bp); +static void dfx_rcv_flush(DFX_board_t *bp); + +static int dfx_xmt_queue_pkt(struct sk_buff *skb, struct net_device *dev); +static int dfx_xmt_done(DFX_board_t *bp); +static void dfx_xmt_flush(DFX_board_t *bp); + +/* Define module-wide (static) variables */ + +static struct net_device *root_dfx_eisa_dev; + + +/* + * ======================= + * = dfx_port_write_byte = + * = dfx_port_read_byte = + * = dfx_port_write_long = + * = dfx_port_read_long = + * ======================= + * + * Overview: + * Routines for reading and writing values from/to adapter + * + * Returns: + * None + * + * Arguments: + * bp - pointer to board information + * offset - register offset from base I/O address + * data - for dfx_port_write_byte and dfx_port_write_long, this + * is a value to write. + * for dfx_port_read_byte and dfx_port_read_byte, this + * is a pointer to store the read value. + * + * Functional Description: + * These routines perform the correct operation to read or write + * the adapter register. + * + * EISA port block base addresses are based on the slot number in which the + * controller is installed. For example, if the EISA controller is installed + * in slot 4, the port block base address is 0x4000. If the controller is + * installed in slot 2, the port block base address is 0x2000, and so on. + * This port block can be used to access PDQ, ESIC, and DEFEA on-board + * registers using the register offsets defined in DEFXX.H. + * + * PCI port block base addresses are assigned by the PCI BIOS or system + * firmware. There is one 128 byte port block which can be accessed. It + * allows for I/O mapping of both PDQ and PFI registers using the register + * offsets defined in DEFXX.H. + * + * Return Codes: + * None + * + * Assumptions: + * bp->base_addr is a valid base I/O address for this adapter. + * offset is a valid register offset for this adapter. + * + * Side Effects: + * Rather than produce macros for these functions, these routines + * are defined using "inline" to ensure that the compiler will + * generate inline code and not waste a procedure call and return. + * This provides all the benefits of macros, but with the + * advantage of strict data type checking. + */ + +static inline void dfx_port_write_byte( + DFX_board_t *bp, + int offset, + u8 data + ) + + { + u16 port = bp->base_addr + offset; + + outb(data, port); + } + +static inline void dfx_port_read_byte( + DFX_board_t *bp, + int offset, + u8 *data + ) + + { + u16 port = bp->base_addr + offset; + + *data = inb(port); + } + +static inline void dfx_port_write_long( + DFX_board_t *bp, + int offset, + u32 data + ) + + { + u16 port = bp->base_addr + offset; + + outl(data, port); + } + +static inline void dfx_port_read_long( + DFX_board_t *bp, + int offset, + u32 *data + ) + + { + u16 port = bp->base_addr + offset; + + *data = inl(port); + } + + +/* + * ============= + * = dfx_init_one_pci_or_eisa = + * ============= + * + * Overview: + * Initializes a supported FDDI EISA or PCI controller + * + * Returns: + * Condition code + * + * Arguments: + * pdev - pointer to pci device information (NULL for EISA) + * ioaddr - pointer to port (NULL for PCI) + * + * Functional Description: + * + * Return Codes: + * 0 - This device (fddi0, fddi1, etc) configured successfully + * -EBUSY - Failed to get resources, or dfx_driver_init failed. + * + * Assumptions: + * It compiles so it should work :-( (PCI cards do :-) + * + * Side Effects: + * Device structures for FDDI adapters (fddi0, fddi1, etc) are + * initialized and the board resources are read and stored in + * the device structure. + */ +static int __devinit dfx_init_one_pci_or_eisa(struct pci_dev *pdev, long ioaddr) +{ + static int version_disp; + char *print_name = DRV_NAME; + struct net_device *dev; + DFX_board_t *bp; /* board pointer */ + int alloc_size; /* total buffer size used */ + int err; + + if (!version_disp) { /* display version info if adapter is found */ + version_disp = 1; /* set display flag to TRUE so that */ + printk(version); /* we only display this string ONCE */ + } + + if (pdev != NULL) + print_name = pci_name(pdev); + + dev = alloc_fddidev(sizeof(*bp)); + if (!dev) { + printk(KERN_ERR "%s: unable to allocate fddidev, aborting\n", + print_name); + return -ENOMEM; + } + + /* Enable PCI device. */ + if (pdev != NULL) { + err = pci_enable_device (pdev); + if (err) goto err_out; + ioaddr = pci_resource_start (pdev, 1); + } + + SET_MODULE_OWNER(dev); + SET_NETDEV_DEV(dev, &pdev->dev); + + bp = dev->priv; + + if (!request_region(ioaddr, + pdev ? PFI_K_CSR_IO_LEN : PI_ESIC_K_CSR_IO_LEN, + print_name)) { + printk(KERN_ERR "%s: Cannot reserve I/O resource " + "0x%x @ 0x%lx, aborting\n", print_name, + pdev ? PFI_K_CSR_IO_LEN : PI_ESIC_K_CSR_IO_LEN, ioaddr); + err = -EBUSY; + goto err_out; + } + + /* Initialize new device structure */ + + dev->base_addr = ioaddr; /* save port (I/O) base address */ + + dev->get_stats = dfx_ctl_get_stats; + dev->open = dfx_open; + dev->stop = dfx_close; + dev->hard_start_xmit = dfx_xmt_queue_pkt; + dev->set_multicast_list = dfx_ctl_set_multicast_list; + dev->set_mac_address = dfx_ctl_set_mac_address; + + if (pdev == NULL) { + /* EISA board */ + bp->bus_type = DFX_BUS_TYPE_EISA; + bp->next = root_dfx_eisa_dev; + root_dfx_eisa_dev = dev; + } else { + /* PCI board */ + bp->bus_type = DFX_BUS_TYPE_PCI; + bp->pci_dev = pdev; + pci_set_drvdata (pdev, dev); + pci_set_master (pdev); + } + + if (dfx_driver_init(dev, print_name) != DFX_K_SUCCESS) { + err = -ENODEV; + goto err_out_region; + } + + err = register_netdev(dev); + if (err) + goto err_out_kfree; + + printk("%s: registered as %s\n", print_name, dev->name); + return 0; + +err_out_kfree: + alloc_size = sizeof(PI_DESCR_BLOCK) + + PI_CMD_REQ_K_SIZE_MAX + PI_CMD_RSP_K_SIZE_MAX + +#ifndef DYNAMIC_BUFFERS + (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX) + +#endif + sizeof(PI_CONSUMER_BLOCK) + + (PI_ALIGN_K_DESC_BLK - 1); + if (bp->kmalloced) + pci_free_consistent(pdev, alloc_size, + bp->kmalloced, bp->kmalloced_dma); +err_out_region: + release_region(ioaddr, pdev ? PFI_K_CSR_IO_LEN : PI_ESIC_K_CSR_IO_LEN); +err_out: + free_netdev(dev); + return err; +} + +static int __devinit dfx_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) +{ + return dfx_init_one_pci_or_eisa(pdev, 0); +} + +static int __init dfx_eisa_init(void) +{ + int rc = -ENODEV; + int i; /* used in for loops */ + u16 port; /* temporary I/O (port) address */ + u32 slot_id; /* EISA hardware (slot) ID read from adapter */ + + DBG_printk("In dfx_eisa_init...\n"); + + /* Scan for FDDI EISA controllers */ + + for (i=0; i < DFX_MAX_EISA_SLOTS; i++) /* only scan for up to 16 EISA slots */ + { + port = (i << 12) + PI_ESIC_K_SLOT_ID; /* port = I/O address for reading slot ID */ + slot_id = inl(port); /* read EISA HW (slot) ID */ + if ((slot_id & 0xF0FFFFFF) == DEFEA_PRODUCT_ID) + { + port = (i << 12); /* recalc base addr */ + + if (dfx_init_one_pci_or_eisa(NULL, port) == 0) rc = 0; + } + } + return rc; +} + +/* + * ================ + * = dfx_bus_init = + * ================ + * + * Overview: + * Initializes EISA and PCI controller bus-specific logic. + * + * Returns: + * None + * + * Arguments: + * dev - pointer to device information + * + * Functional Description: + * Determine and save adapter IRQ in device table, + * then perform bus-specific logic initialization. + * + * Return Codes: + * None + * + * Assumptions: + * dev->base_addr has already been set with the proper + * base I/O address for this device. + * + * Side Effects: + * Interrupts are enabled at the adapter bus-specific logic. + * Note: Interrupts at the DMA engine (PDQ chip) are not + * enabled yet. + */ + +static void __devinit dfx_bus_init(struct net_device *dev) +{ + DFX_board_t *bp = dev->priv; + u8 val; /* used for I/O read/writes */ + + DBG_printk("In dfx_bus_init...\n"); + + /* + * Initialize base I/O address field in bp structure + * + * Note: bp->base_addr is the same as dev->base_addr. + * It's useful because often we'll need to read + * or write registers where we already have the + * bp pointer instead of the dev pointer. Having + * the base address in the bp structure will + * save a pointer dereference. + * + * IMPORTANT!! This field must be defined before + * any of the dfx_port_* inline functions are + * called. + */ + + bp->base_addr = dev->base_addr; + + /* And a pointer back to the net_device struct */ + bp->dev = dev; + + /* Initialize adapter based on bus type */ + + if (bp->bus_type == DFX_BUS_TYPE_EISA) + { + /* Get the interrupt level from the ESIC chip */ + + dfx_port_read_byte(bp, PI_ESIC_K_IO_CONFIG_STAT_0, &val); + switch ((val & PI_CONFIG_STAT_0_M_IRQ) >> PI_CONFIG_STAT_0_V_IRQ) + { + case PI_CONFIG_STAT_0_IRQ_K_9: + dev->irq = 9; + break; + + case PI_CONFIG_STAT_0_IRQ_K_10: + dev->irq = 10; + break; + + case PI_CONFIG_STAT_0_IRQ_K_11: + dev->irq = 11; + break; + + case PI_CONFIG_STAT_0_IRQ_K_15: + dev->irq = 15; + break; + } + + /* Enable access to I/O on the board by writing 0x03 to Function Control Register */ + + dfx_port_write_byte(bp, PI_ESIC_K_FUNCTION_CNTRL, PI_ESIC_K_FUNCTION_CNTRL_IO_ENB); + + /* Set the I/O decode range of the board */ + + val = ((dev->base_addr >> 12) << PI_IO_CMP_V_SLOT); + dfx_port_write_byte(bp, PI_ESIC_K_IO_CMP_0_1, val); + dfx_port_write_byte(bp, PI_ESIC_K_IO_CMP_1_1, val); + + /* Enable access to rest of module (including PDQ and packet memory) */ + + dfx_port_write_byte(bp, PI_ESIC_K_SLOT_CNTRL, PI_SLOT_CNTRL_M_ENB); + + /* + * Map PDQ registers into I/O space. This is done by clearing a bit + * in Burst Holdoff register. + */ + + dfx_port_read_byte(bp, PI_ESIC_K_BURST_HOLDOFF, &val); + dfx_port_write_byte(bp, PI_ESIC_K_BURST_HOLDOFF, (val & ~PI_BURST_HOLDOFF_M_MEM_MAP)); + + /* Enable interrupts at EISA bus interface chip (ESIC) */ + + dfx_port_read_byte(bp, PI_ESIC_K_IO_CONFIG_STAT_0, &val); + dfx_port_write_byte(bp, PI_ESIC_K_IO_CONFIG_STAT_0, (val | PI_CONFIG_STAT_0_M_INT_ENB)); + } + else + { + struct pci_dev *pdev = bp->pci_dev; + + /* Get the interrupt level from the PCI Configuration Table */ + + dev->irq = pdev->irq; + + /* Check Latency Timer and set if less than minimal */ + + pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &val); + if (val < PFI_K_LAT_TIMER_MIN) /* if less than min, override with default */ + { + val = PFI_K_LAT_TIMER_DEF; + pci_write_config_byte(pdev, PCI_LATENCY_TIMER, val); + } + + /* Enable interrupts at PCI bus interface chip (PFI) */ + + dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL, (PFI_MODE_M_PDQ_INT_ENB | PFI_MODE_M_DMA_ENB)); + } + } + + +/* + * ======================== + * = dfx_bus_config_check = + * ======================== + * + * Overview: + * Checks the configuration (burst size, full-duplex, etc.) If any parameters + * are illegal, then this routine will set new defaults. + * + * Returns: + * None + * + * Arguments: + * bp - pointer to board information + * + * Functional Description: + * For Revision 1 FDDI EISA, Revision 2 or later FDDI EISA with rev E or later + * PDQ, and all FDDI PCI controllers, all values are legal. + * + * Return Codes: + * None + * + * Assumptions: + * dfx_adap_init has NOT been called yet so burst size and other items have + * not been set. + * + * Side Effects: + * None + */ + +static void __devinit dfx_bus_config_check(DFX_board_t *bp) +{ + int status; /* return code from adapter port control call */ + u32 slot_id; /* EISA-bus hardware id (DEC3001, DEC3002,...) */ + u32 host_data; /* LW data returned from port control call */ + + DBG_printk("In dfx_bus_config_check...\n"); + + /* Configuration check only valid for EISA adapter */ + + if (bp->bus_type == DFX_BUS_TYPE_EISA) + { + dfx_port_read_long(bp, PI_ESIC_K_SLOT_ID, &slot_id); + + /* + * First check if revision 2 EISA controller. Rev. 1 cards used + * PDQ revision B, so no workaround needed in this case. Rev. 3 + * cards used PDQ revision E, so no workaround needed in this + * case, either. Only Rev. 2 cards used either Rev. D or E + * chips, so we must verify the chip revision on Rev. 2 cards. + */ + + if (slot_id == DEFEA_PROD_ID_2) + { + /* + * Revision 2 FDDI EISA controller found, so let's check PDQ + * revision of adapter. + */ + + status = dfx_hw_port_ctrl_req(bp, + PI_PCTRL_M_SUB_CMD, + PI_SUB_CMD_K_PDQ_REV_GET, + 0, + &host_data); + if ((status != DFX_K_SUCCESS) || (host_data == 2)) + { + /* + * Either we couldn't determine the PDQ revision, or + * we determined that it is at revision D. In either case, + * we need to implement the workaround. + */ + + /* Ensure that the burst size is set to 8 longwords or less */ + + switch (bp->burst_size) + { + case PI_PDATA_B_DMA_BURST_SIZE_32: + case PI_PDATA_B_DMA_BURST_SIZE_16: + bp->burst_size = PI_PDATA_B_DMA_BURST_SIZE_8; + break; + + default: + break; + } + + /* Ensure that full-duplex mode is not enabled */ + + bp->full_duplex_enb = PI_SNMP_K_FALSE; + } + } + } + } + + +/* + * =================== + * = dfx_driver_init = + * =================== + * + * Overview: + * Initializes remaining adapter board structure information + * and makes sure adapter is in a safe state prior to dfx_open(). + * + * Returns: + * Condition code + * + * Arguments: + * dev - pointer to device information + * print_name - printable device name + * + * Functional Description: + * This function allocates additional resources such as the host memory + * blocks needed by the adapter (eg. descriptor and consumer blocks). + * Remaining bus initialization steps are also completed. The adapter + * is also reset so that it is in the DMA_UNAVAILABLE state. The OS + * must call dfx_open() to open the adapter and bring it on-line. + * + * Return Codes: + * DFX_K_SUCCESS - initialization succeeded + * DFX_K_FAILURE - initialization failed - could not allocate memory + * or read adapter MAC address + * + * Assumptions: + * Memory allocated from pci_alloc_consistent() call is physically + * contiguous, locked memory. + * + * Side Effects: + * Adapter is reset and should be in DMA_UNAVAILABLE state before + * returning from this routine. + */ + +static int __devinit dfx_driver_init(struct net_device *dev, + const char *print_name) +{ + DFX_board_t *bp = dev->priv; + int alloc_size; /* total buffer size needed */ + char *top_v, *curr_v; /* virtual addrs into memory block */ + dma_addr_t top_p, curr_p; /* physical addrs into memory block */ + u32 data; /* host data register value */ + + DBG_printk("In dfx_driver_init...\n"); + + /* Initialize bus-specific hardware registers */ + + dfx_bus_init(dev); + + /* + * Initialize default values for configurable parameters + * + * Note: All of these parameters are ones that a user may + * want to customize. It'd be nice to break these + * out into Space.c or someplace else that's more + * accessible/understandable than this file. + */ + + bp->full_duplex_enb = PI_SNMP_K_FALSE; + bp->req_ttrt = 8 * 12500; /* 8ms in 80 nanosec units */ + bp->burst_size = PI_PDATA_B_DMA_BURST_SIZE_DEF; + bp->rcv_bufs_to_post = RCV_BUFS_DEF; + + /* + * Ensure that HW configuration is OK + * + * Note: Depending on the hardware revision, we may need to modify + * some of the configurable parameters to workaround hardware + * limitations. We'll perform this configuration check AFTER + * setting the parameters to their default values. + */ + + dfx_bus_config_check(bp); + + /* Disable PDQ interrupts first */ + + dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS); + + /* Place adapter in DMA_UNAVAILABLE state by resetting adapter */ + + (void) dfx_hw_dma_uninit(bp, PI_PDATA_A_RESET_M_SKIP_ST); + + /* Read the factory MAC address from the adapter then save it */ + + if (dfx_hw_port_ctrl_req(bp, PI_PCTRL_M_MLA, PI_PDATA_A_MLA_K_LO, 0, + &data) != DFX_K_SUCCESS) { + printk("%s: Could not read adapter factory MAC address!\n", + print_name); + return(DFX_K_FAILURE); + } + memcpy(&bp->factory_mac_addr[0], &data, sizeof(u32)); + + if (dfx_hw_port_ctrl_req(bp, PI_PCTRL_M_MLA, PI_PDATA_A_MLA_K_HI, 0, + &data) != DFX_K_SUCCESS) { + printk("%s: Could not read adapter factory MAC address!\n", + print_name); + return(DFX_K_FAILURE); + } + memcpy(&bp->factory_mac_addr[4], &data, sizeof(u16)); + + /* + * Set current address to factory address + * + * Note: Node address override support is handled through + * dfx_ctl_set_mac_address. + */ + + memcpy(dev->dev_addr, bp->factory_mac_addr, FDDI_K_ALEN); + if (bp->bus_type == DFX_BUS_TYPE_EISA) + printk("%s: DEFEA at I/O addr = 0x%lX, IRQ = %d, " + "Hardware addr = %02X-%02X-%02X-%02X-%02X-%02X\n", + print_name, dev->base_addr, dev->irq, + dev->dev_addr[0], dev->dev_addr[1], + dev->dev_addr[2], dev->dev_addr[3], + dev->dev_addr[4], dev->dev_addr[5]); + else + printk("%s: DEFPA at I/O addr = 0x%lX, IRQ = %d, " + "Hardware addr = %02X-%02X-%02X-%02X-%02X-%02X\n", + print_name, dev->base_addr, dev->irq, + dev->dev_addr[0], dev->dev_addr[1], + dev->dev_addr[2], dev->dev_addr[3], + dev->dev_addr[4], dev->dev_addr[5]); + + /* + * Get memory for descriptor block, consumer block, and other buffers + * that need to be DMA read or written to by the adapter. + */ + + alloc_size = sizeof(PI_DESCR_BLOCK) + + PI_CMD_REQ_K_SIZE_MAX + + PI_CMD_RSP_K_SIZE_MAX + +#ifndef DYNAMIC_BUFFERS + (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX) + +#endif + sizeof(PI_CONSUMER_BLOCK) + + (PI_ALIGN_K_DESC_BLK - 1); + bp->kmalloced = top_v = pci_alloc_consistent(bp->pci_dev, alloc_size, + &bp->kmalloced_dma); + if (top_v == NULL) { + printk("%s: Could not allocate memory for host buffers " + "and structures!\n", print_name); + return(DFX_K_FAILURE); + } + memset(top_v, 0, alloc_size); /* zero out memory before continuing */ + top_p = bp->kmalloced_dma; /* get physical address of buffer */ + + /* + * To guarantee the 8K alignment required for the descriptor block, 8K - 1 + * plus the amount of memory needed was allocated. The physical address + * is now 8K aligned. By carving up the memory in a specific order, + * we'll guarantee the alignment requirements for all other structures. + * + * Note: If the assumptions change regarding the non-paged, non-cached, + * physically contiguous nature of the memory block or the address + * alignments, then we'll need to implement a different algorithm + * for allocating the needed memory. + */ + + curr_p = ALIGN(top_p, PI_ALIGN_K_DESC_BLK); + curr_v = top_v + (curr_p - top_p); + + /* Reserve space for descriptor block */ + + bp->descr_block_virt = (PI_DESCR_BLOCK *) curr_v; + bp->descr_block_phys = curr_p; + curr_v += sizeof(PI_DESCR_BLOCK); + curr_p += sizeof(PI_DESCR_BLOCK); + + /* Reserve space for command request buffer */ + + bp->cmd_req_virt = (PI_DMA_CMD_REQ *) curr_v; + bp->cmd_req_phys = curr_p; + curr_v += PI_CMD_REQ_K_SIZE_MAX; + curr_p += PI_CMD_REQ_K_SIZE_MAX; + + /* Reserve space for command response buffer */ + + bp->cmd_rsp_virt = (PI_DMA_CMD_RSP *) curr_v; + bp->cmd_rsp_phys = curr_p; + curr_v += PI_CMD_RSP_K_SIZE_MAX; + curr_p += PI_CMD_RSP_K_SIZE_MAX; + + /* Reserve space for the LLC host receive queue buffers */ + + bp->rcv_block_virt = curr_v; + bp->rcv_block_phys = curr_p; + +#ifndef DYNAMIC_BUFFERS + curr_v += (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX); + curr_p += (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX); +#endif + + /* Reserve space for the consumer block */ + + bp->cons_block_virt = (PI_CONSUMER_BLOCK *) curr_v; + bp->cons_block_phys = curr_p; + + /* Display virtual and physical addresses if debug driver */ + + DBG_printk("%s: Descriptor block virt = %0lX, phys = %0X\n", + print_name, + (long)bp->descr_block_virt, bp->descr_block_phys); + DBG_printk("%s: Command Request buffer virt = %0lX, phys = %0X\n", + print_name, (long)bp->cmd_req_virt, bp->cmd_req_phys); + DBG_printk("%s: Command Response buffer virt = %0lX, phys = %0X\n", + print_name, (long)bp->cmd_rsp_virt, bp->cmd_rsp_phys); + DBG_printk("%s: Receive buffer block virt = %0lX, phys = %0X\n", + print_name, (long)bp->rcv_block_virt, bp->rcv_block_phys); + DBG_printk("%s: Consumer block virt = %0lX, phys = %0X\n", + print_name, (long)bp->cons_block_virt, bp->cons_block_phys); + + return(DFX_K_SUCCESS); +} + + +/* + * ================= + * = dfx_adap_init = + * ================= + * + * Overview: + * Brings the adapter to the link avail/link unavailable state. + * + * Returns: + * Condition code + * + * Arguments: + * bp - pointer to board information + * get_buffers - non-zero if buffers to be allocated + * + * Functional Description: + * Issues the low-level firmware/hardware calls necessary to bring + * the adapter up, or to properly reset and restore adapter during + * run-time. + * + * Return Codes: + * DFX_K_SUCCESS - Adapter brought up successfully + * DFX_K_FAILURE - Adapter initialization failed + * + * Assumptions: + * bp->reset_type should be set to a valid reset type value before + * calling this routine. + * + * Side Effects: + * Adapter should be in LINK_AVAILABLE or LINK_UNAVAILABLE state + * upon a successful return of this routine. + */ + +static int dfx_adap_init(DFX_board_t *bp, int get_buffers) + { + DBG_printk("In dfx_adap_init...\n"); + + /* Disable PDQ interrupts first */ + + dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS); + + /* Place adapter in DMA_UNAVAILABLE state by resetting adapter */ + + if (dfx_hw_dma_uninit(bp, bp->reset_type) != DFX_K_SUCCESS) + { + printk("%s: Could not uninitialize/reset adapter!\n", bp->dev->name); + return(DFX_K_FAILURE); + } + + /* + * When the PDQ is reset, some false Type 0 interrupts may be pending, + * so we'll acknowledge all Type 0 interrupts now before continuing. + */ + + dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_0_STATUS, PI_HOST_INT_K_ACK_ALL_TYPE_0); + + /* + * Clear Type 1 and Type 2 registers before going to DMA_AVAILABLE state + * + * Note: We only need to clear host copies of these registers. The PDQ reset + * takes care of the on-board register values. + */ + + bp->cmd_req_reg.lword = 0; + bp->cmd_rsp_reg.lword = 0; + bp->rcv_xmt_reg.lword = 0; + + /* Clear consumer block before going to DMA_AVAILABLE state */ + + memset(bp->cons_block_virt, 0, sizeof(PI_CONSUMER_BLOCK)); + + /* Initialize the DMA Burst Size */ + + if (dfx_hw_port_ctrl_req(bp, + PI_PCTRL_M_SUB_CMD, + PI_SUB_CMD_K_BURST_SIZE_SET, + bp->burst_size, + NULL) != DFX_K_SUCCESS) + { + printk("%s: Could not set adapter burst size!\n", bp->dev->name); + return(DFX_K_FAILURE); + } + + /* + * Set base address of Consumer Block + * + * Assumption: 32-bit physical address of consumer block is 64 byte + * aligned. That is, bits 0-5 of the address must be zero. + */ + + if (dfx_hw_port_ctrl_req(bp, + PI_PCTRL_M_CONS_BLOCK, + bp->cons_block_phys, + 0, + NULL) != DFX_K_SUCCESS) + { + printk("%s: Could not set consumer block address!\n", bp->dev->name); + return(DFX_K_FAILURE); + } + + /* + * Set base address of Descriptor Block and bring adapter to DMA_AVAILABLE state + * + * Note: We also set the literal and data swapping requirements in this + * command. Since this driver presently runs on Intel platforms + * which are Little Endian, we'll tell the adapter to byte swap + * data only. This code will need to change when we support + * Big Endian systems (eg. PowerPC). + * + * Assumption: 32-bit physical address of descriptor block is 8Kbyte + * aligned. That is, bits 0-12 of the address must be zero. + */ + + if (dfx_hw_port_ctrl_req(bp, + PI_PCTRL_M_INIT, + (u32) (bp->descr_block_phys | PI_PDATA_A_INIT_M_BSWAP_DATA), + 0, + NULL) != DFX_K_SUCCESS) + { + printk("%s: Could not set descriptor block address!\n", bp->dev->name); + return(DFX_K_FAILURE); + } + + /* Set transmit flush timeout value */ + + bp->cmd_req_virt->cmd_type = PI_CMD_K_CHARS_SET; + bp->cmd_req_virt->char_set.item[0].item_code = PI_ITEM_K_FLUSH_TIME; + bp->cmd_req_virt->char_set.item[0].value = 3; /* 3 seconds */ + bp->cmd_req_virt->char_set.item[0].item_index = 0; + bp->cmd_req_virt->char_set.item[1].item_code = PI_ITEM_K_EOL; + if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS) + { + printk("%s: DMA command request failed!\n", bp->dev->name); + return(DFX_K_FAILURE); + } + + /* Set the initial values for eFDXEnable and MACTReq MIB objects */ + + bp->cmd_req_virt->cmd_type = PI_CMD_K_SNMP_SET; + bp->cmd_req_virt->snmp_set.item[0].item_code = PI_ITEM_K_FDX_ENB_DIS; + bp->cmd_req_virt->snmp_set.item[0].value = bp->full_duplex_enb; + bp->cmd_req_virt->snmp_set.item[0].item_index = 0; + bp->cmd_req_virt->snmp_set.item[1].item_code = PI_ITEM_K_MAC_T_REQ; + bp->cmd_req_virt->snmp_set.item[1].value = bp->req_ttrt; + bp->cmd_req_virt->snmp_set.item[1].item_index = 0; + bp->cmd_req_virt->snmp_set.item[2].item_code = PI_ITEM_K_EOL; + if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS) + { + printk("%s: DMA command request failed!\n", bp->dev->name); + return(DFX_K_FAILURE); + } + + /* Initialize adapter CAM */ + + if (dfx_ctl_update_cam(bp) != DFX_K_SUCCESS) + { + printk("%s: Adapter CAM update failed!\n", bp->dev->name); + return(DFX_K_FAILURE); + } + + /* Initialize adapter filters */ + + if (dfx_ctl_update_filters(bp) != DFX_K_SUCCESS) + { + printk("%s: Adapter filters update failed!\n", bp->dev->name); + return(DFX_K_FAILURE); + } + + /* + * Remove any existing dynamic buffers (i.e. if the adapter is being + * reinitialized) + */ + + if (get_buffers) + dfx_rcv_flush(bp); + + /* Initialize receive descriptor block and produce buffers */ + + if (dfx_rcv_init(bp, get_buffers)) + { + printk("%s: Receive buffer allocation failed\n", bp->dev->name); + if (get_buffers) + dfx_rcv_flush(bp); + return(DFX_K_FAILURE); + } + + /* Issue START command and bring adapter to LINK_(UN)AVAILABLE state */ + + bp->cmd_req_virt->cmd_type = PI_CMD_K_START; + if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS) + { + printk("%s: Start command failed\n", bp->dev->name); + if (get_buffers) + dfx_rcv_flush(bp); + return(DFX_K_FAILURE); + } + + /* Initialization succeeded, reenable PDQ interrupts */ + + dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_ENABLE_DEF_INTS); + return(DFX_K_SUCCESS); + } + + +/* + * ============ + * = dfx_open = + * ============ + * + * Overview: + * Opens the adapter + * + * Returns: + * Condition code + * + * Arguments: + * dev - pointer to device information + * + * Functional Description: + * This function brings the adapter to an operational state. + * + * Return Codes: + * 0 - Adapter was successfully opened + * -EAGAIN - Could not register IRQ or adapter initialization failed + * + * Assumptions: + * This routine should only be called for a device that was + * initialized successfully. + * + * Side Effects: + * Adapter should be in LINK_AVAILABLE or LINK_UNAVAILABLE state + * if the open is successful. + */ + +static int dfx_open(struct net_device *dev) +{ + int ret; + DFX_board_t *bp = dev->priv; + + DBG_printk("In dfx_open...\n"); + + /* Register IRQ - support shared interrupts by passing device ptr */ + + ret = request_irq(dev->irq, (void *)dfx_interrupt, SA_SHIRQ, dev->name, dev); + if (ret) { + printk(KERN_ERR "%s: Requested IRQ %d is busy\n", dev->name, dev->irq); + return ret; + } + + /* + * Set current address to factory MAC address + * + * Note: We've already done this step in dfx_driver_init. + * However, it's possible that a user has set a node + * address override, then closed and reopened the + * adapter. Unless we reset the device address field + * now, we'll continue to use the existing modified + * address. + */ + + memcpy(dev->dev_addr, bp->factory_mac_addr, FDDI_K_ALEN); + + /* Clear local unicast/multicast address tables and counts */ + + memset(bp->uc_table, 0, sizeof(bp->uc_table)); + memset(bp->mc_table, 0, sizeof(bp->mc_table)); + bp->uc_count = 0; + bp->mc_count = 0; + + /* Disable promiscuous filter settings */ + + bp->ind_group_prom = PI_FSTATE_K_BLOCK; + bp->group_prom = PI_FSTATE_K_BLOCK; + + spin_lock_init(&bp->lock); + + /* Reset and initialize adapter */ + + bp->reset_type = PI_PDATA_A_RESET_M_SKIP_ST; /* skip self-test */ + if (dfx_adap_init(bp, 1) != DFX_K_SUCCESS) + { + printk(KERN_ERR "%s: Adapter open failed!\n", dev->name); + free_irq(dev->irq, dev); + return -EAGAIN; + } + + /* Set device structure info */ + netif_start_queue(dev); + return(0); +} + + +/* + * ============= + * = dfx_close = + * ============= + * + * Overview: + * Closes the device/module. + * + * Returns: + * Condition code + * + * Arguments: + * dev - pointer to device information + * + * Functional Description: + * This routine closes the adapter and brings it to a safe state. + * The interrupt service routine is deregistered with the OS. + * The adapter can be opened again with another call to dfx_open(). + * + * Return Codes: + * Always return 0. + * + * Assumptions: + * No further requests for this adapter are made after this routine is + * called. dfx_open() can be called to reset and reinitialize the + * adapter. + * + * Side Effects: + * Adapter should be in DMA_UNAVAILABLE state upon completion of this + * routine. + */ + +static int dfx_close(struct net_device *dev) +{ + DFX_board_t *bp = dev->priv; + + DBG_printk("In dfx_close...\n"); + + /* Disable PDQ interrupts first */ + + dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS); + + /* Place adapter in DMA_UNAVAILABLE state by resetting adapter */ + + (void) dfx_hw_dma_uninit(bp, PI_PDATA_A_RESET_M_SKIP_ST); + + /* + * Flush any pending transmit buffers + * + * Note: It's important that we flush the transmit buffers + * BEFORE we clear our copy of the Type 2 register. + * Otherwise, we'll have no idea how many buffers + * we need to free. + */ + + dfx_xmt_flush(bp); + + /* + * Clear Type 1 and Type 2 registers after adapter reset + * + * Note: Even though we're closing the adapter, it's + * possible that an interrupt will occur after + * dfx_close is called. Without some assurance to + * the contrary we want to make sure that we don't + * process receive and transmit LLC frames and update + * the Type 2 register with bad information. + */ + + bp->cmd_req_reg.lword = 0; + bp->cmd_rsp_reg.lword = 0; + bp->rcv_xmt_reg.lword = 0; + + /* Clear consumer block for the same reason given above */ + + memset(bp->cons_block_virt, 0, sizeof(PI_CONSUMER_BLOCK)); + + /* Release all dynamically allocate skb in the receive ring. */ + + dfx_rcv_flush(bp); + + /* Clear device structure flags */ + + netif_stop_queue(dev); + + /* Deregister (free) IRQ */ + + free_irq(dev->irq, dev); + + return(0); +} + + +/* + * ====================== + * = dfx_int_pr_halt_id = + * ====================== + * + * Overview: + * Displays halt id's in string form. + * + * Returns: + * None + * + * Arguments: + * bp - pointer to board information + * + * Functional Description: + * Determine current halt id and display appropriate string. + * + * Return Codes: + * None + * + * Assumptions: + * None + * + * Side Effects: + * None + */ + +static void dfx_int_pr_halt_id(DFX_board_t *bp) + { + PI_UINT32 port_status; /* PDQ port status register value */ + PI_UINT32 halt_id; /* PDQ port status halt ID */ + + /* Read the latest port status */ + + dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &port_status); + + /* Display halt state transition information */ + + halt_id = (port_status & PI_PSTATUS_M_HALT_ID) >> PI_PSTATUS_V_HALT_ID; + switch (halt_id) + { + case PI_HALT_ID_K_SELFTEST_TIMEOUT: + printk("%s: Halt ID: Selftest Timeout\n", bp->dev->name); + break; + + case PI_HALT_ID_K_PARITY_ERROR: + printk("%s: Halt ID: Host Bus Parity Error\n", bp->dev->name); + break; + + case PI_HALT_ID_K_HOST_DIR_HALT: + printk("%s: Halt ID: Host-Directed Halt\n", bp->dev->name); + break; + + case PI_HALT_ID_K_SW_FAULT: + printk("%s: Halt ID: Adapter Software Fault\n", bp->dev->name); + break; + + case PI_HALT_ID_K_HW_FAULT: + printk("%s: Halt ID: Adapter Hardware Fault\n", bp->dev->name); + break; + + case PI_HALT_ID_K_PC_TRACE: + printk("%s: Halt ID: FDDI Network PC Trace Path Test\n", bp->dev->name); + break; + + case PI_HALT_ID_K_DMA_ERROR: + printk("%s: Halt ID: Adapter DMA Error\n", bp->dev->name); + break; + + case PI_HALT_ID_K_IMAGE_CRC_ERROR: + printk("%s: Halt ID: Firmware Image CRC Error\n", bp->dev->name); + break; + + case PI_HALT_ID_K_BUS_EXCEPTION: + printk("%s: Halt ID: 68000 Bus Exception\n", bp->dev->name); + break; + + default: + printk("%s: Halt ID: Unknown (code = %X)\n", bp->dev->name, halt_id); + break; + } + } + + +/* + * ========================== + * = dfx_int_type_0_process = + * ========================== + * + * Overview: + * Processes Type 0 interrupts. + * + * Returns: + * None + * + * Arguments: + * bp - pointer to board information + * + * Functional Description: + * Processes all enabled Type 0 interrupts. If the reason for the interrupt + * is a serious fault on the adapter, then an error message is displayed + * and the adapter is reset. + * + * One tricky potential timing window is the rapid succession of "link avail" + * "link unavail" state change interrupts. The acknowledgement of the Type 0 + * interrupt must be done before reading the state from the Port Status + * register. This is true because a state change could occur after reading + * the data, but before acknowledging the interrupt. If this state change + * does happen, it would be lost because the driver is using the old state, + * and it will never know about the new state because it subsequently + * acknowledges the state change interrupt. + * + * INCORRECT CORRECT + * read type 0 int reasons read type 0 int reasons + * read adapter state ack type 0 interrupts + * ack type 0 interrupts read adapter state + * ... process interrupt ... ... process interrupt ... + * + * Return Codes: + * None + * + * Assumptions: + * None + * + * Side Effects: + * An adapter reset may occur if the adapter has any Type 0 error interrupts + * or if the port status indicates that the adapter is halted. The driver + * is responsible for reinitializing the adapter with the current CAM + * contents and adapter filter settings. + */ + +static void dfx_int_type_0_process(DFX_board_t *bp) + + { + PI_UINT32 type_0_status; /* Host Interrupt Type 0 register */ + PI_UINT32 state; /* current adap state (from port status) */ + + /* + * Read host interrupt Type 0 register to determine which Type 0 + * interrupts are pending. Immediately write it back out to clear + * those interrupts. + */ + + dfx_port_read_long(bp, PI_PDQ_K_REG_TYPE_0_STATUS, &type_0_status); + dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_0_STATUS, type_0_status); + + /* Check for Type 0 error interrupts */ + + if (type_0_status & (PI_TYPE_0_STAT_M_NXM | + PI_TYPE_0_STAT_M_PM_PAR_ERR | + PI_TYPE_0_STAT_M_BUS_PAR_ERR)) + { + /* Check for Non-Existent Memory error */ + + if (type_0_status & PI_TYPE_0_STAT_M_NXM) + printk("%s: Non-Existent Memory Access Error\n", bp->dev->name); + + /* Check for Packet Memory Parity error */ + + if (type_0_status & PI_TYPE_0_STAT_M_PM_PAR_ERR) + printk("%s: Packet Memory Parity Error\n", bp->dev->name); + + /* Check for Host Bus Parity error */ + + if (type_0_status & PI_TYPE_0_STAT_M_BUS_PAR_ERR) + printk("%s: Host Bus Parity Error\n", bp->dev->name); + + /* Reset adapter and bring it back on-line */ + + bp->link_available = PI_K_FALSE; /* link is no longer available */ + bp->reset_type = 0; /* rerun on-board diagnostics */ + printk("%s: Resetting adapter...\n", bp->dev->name); + if (dfx_adap_init(bp, 0) != DFX_K_SUCCESS) + { + printk("%s: Adapter reset failed! Disabling adapter interrupts.\n", bp->dev->name); + dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS); + return; + } + printk("%s: Adapter reset successful!\n", bp->dev->name); + return; + } + + /* Check for transmit flush interrupt */ + + if (type_0_status & PI_TYPE_0_STAT_M_XMT_FLUSH) + { + /* Flush any pending xmt's and acknowledge the flush interrupt */ + + bp->link_available = PI_K_FALSE; /* link is no longer available */ + dfx_xmt_flush(bp); /* flush any outstanding packets */ + (void) dfx_hw_port_ctrl_req(bp, + PI_PCTRL_M_XMT_DATA_FLUSH_DONE, + 0, + 0, + NULL); + } + + /* Check for adapter state change */ + + if (type_0_status & PI_TYPE_0_STAT_M_STATE_CHANGE) + { + /* Get latest adapter state */ + + state = dfx_hw_adap_state_rd(bp); /* get adapter state */ + if (state == PI_STATE_K_HALTED) + { + /* + * Adapter has transitioned to HALTED state, try to reset + * adapter to bring it back on-line. If reset fails, + * leave the adapter in the broken state. + */ + + printk("%s: Controller has transitioned to HALTED state!\n", bp->dev->name); + dfx_int_pr_halt_id(bp); /* display halt id as string */ + + /* Reset adapter and bring it back on-line */ + + bp->link_available = PI_K_FALSE; /* link is no longer available */ + bp->reset_type = 0; /* rerun on-board diagnostics */ + printk("%s: Resetting adapter...\n", bp->dev->name); + if (dfx_adap_init(bp, 0) != DFX_K_SUCCESS) + { + printk("%s: Adapter reset failed! Disabling adapter interrupts.\n", bp->dev->name); + dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS); + return; + } + printk("%s: Adapter reset successful!\n", bp->dev->name); + } + else if (state == PI_STATE_K_LINK_AVAIL) + { + bp->link_available = PI_K_TRUE; /* set link available flag */ + } + } + } + + +/* + * ================== + * = dfx_int_common = + * ================== + * + * Overview: + * Interrupt service routine (ISR) + * + * Returns: + * None + * + * Arguments: + * bp - pointer to board information + * + * Functional Description: + * This is the ISR which processes incoming adapter interrupts. + * + * Return Codes: + * None + * + * Assumptions: + * This routine assumes PDQ interrupts have not been disabled. + * When interrupts are disabled at the PDQ, the Port Status register + * is automatically cleared. This routine uses the Port Status + * register value to determine whether a Type 0 interrupt occurred, + * so it's important that adapter interrupts are not normally + * enabled/disabled at the PDQ. + * + * It's vital that this routine is NOT reentered for the + * same board and that the OS is not in another section of + * code (eg. dfx_xmt_queue_pkt) for the same board on a + * different thread. + * + * Side Effects: + * Pending interrupts are serviced. Depending on the type of + * interrupt, acknowledging and clearing the interrupt at the + * PDQ involves writing a register to clear the interrupt bit + * or updating completion indices. + */ + +static void dfx_int_common(struct net_device *dev) +{ + DFX_board_t *bp = dev->priv; + PI_UINT32 port_status; /* Port Status register */ + + /* Process xmt interrupts - frequent case, so always call this routine */ + + if(dfx_xmt_done(bp)) /* free consumed xmt packets */ + netif_wake_queue(dev); + + /* Process rcv interrupts - frequent case, so always call this routine */ + + dfx_rcv_queue_process(bp); /* service received LLC frames */ + + /* + * Transmit and receive producer and completion indices are updated on the + * adapter by writing to the Type 2 Producer register. Since the frequent + * case is that we'll be processing either LLC transmit or receive buffers, + * we'll optimize I/O writes by doing a single register write here. + */ + + dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_2_PROD, bp->rcv_xmt_reg.lword); + + /* Read PDQ Port Status register to find out which interrupts need processing */ + + dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &port_status); + + /* Process Type 0 interrupts (if any) - infrequent, so only call when needed */ + + if (port_status & PI_PSTATUS_M_TYPE_0_PENDING) + dfx_int_type_0_process(bp); /* process Type 0 interrupts */ + } + + +/* + * ================= + * = dfx_interrupt = + * ================= + * + * Overview: + * Interrupt processing routine + * + * Returns: + * None + * + * Arguments: + * irq - interrupt vector + * dev_id - pointer to device information + * regs - pointer to registers structure + * + * Functional Description: + * This routine calls the interrupt processing routine for this adapter. It + * disables and reenables adapter interrupts, as appropriate. We can support + * shared interrupts since the incoming dev_id pointer provides our device + * structure context. + * + * Return Codes: + * None + * + * Assumptions: + * The interrupt acknowledgement at the hardware level (eg. ACKing the PIC + * on Intel-based systems) is done by the operating system outside this + * routine. + * + * System interrupts are enabled through this call. + * + * Side Effects: + * Interrupts are disabled, then reenabled at the adapter. + */ + +static void dfx_interrupt(int irq, void *dev_id, struct pt_regs *regs) + { + struct net_device *dev = dev_id; + DFX_board_t *bp; /* private board structure pointer */ + u8 tmp; /* used for disabling/enabling ints */ + + /* Get board pointer only if device structure is valid */ + + bp = dev->priv; + + spin_lock(&bp->lock); + + /* See if we're already servicing an interrupt */ + + /* Service adapter interrupts */ + + if (bp->bus_type == DFX_BUS_TYPE_PCI) + { + /* Disable PDQ-PFI interrupts at PFI */ + + dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL, PFI_MODE_M_DMA_ENB); + + /* Call interrupt service routine for this adapter */ + + dfx_int_common(dev); + + /* Clear PDQ interrupt status bit and reenable interrupts */ + + dfx_port_write_long(bp, PFI_K_REG_STATUS, PFI_STATUS_M_PDQ_INT); + dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL, + (PFI_MODE_M_PDQ_INT_ENB + PFI_MODE_M_DMA_ENB)); + } + else + { + /* Disable interrupts at the ESIC */ + + dfx_port_read_byte(bp, PI_ESIC_K_IO_CONFIG_STAT_0, &tmp); + tmp &= ~PI_CONFIG_STAT_0_M_INT_ENB; + dfx_port_write_byte(bp, PI_ESIC_K_IO_CONFIG_STAT_0, tmp); + + /* Call interrupt service routine for this adapter */ + + dfx_int_common(dev); + + /* Reenable interrupts at the ESIC */ + + dfx_port_read_byte(bp, PI_ESIC_K_IO_CONFIG_STAT_0, &tmp); + tmp |= PI_CONFIG_STAT_0_M_INT_ENB; + dfx_port_write_byte(bp, PI_ESIC_K_IO_CONFIG_STAT_0, tmp); + } + + spin_unlock(&bp->lock); + } + + +/* + * ===================== + * = dfx_ctl_get_stats = + * ===================== + * + * Overview: + * Get statistics for FDDI adapter + * + * Returns: + * Pointer to FDDI statistics structure + * + * Arguments: + * dev - pointer to device information + * + * Functional Description: + * Gets current MIB objects from adapter, then + * returns FDDI statistics structure as defined + * in if_fddi.h. + * + * Note: Since the FDDI statistics structure is + * still new and the device structure doesn't + * have an FDDI-specific get statistics handler, + * we'll return the FDDI statistics structure as + * a pointer to an Ethernet statistics structure. + * That way, at least the first part of the statistics + * structure can be decoded properly, and it allows + * "smart" applications to perform a second cast to + * decode the FDDI-specific statistics. + * + * We'll have to pay attention to this routine as the + * device structure becomes more mature and LAN media + * independent. + * + * Return Codes: + * None + * + * Assumptions: + * None + * + * Side Effects: + * None + */ + +static struct net_device_stats *dfx_ctl_get_stats(struct net_device *dev) + { + DFX_board_t *bp = dev->priv; + + /* Fill the bp->stats structure with driver-maintained counters */ + + bp->stats.gen.rx_packets = bp->rcv_total_frames; + bp->stats.gen.tx_packets = bp->xmt_total_frames; + bp->stats.gen.rx_bytes = bp->rcv_total_bytes; + bp->stats.gen.tx_bytes = bp->xmt_total_bytes; + bp->stats.gen.rx_errors = bp->rcv_crc_errors + + bp->rcv_frame_status_errors + + bp->rcv_length_errors; + bp->stats.gen.tx_errors = bp->xmt_length_errors; + bp->stats.gen.rx_dropped = bp->rcv_discards; + bp->stats.gen.tx_dropped = bp->xmt_discards; + bp->stats.gen.multicast = bp->rcv_multicast_frames; + bp->stats.gen.collisions = 0; /* always zero (0) for FDDI */ + + /* Get FDDI SMT MIB objects */ + + bp->cmd_req_virt->cmd_type = PI_CMD_K_SMT_MIB_GET; + if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS) + return((struct net_device_stats *) &bp->stats); + + /* Fill the bp->stats structure with the SMT MIB object values */ + + memcpy(bp->stats.smt_station_id, &bp->cmd_rsp_virt->smt_mib_get.smt_station_id, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_station_id)); + bp->stats.smt_op_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_op_version_id; + bp->stats.smt_hi_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_hi_version_id; + bp->stats.smt_lo_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_lo_version_id; + memcpy(bp->stats.smt_user_data, &bp->cmd_rsp_virt->smt_mib_get.smt_user_data, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_user_data)); + bp->stats.smt_mib_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_mib_version_id; + bp->stats.smt_mac_cts = bp->cmd_rsp_virt->smt_mib_get.smt_mac_ct; + bp->stats.smt_non_master_cts = bp->cmd_rsp_virt->smt_mib_get.smt_non_master_ct; + bp->stats.smt_master_cts = bp->cmd_rsp_virt->smt_mib_get.smt_master_ct; + bp->stats.smt_available_paths = bp->cmd_rsp_virt->smt_mib_get.smt_available_paths; + bp->stats.smt_config_capabilities = bp->cmd_rsp_virt->smt_mib_get.smt_config_capabilities; + bp->stats.smt_config_policy = bp->cmd_rsp_virt->smt_mib_get.smt_config_policy; + bp->stats.smt_connection_policy = bp->cmd_rsp_virt->smt_mib_get.smt_connection_policy; + bp->stats.smt_t_notify = bp->cmd_rsp_virt->smt_mib_get.smt_t_notify; + bp->stats.smt_stat_rpt_policy = bp->cmd_rsp_virt->smt_mib_get.smt_stat_rpt_policy; + bp->stats.smt_trace_max_expiration = bp->cmd_rsp_virt->smt_mib_get.smt_trace_max_expiration; + bp->stats.smt_bypass_present = bp->cmd_rsp_virt->smt_mib_get.smt_bypass_present; + bp->stats.smt_ecm_state = bp->cmd_rsp_virt->smt_mib_get.smt_ecm_state; + bp->stats.smt_cf_state = bp->cmd_rsp_virt->smt_mib_get.smt_cf_state; + bp->stats.smt_remote_disconnect_flag = bp->cmd_rsp_virt->smt_mib_get.smt_remote_disconnect_flag; + bp->stats.smt_station_status = bp->cmd_rsp_virt->smt_mib_get.smt_station_status; + bp->stats.smt_peer_wrap_flag = bp->cmd_rsp_virt->smt_mib_get.smt_peer_wrap_flag; + bp->stats.smt_time_stamp = bp->cmd_rsp_virt->smt_mib_get.smt_msg_time_stamp.ls; + bp->stats.smt_transition_time_stamp = bp->cmd_rsp_virt->smt_mib_get.smt_transition_time_stamp.ls; + bp->stats.mac_frame_status_functions = bp->cmd_rsp_virt->smt_mib_get.mac_frame_status_functions; + bp->stats.mac_t_max_capability = bp->cmd_rsp_virt->smt_mib_get.mac_t_max_capability; + bp->stats.mac_tvx_capability = bp->cmd_rsp_virt->smt_mib_get.mac_tvx_capability; + bp->stats.mac_available_paths = bp->cmd_rsp_virt->smt_mib_get.mac_available_paths; + bp->stats.mac_current_path = bp->cmd_rsp_virt->smt_mib_get.mac_current_path; + memcpy(bp->stats.mac_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_upstream_nbr, FDDI_K_ALEN); + memcpy(bp->stats.mac_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_downstream_nbr, FDDI_K_ALEN); + memcpy(bp->stats.mac_old_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_upstream_nbr, FDDI_K_ALEN); + memcpy(bp->stats.mac_old_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_downstream_nbr, FDDI_K_ALEN); + bp->stats.mac_dup_address_test = bp->cmd_rsp_virt->smt_mib_get.mac_dup_address_test; + bp->stats.mac_requested_paths = bp->cmd_rsp_virt->smt_mib_get.mac_requested_paths; + bp->stats.mac_downstream_port_type = bp->cmd_rsp_virt->smt_mib_get.mac_downstream_port_type; + memcpy(bp->stats.mac_smt_address, &bp->cmd_rsp_virt->smt_mib_get.mac_smt_address, FDDI_K_ALEN); + bp->stats.mac_t_req = bp->cmd_rsp_virt->smt_mib_get.mac_t_req; + bp->stats.mac_t_neg = bp->cmd_rsp_virt->smt_mib_get.mac_t_neg; + bp->stats.mac_t_max = bp->cmd_rsp_virt->smt_mib_get.mac_t_max; + bp->stats.mac_tvx_value = bp->cmd_rsp_virt->smt_mib_get.mac_tvx_value; + bp->stats.mac_frame_error_threshold = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_threshold; + bp->stats.mac_frame_error_ratio = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_ratio; + bp->stats.mac_rmt_state = bp->cmd_rsp_virt->smt_mib_get.mac_rmt_state; + bp->stats.mac_da_flag = bp->cmd_rsp_virt->smt_mib_get.mac_da_flag; + bp->stats.mac_una_da_flag = bp->cmd_rsp_virt->smt_mib_get.mac_unda_flag; + bp->stats.mac_frame_error_flag = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_flag; + bp->stats.mac_ma_unitdata_available = bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_available; + bp->stats.mac_hardware_present = bp->cmd_rsp_virt->smt_mib_get.mac_hardware_present; + bp->stats.mac_ma_unitdata_enable = bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_enable; + bp->stats.path_tvx_lower_bound = bp->cmd_rsp_virt->smt_mib_get.path_tvx_lower_bound; + bp->stats.path_t_max_lower_bound = bp->cmd_rsp_virt->smt_mib_get.path_t_max_lower_bound; + bp->stats.path_max_t_req = bp->cmd_rsp_virt->smt_mib_get.path_max_t_req; + memcpy(bp->stats.path_configuration, &bp->cmd_rsp_virt->smt_mib_get.path_configuration, sizeof(bp->cmd_rsp_virt->smt_mib_get.path_configuration)); + bp->stats.port_my_type[0] = bp->cmd_rsp_virt->smt_mib_get.port_my_type[0]; + bp->stats.port_my_type[1] = bp->cmd_rsp_virt->smt_mib_get.port_my_type[1]; + bp->stats.port_neighbor_type[0] = bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[0]; + bp->stats.port_neighbor_type[1] = bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[1]; + bp->stats.port_connection_policies[0] = bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[0]; + bp->stats.port_connection_policies[1] = bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[1]; + bp->stats.port_mac_indicated[0] = bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[0]; + bp->stats.port_mac_indicated[1] = bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[1]; + bp->stats.port_current_path[0] = bp->cmd_rsp_virt->smt_mib_get.port_current_path[0]; + bp->stats.port_current_path[1] = bp->cmd_rsp_virt->smt_mib_get.port_current_path[1]; + memcpy(&bp->stats.port_requested_paths[0*3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[0], 3); + memcpy(&bp->stats.port_requested_paths[1*3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[1], 3); + bp->stats.port_mac_placement[0] = bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[0]; + bp->stats.port_mac_placement[1] = bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[1]; + bp->stats.port_available_paths[0] = bp->cmd_rsp_virt->smt_mib_get.port_available_paths[0]; + bp->stats.port_available_paths[1] = bp->cmd_rsp_virt->smt_mib_get.port_available_paths[1]; + bp->stats.port_pmd_class[0] = bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[0]; + bp->stats.port_pmd_class[1] = bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[1]; + bp->stats.port_connection_capabilities[0] = bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[0]; + bp->stats.port_connection_capabilities[1] = bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[1]; + bp->stats.port_bs_flag[0] = bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[0]; + bp->stats.port_bs_flag[1] = bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[1]; + bp->stats.port_ler_estimate[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[0]; + bp->stats.port_ler_estimate[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[1]; + bp->stats.port_ler_cutoff[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[0]; + bp->stats.port_ler_cutoff[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[1]; + bp->stats.port_ler_alarm[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[0]; + bp->stats.port_ler_alarm[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[1]; + bp->stats.port_connect_state[0] = bp->cmd_rsp_virt->smt_mib_get.port_connect_state[0]; + bp->stats.port_connect_state[1] = bp->cmd_rsp_virt->smt_mib_get.port_connect_state[1]; + bp->stats.port_pcm_state[0] = bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[0]; + bp->stats.port_pcm_state[1] = bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[1]; + bp->stats.port_pc_withhold[0] = bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[0]; + bp->stats.port_pc_withhold[1] = bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[1]; + bp->stats.port_ler_flag[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[0]; + bp->stats.port_ler_flag[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[1]; + bp->stats.port_hardware_present[0] = bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[0]; + bp->stats.port_hardware_present[1] = bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[1]; + + /* Get FDDI counters */ + + bp->cmd_req_virt->cmd_type = PI_CMD_K_CNTRS_GET; + if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS) + return((struct net_device_stats *) &bp->stats); + + /* Fill the bp->stats structure with the FDDI counter values */ + + bp->stats.mac_frame_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.frame_cnt.ls; + bp->stats.mac_copied_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.copied_cnt.ls; + bp->stats.mac_transmit_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.transmit_cnt.ls; + bp->stats.mac_error_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.error_cnt.ls; + bp->stats.mac_lost_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.lost_cnt.ls; + bp->stats.port_lct_fail_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[0].ls; + bp->stats.port_lct_fail_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[1].ls; + bp->stats.port_lem_reject_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[0].ls; + bp->stats.port_lem_reject_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[1].ls; + bp->stats.port_lem_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[0].ls; + bp->stats.port_lem_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[1].ls; + + return((struct net_device_stats *) &bp->stats); + } + + +/* + * ============================== + * = dfx_ctl_set_multicast_list = + * ============================== + * + * Overview: + * Enable/Disable LLC frame promiscuous mode reception + * on the adapter and/or update multicast address table. + * + * Returns: + * None + * + * Arguments: + * dev - pointer to device information + * + * Functional Description: + * This routine follows a fairly simple algorithm for setting the + * adapter filters and CAM: + * + * if IFF_PROMISC flag is set + * enable LLC individual/group promiscuous mode + * else + * disable LLC individual/group promiscuous mode + * if number of incoming multicast addresses > + * (CAM max size - number of unicast addresses in CAM) + * enable LLC group promiscuous mode + * set driver-maintained multicast address count to zero + * else + * disable LLC group promiscuous mode + * set driver-maintained multicast address count to incoming count + * update adapter CAM + * update adapter filters + * + * Return Codes: + * None + * + * Assumptions: + * Multicast addresses are presented in canonical (LSB) format. + * + * Side Effects: + * On-board adapter CAM and filters are updated. + */ + +static void dfx_ctl_set_multicast_list(struct net_device *dev) + { + DFX_board_t *bp = dev->priv; + int i; /* used as index in for loop */ + struct dev_mc_list *dmi; /* ptr to multicast addr entry */ + + /* Enable LLC frame promiscuous mode, if necessary */ + + if (dev->flags & IFF_PROMISC) + bp->ind_group_prom = PI_FSTATE_K_PASS; /* Enable LLC ind/group prom mode */ + + /* Else, update multicast address table */ + + else + { + bp->ind_group_prom = PI_FSTATE_K_BLOCK; /* Disable LLC ind/group prom mode */ + /* + * Check whether incoming multicast address count exceeds table size + * + * Note: The adapters utilize an on-board 64 entry CAM for + * supporting perfect filtering of multicast packets + * and bridge functions when adding unicast addresses. + * There is no hash function available. To support + * additional multicast addresses, the all multicast + * filter (LLC group promiscuous mode) must be enabled. + * + * The firmware reserves two CAM entries for SMT-related + * multicast addresses, which leaves 62 entries available. + * The following code ensures that we're not being asked + * to add more than 62 addresses to the CAM. If we are, + * the driver will enable the all multicast filter. + * Should the number of multicast addresses drop below + * the high water mark, the filter will be disabled and + * perfect filtering will be used. + */ + + if (dev->mc_count > (PI_CMD_ADDR_FILTER_K_SIZE - bp->uc_count)) + { + bp->group_prom = PI_FSTATE_K_PASS; /* Enable LLC group prom mode */ + bp->mc_count = 0; /* Don't add mc addrs to CAM */ + } + else + { + bp->group_prom = PI_FSTATE_K_BLOCK; /* Disable LLC group prom mode */ + bp->mc_count = dev->mc_count; /* Add mc addrs to CAM */ + } + + /* Copy addresses to multicast address table, then update adapter CAM */ + + dmi = dev->mc_list; /* point to first multicast addr */ + for (i=0; i < bp->mc_count; i++) + { + memcpy(&bp->mc_table[i*FDDI_K_ALEN], dmi->dmi_addr, FDDI_K_ALEN); + dmi = dmi->next; /* point to next multicast addr */ + } + if (dfx_ctl_update_cam(bp) != DFX_K_SUCCESS) + { + DBG_printk("%s: Could not update multicast address table!\n", dev->name); + } + else + { + DBG_printk("%s: Multicast address table updated! Added %d addresses.\n", dev->name, bp->mc_count); + } + } + + /* Update adapter filters */ + + if (dfx_ctl_update_filters(bp) != DFX_K_SUCCESS) + { + DBG_printk("%s: Could not update adapter filters!\n", dev->name); + } + else + { + DBG_printk("%s: Adapter filters updated!\n", dev->name); + } + } + + +/* + * =========================== + * = dfx_ctl_set_mac_address = + * =========================== + * + * Overview: + * Add node address override (unicast address) to adapter + * CAM and update dev_addr field in device table. + * + * Returns: + * None + * + * Arguments: + * dev - pointer to device information + * addr - pointer to sockaddr structure containing unicast address to add + * + * Functional Description: + * The adapter supports node address overrides by adding one or more + * unicast addresses to the adapter CAM. This is similar to adding + * multicast addresses. In this routine we'll update the driver and + * device structures with the new address, then update the adapter CAM + * to ensure that the adapter will copy and strip frames destined and + * sourced by that address. + * + * Return Codes: + * Always returns zero. + * + * Assumptions: + * The address pointed to by addr->sa_data is a valid unicast + * address and is presented in canonical (LSB) format. + * + * Side Effects: + * On-board adapter CAM is updated. On-board adapter filters + * may be updated. + */ + +static int dfx_ctl_set_mac_address(struct net_device *dev, void *addr) + { + DFX_board_t *bp = dev->priv; + struct sockaddr *p_sockaddr = (struct sockaddr *)addr; + + /* Copy unicast address to driver-maintained structs and update count */ + + memcpy(dev->dev_addr, p_sockaddr->sa_data, FDDI_K_ALEN); /* update device struct */ + memcpy(&bp->uc_table[0], p_sockaddr->sa_data, FDDI_K_ALEN); /* update driver struct */ + bp->uc_count = 1; + + /* + * Verify we're not exceeding the CAM size by adding unicast address + * + * Note: It's possible that before entering this routine we've + * already filled the CAM with 62 multicast addresses. + * Since we need to place the node address override into + * the CAM, we have to check to see that we're not + * exceeding the CAM size. If we are, we have to enable + * the LLC group (multicast) promiscuous mode filter as + * in dfx_ctl_set_multicast_list. + */ + + if ((bp->uc_count + bp->mc_count) > PI_CMD_ADDR_FILTER_K_SIZE) + { + bp->group_prom = PI_FSTATE_K_PASS; /* Enable LLC group prom mode */ + bp->mc_count = 0; /* Don't add mc addrs to CAM */ + + /* Update adapter filters */ + + if (dfx_ctl_update_filters(bp) != DFX_K_SUCCESS) + { + DBG_printk("%s: Could not update adapter filters!\n", dev->name); + } + else + { + DBG_printk("%s: Adapter filters updated!\n", dev->name); + } + } + + /* Update adapter CAM with new unicast address */ + + if (dfx_ctl_update_cam(bp) != DFX_K_SUCCESS) + { + DBG_printk("%s: Could not set new MAC address!\n", dev->name); + } + else + { + DBG_printk("%s: Adapter CAM updated with new MAC address\n", dev->name); + } + return(0); /* always return zero */ + } + + +/* + * ====================== + * = dfx_ctl_update_cam = + * ====================== + * + * Overview: + * Procedure to update adapter CAM (Content Addressable Memory) + * with desired unicast and multicast address entries. + * + * Returns: + * Condition code + * + * Arguments: + * bp - pointer to board information + * + * Functional Description: + * Updates adapter CAM with current contents of board structure + * unicast and multicast address tables. Since there are only 62 + * free entries in CAM, this routine ensures that the command + * request buffer is not overrun. + * + * Return Codes: + * DFX_K_SUCCESS - Request succeeded + * DFX_K_FAILURE - Request failed + * + * Assumptions: + * All addresses being added (unicast and multicast) are in canonical + * order. + * + * Side Effects: + * On-board adapter CAM is updated. + */ + +static int dfx_ctl_update_cam(DFX_board_t *bp) + { + int i; /* used as index */ + PI_LAN_ADDR *p_addr; /* pointer to CAM entry */ + + /* + * Fill in command request information + * + * Note: Even though both the unicast and multicast address + * table entries are stored as contiguous 6 byte entries, + * the firmware address filter set command expects each + * entry to be two longwords (8 bytes total). We must be + * careful to only copy the six bytes of each unicast and + * multicast table entry into each command entry. This + * is also why we must first clear the entire command + * request buffer. + */ + + memset(bp->cmd_req_virt, 0, PI_CMD_REQ_K_SIZE_MAX); /* first clear buffer */ + bp->cmd_req_virt->cmd_type = PI_CMD_K_ADDR_FILTER_SET; + p_addr = &bp->cmd_req_virt->addr_filter_set.entry[0]; + + /* Now add unicast addresses to command request buffer, if any */ + + for (i=0; i < (int)bp->uc_count; i++) + { + if (i < PI_CMD_ADDR_FILTER_K_SIZE) + { + memcpy(p_addr, &bp->uc_table[i*FDDI_K_ALEN], FDDI_K_ALEN); + p_addr++; /* point to next command entry */ + } + } + + /* Now add multicast addresses to command request buffer, if any */ + + for (i=0; i < (int)bp->mc_count; i++) + { + if ((i + bp->uc_count) < PI_CMD_ADDR_FILTER_K_SIZE) + { + memcpy(p_addr, &bp->mc_table[i*FDDI_K_ALEN], FDDI_K_ALEN); + p_addr++; /* point to next command entry */ + } + } + + /* Issue command to update adapter CAM, then return */ + + if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS) + return(DFX_K_FAILURE); + return(DFX_K_SUCCESS); + } + + +/* + * ========================== + * = dfx_ctl_update_filters = + * ========================== + * + * Overview: + * Procedure to update adapter filters with desired + * filter settings. + * + * Returns: + * Condition code + * + * Arguments: + * bp - pointer to board information + * + * Functional Description: + * Enables or disables filter using current filter settings. + * + * Return Codes: + * DFX_K_SUCCESS - Request succeeded. + * DFX_K_FAILURE - Request failed. + * + * Assumptions: + * We must always pass up packets destined to the broadcast + * address (FF-FF-FF-FF-FF-FF), so we'll always keep the + * broadcast filter enabled. + * + * Side Effects: + * On-board adapter filters are updated. + */ + +static int dfx_ctl_update_filters(DFX_board_t *bp) + { + int i = 0; /* used as index */ + + /* Fill in command request information */ + + bp->cmd_req_virt->cmd_type = PI_CMD_K_FILTERS_SET; + + /* Initialize Broadcast filter - * ALWAYS ENABLED * */ + + bp->cmd_req_virt->filter_set.item[i].item_code = PI_ITEM_K_BROADCAST; + bp->cmd_req_virt->filter_set.item[i++].value = PI_FSTATE_K_PASS; + + /* Initialize LLC Individual/Group Promiscuous filter */ + + bp->cmd_req_virt->filter_set.item[i].item_code = PI_ITEM_K_IND_GROUP_PROM; + bp->cmd_req_virt->filter_set.item[i++].value = bp->ind_group_prom; + + /* Initialize LLC Group Promiscuous filter */ + + bp->cmd_req_virt->filter_set.item[i].item_code = PI_ITEM_K_GROUP_PROM; + bp->cmd_req_virt->filter_set.item[i++].value = bp->group_prom; + + /* Terminate the item code list */ + + bp->cmd_req_virt->filter_set.item[i].item_code = PI_ITEM_K_EOL; + + /* Issue command to update adapter filters, then return */ + + if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS) + return(DFX_K_FAILURE); + return(DFX_K_SUCCESS); + } + + +/* + * ====================== + * = dfx_hw_dma_cmd_req = + * ====================== + * + * Overview: + * Sends PDQ DMA command to adapter firmware + * + * Returns: + * Condition code + * + * Arguments: + * bp - pointer to board information + * + * Functional Description: + * The command request and response buffers are posted to the adapter in the manner + * described in the PDQ Port Specification: + * + * 1. Command Response Buffer is posted to adapter. + * 2. Command Request Buffer is posted to adapter. + * 3. Command Request consumer index is polled until it indicates that request + * buffer has been DMA'd to adapter. + * 4. Command Response consumer index is polled until it indicates that response + * buffer has been DMA'd from adapter. + * + * This ordering ensures that a response buffer is already available for the firmware + * to use once it's done processing the request buffer. + * + * Return Codes: + * DFX_K_SUCCESS - DMA command succeeded + * DFX_K_OUTSTATE - Adapter is NOT in proper state + * DFX_K_HW_TIMEOUT - DMA command timed out + * + * Assumptions: + * Command request buffer has already been filled with desired DMA command. + * + * Side Effects: + * None + */ + +static int dfx_hw_dma_cmd_req(DFX_board_t *bp) + { + int status; /* adapter status */ + int timeout_cnt; /* used in for loops */ + + /* Make sure the adapter is in a state that we can issue the DMA command in */ + + status = dfx_hw_adap_state_rd(bp); + if ((status == PI_STATE_K_RESET) || + (status == PI_STATE_K_HALTED) || + (status == PI_STATE_K_DMA_UNAVAIL) || + (status == PI_STATE_K_UPGRADE)) + return(DFX_K_OUTSTATE); + + /* Put response buffer on the command response queue */ + + bp->descr_block_virt->cmd_rsp[bp->cmd_rsp_reg.index.prod].long_0 = (u32) (PI_RCV_DESCR_M_SOP | + ((PI_CMD_RSP_K_SIZE_MAX / PI_ALIGN_K_CMD_RSP_BUFF) << PI_RCV_DESCR_V_SEG_LEN)); + bp->descr_block_virt->cmd_rsp[bp->cmd_rsp_reg.index.prod].long_1 = bp->cmd_rsp_phys; + + /* Bump (and wrap) the producer index and write out to register */ + + bp->cmd_rsp_reg.index.prod += 1; + bp->cmd_rsp_reg.index.prod &= PI_CMD_RSP_K_NUM_ENTRIES-1; + dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_RSP_PROD, bp->cmd_rsp_reg.lword); + + /* Put request buffer on the command request queue */ + + bp->descr_block_virt->cmd_req[bp->cmd_req_reg.index.prod].long_0 = (u32) (PI_XMT_DESCR_M_SOP | + PI_XMT_DESCR_M_EOP | (PI_CMD_REQ_K_SIZE_MAX << PI_XMT_DESCR_V_SEG_LEN)); + bp->descr_block_virt->cmd_req[bp->cmd_req_reg.index.prod].long_1 = bp->cmd_req_phys; + + /* Bump (and wrap) the producer index and write out to register */ + + bp->cmd_req_reg.index.prod += 1; + bp->cmd_req_reg.index.prod &= PI_CMD_REQ_K_NUM_ENTRIES-1; + dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_REQ_PROD, bp->cmd_req_reg.lword); + + /* + * Here we wait for the command request consumer index to be equal + * to the producer, indicating that the adapter has DMAed the request. + */ + + for (timeout_cnt = 20000; timeout_cnt > 0; timeout_cnt--) + { + if (bp->cmd_req_reg.index.prod == (u8)(bp->cons_block_virt->cmd_req)) + break; + udelay(100); /* wait for 100 microseconds */ + } + if (timeout_cnt == 0) + return(DFX_K_HW_TIMEOUT); + + /* Bump (and wrap) the completion index and write out to register */ + + bp->cmd_req_reg.index.comp += 1; + bp->cmd_req_reg.index.comp &= PI_CMD_REQ_K_NUM_ENTRIES-1; + dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_REQ_PROD, bp->cmd_req_reg.lword); + + /* + * Here we wait for the command response consumer index to be equal + * to the producer, indicating that the adapter has DMAed the response. + */ + + for (timeout_cnt = 20000; timeout_cnt > 0; timeout_cnt--) + { + if (bp->cmd_rsp_reg.index.prod == (u8)(bp->cons_block_virt->cmd_rsp)) + break; + udelay(100); /* wait for 100 microseconds */ + } + if (timeout_cnt == 0) + return(DFX_K_HW_TIMEOUT); + + /* Bump (and wrap) the completion index and write out to register */ + + bp->cmd_rsp_reg.index.comp += 1; + bp->cmd_rsp_reg.index.comp &= PI_CMD_RSP_K_NUM_ENTRIES-1; + dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_RSP_PROD, bp->cmd_rsp_reg.lword); + return(DFX_K_SUCCESS); + } + + +/* + * ======================== + * = dfx_hw_port_ctrl_req = + * ======================== + * + * Overview: + * Sends PDQ port control command to adapter firmware + * + * Returns: + * Host data register value in host_data if ptr is not NULL + * + * Arguments: + * bp - pointer to board information + * command - port control command + * data_a - port data A register value + * data_b - port data B register value + * host_data - ptr to host data register value + * + * Functional Description: + * Send generic port control command to adapter by writing + * to various PDQ port registers, then polling for completion. + * + * Return Codes: + * DFX_K_SUCCESS - port control command succeeded + * DFX_K_HW_TIMEOUT - port control command timed out + * + * Assumptions: + * None + * + * Side Effects: + * None + */ + +static int dfx_hw_port_ctrl_req( + DFX_board_t *bp, + PI_UINT32 command, + PI_UINT32 data_a, + PI_UINT32 data_b, + PI_UINT32 *host_data + ) + + { + PI_UINT32 port_cmd; /* Port Control command register value */ + int timeout_cnt; /* used in for loops */ + + /* Set Command Error bit in command longword */ + + port_cmd = (PI_UINT32) (command | PI_PCTRL_M_CMD_ERROR); + + /* Issue port command to the adapter */ + + dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_DATA_A, data_a); + dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_DATA_B, data_b); + dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_CTRL, port_cmd); + + /* Now wait for command to complete */ + + if (command == PI_PCTRL_M_BLAST_FLASH) + timeout_cnt = 600000; /* set command timeout count to 60 seconds */ + else + timeout_cnt = 20000; /* set command timeout count to 2 seconds */ + + for (; timeout_cnt > 0; timeout_cnt--) + { + dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_CTRL, &port_cmd); + if (!(port_cmd & PI_PCTRL_M_CMD_ERROR)) + break; + udelay(100); /* wait for 100 microseconds */ + } + if (timeout_cnt == 0) + return(DFX_K_HW_TIMEOUT); + + /* + * If the address of host_data is non-zero, assume caller has supplied a + * non NULL pointer, and return the contents of the HOST_DATA register in + * it. + */ + + if (host_data != NULL) + dfx_port_read_long(bp, PI_PDQ_K_REG_HOST_DATA, host_data); + return(DFX_K_SUCCESS); + } + + +/* + * ===================== + * = dfx_hw_adap_reset = + * ===================== + * + * Overview: + * Resets adapter + * + * Returns: + * None + * + * Arguments: + * bp - pointer to board information + * type - type of reset to perform + * + * Functional Description: + * Issue soft reset to adapter by writing to PDQ Port Reset + * register. Use incoming reset type to tell adapter what + * kind of reset operation to perform. + * + * Return Codes: + * None + * + * Assumptions: + * This routine merely issues a soft reset to the adapter. + * It is expected that after this routine returns, the caller + * will appropriately poll the Port Status register for the + * adapter to enter the proper state. + * + * Side Effects: + * Internal adapter registers are cleared. + */ + +static void dfx_hw_adap_reset( + DFX_board_t *bp, + PI_UINT32 type + ) + + { + /* Set Reset type and assert reset */ + + dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_DATA_A, type); /* tell adapter type of reset */ + dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_RESET, PI_RESET_M_ASSERT_RESET); + + /* Wait for at least 1 Microsecond according to the spec. We wait 20 just to be safe */ + + udelay(20); + + /* Deassert reset */ + + dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_RESET, 0); + } + + +/* + * ======================== + * = dfx_hw_adap_state_rd = + * ======================== + * + * Overview: + * Returns current adapter state + * + * Returns: + * Adapter state per PDQ Port Specification + * + * Arguments: + * bp - pointer to board information + * + * Functional Description: + * Reads PDQ Port Status register and returns adapter state. + * + * Return Codes: + * None + * + * Assumptions: + * None + * + * Side Effects: + * None + */ + +static int dfx_hw_adap_state_rd(DFX_board_t *bp) + { + PI_UINT32 port_status; /* Port Status register value */ + + dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &port_status); + return((port_status & PI_PSTATUS_M_STATE) >> PI_PSTATUS_V_STATE); + } + + +/* + * ===================== + * = dfx_hw_dma_uninit = + * ===================== + * + * Overview: + * Brings adapter to DMA_UNAVAILABLE state + * + * Returns: + * Condition code + * + * Arguments: + * bp - pointer to board information + * type - type of reset to perform + * + * Functional Description: + * Bring adapter to DMA_UNAVAILABLE state by performing the following: + * 1. Set reset type bit in Port Data A Register then reset adapter. + * 2. Check that adapter is in DMA_UNAVAILABLE state. + * + * Return Codes: + * DFX_K_SUCCESS - adapter is in DMA_UNAVAILABLE state + * DFX_K_HW_TIMEOUT - adapter did not reset properly + * + * Assumptions: + * None + * + * Side Effects: + * Internal adapter registers are cleared. + */ + +static int dfx_hw_dma_uninit(DFX_board_t *bp, PI_UINT32 type) + { + int timeout_cnt; /* used in for loops */ + + /* Set reset type bit and reset adapter */ + + dfx_hw_adap_reset(bp, type); + + /* Now wait for adapter to enter DMA_UNAVAILABLE state */ + + for (timeout_cnt = 100000; timeout_cnt > 0; timeout_cnt--) + { + if (dfx_hw_adap_state_rd(bp) == PI_STATE_K_DMA_UNAVAIL) + break; + udelay(100); /* wait for 100 microseconds */ + } + if (timeout_cnt == 0) + return(DFX_K_HW_TIMEOUT); + return(DFX_K_SUCCESS); + } + +/* + * Align an sk_buff to a boundary power of 2 + * + */ + +static void my_skb_align(struct sk_buff *skb, int n) +{ + unsigned long x = (unsigned long)skb->data; + unsigned long v; + + v = ALIGN(x, n); /* Where we want to be */ + + skb_reserve(skb, v - x); +} + + +/* + * ================ + * = dfx_rcv_init = + * ================ + * + * Overview: + * Produces buffers to adapter LLC Host receive descriptor block + * + * Returns: + * None + * + * Arguments: + * bp - pointer to board information + * get_buffers - non-zero if buffers to be allocated + * + * Functional Description: + * This routine can be called during dfx_adap_init() or during an adapter + * reset. It initializes the descriptor block and produces all allocated + * LLC Host queue receive buffers. + * + * Return Codes: + * Return 0 on success or -ENOMEM if buffer allocation failed (when using + * dynamic buffer allocation). If the buffer allocation failed, the + * already allocated buffers will not be released and the caller should do + * this. + * + * Assumptions: + * The PDQ has been reset and the adapter and driver maintained Type 2 + * register indices are cleared. + * + * Side Effects: + * Receive buffers are posted to the adapter LLC queue and the adapter + * is notified. + */ + +static int dfx_rcv_init(DFX_board_t *bp, int get_buffers) + { + int i, j; /* used in for loop */ + + /* + * Since each receive buffer is a single fragment of same length, initialize + * first longword in each receive descriptor for entire LLC Host descriptor + * block. Also initialize second longword in each receive descriptor with + * physical address of receive buffer. We'll always allocate receive + * buffers in powers of 2 so that we can easily fill the 256 entry descriptor + * block and produce new receive buffers by simply updating the receive + * producer index. + * + * Assumptions: + * To support all shipping versions of PDQ, the receive buffer size + * must be mod 128 in length and the physical address must be 128 byte + * aligned. In other words, bits 0-6 of the length and address must + * be zero for the following descriptor field entries to be correct on + * all PDQ-based boards. We guaranteed both requirements during + * driver initialization when we allocated memory for the receive buffers. + */ + + if (get_buffers) { +#ifdef DYNAMIC_BUFFERS + for (i = 0; i < (int)(bp->rcv_bufs_to_post); i++) + for (j = 0; (i + j) < (int)PI_RCV_DATA_K_NUM_ENTRIES; j += bp->rcv_bufs_to_post) + { + struct sk_buff *newskb = __dev_alloc_skb(NEW_SKB_SIZE, GFP_NOIO); + if (!newskb) + return -ENOMEM; + bp->descr_block_virt->rcv_data[i+j].long_0 = (u32) (PI_RCV_DESCR_M_SOP | + ((PI_RCV_DATA_K_SIZE_MAX / PI_ALIGN_K_RCV_DATA_BUFF) << PI_RCV_DESCR_V_SEG_LEN)); + /* + * align to 128 bytes for compatibility with + * the old EISA boards. + */ + + my_skb_align(newskb, 128); + bp->descr_block_virt->rcv_data[i + j].long_1 = + (u32)pci_map_single(bp->pci_dev, newskb->data, + NEW_SKB_SIZE, + PCI_DMA_FROMDEVICE); + /* + * p_rcv_buff_va is only used inside the + * kernel so we put the skb pointer here. + */ + bp->p_rcv_buff_va[i+j] = (char *) newskb; + } +#else + for (i=0; i < (int)(bp->rcv_bufs_to_post); i++) + for (j=0; (i + j) < (int)PI_RCV_DATA_K_NUM_ENTRIES; j += bp->rcv_bufs_to_post) + { + bp->descr_block_virt->rcv_data[i+j].long_0 = (u32) (PI_RCV_DESCR_M_SOP | + ((PI_RCV_DATA_K_SIZE_MAX / PI_ALIGN_K_RCV_DATA_BUFF) << PI_RCV_DESCR_V_SEG_LEN)); + bp->descr_block_virt->rcv_data[i+j].long_1 = (u32) (bp->rcv_block_phys + (i * PI_RCV_DATA_K_SIZE_MAX)); + bp->p_rcv_buff_va[i+j] = (char *) (bp->rcv_block_virt + (i * PI_RCV_DATA_K_SIZE_MAX)); + } +#endif + } + + /* Update receive producer and Type 2 register */ + + bp->rcv_xmt_reg.index.rcv_prod = bp->rcv_bufs_to_post; + dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_2_PROD, bp->rcv_xmt_reg.lword); + return 0; + } + + +/* + * ========================= + * = dfx_rcv_queue_process = + * ========================= + * + * Overview: + * Process received LLC frames. + * + * Returns: + * None + * + * Arguments: + * bp - pointer to board information + * + * Functional Description: + * Received LLC frames are processed until there are no more consumed frames. + * Once all frames are processed, the receive buffers are returned to the + * adapter. Note that this algorithm fixes the length of time that can be spent + * in this routine, because there are a fixed number of receive buffers to + * process and buffers are not produced until this routine exits and returns + * to the ISR. + * + * Return Codes: + * None + * + * Assumptions: + * None + * + * Side Effects: + * None + */ + +static void dfx_rcv_queue_process( + DFX_board_t *bp + ) + + { + PI_TYPE_2_CONSUMER *p_type_2_cons; /* ptr to rcv/xmt consumer block register */ + char *p_buff; /* ptr to start of packet receive buffer (FMC descriptor) */ + u32 descr, pkt_len; /* FMC descriptor field and packet length */ + struct sk_buff *skb; /* pointer to a sk_buff to hold incoming packet data */ + + /* Service all consumed LLC receive frames */ + + p_type_2_cons = (PI_TYPE_2_CONSUMER *)(&bp->cons_block_virt->xmt_rcv_data); + while (bp->rcv_xmt_reg.index.rcv_comp != p_type_2_cons->index.rcv_cons) + { + /* Process any errors */ + + int entry; + + entry = bp->rcv_xmt_reg.index.rcv_comp; +#ifdef DYNAMIC_BUFFERS + p_buff = (char *) (((struct sk_buff *)bp->p_rcv_buff_va[entry])->data); +#else + p_buff = (char *) bp->p_rcv_buff_va[entry]; +#endif + memcpy(&descr, p_buff + RCV_BUFF_K_DESCR, sizeof(u32)); + + if (descr & PI_FMC_DESCR_M_RCC_FLUSH) + { + if (descr & PI_FMC_DESCR_M_RCC_CRC) + bp->rcv_crc_errors++; + else + bp->rcv_frame_status_errors++; + } + else + { + int rx_in_place = 0; + + /* The frame was received without errors - verify packet length */ + + pkt_len = (u32)((descr & PI_FMC_DESCR_M_LEN) >> PI_FMC_DESCR_V_LEN); + pkt_len -= 4; /* subtract 4 byte CRC */ + if (!IN_RANGE(pkt_len, FDDI_K_LLC_ZLEN, FDDI_K_LLC_LEN)) + bp->rcv_length_errors++; + else{ +#ifdef DYNAMIC_BUFFERS + if (pkt_len > SKBUFF_RX_COPYBREAK) { + struct sk_buff *newskb; + + newskb = dev_alloc_skb(NEW_SKB_SIZE); + if (newskb){ + rx_in_place = 1; + + my_skb_align(newskb, 128); + skb = (struct sk_buff *)bp->p_rcv_buff_va[entry]; + pci_unmap_single(bp->pci_dev, + bp->descr_block_virt->rcv_data[entry].long_1, + NEW_SKB_SIZE, + PCI_DMA_FROMDEVICE); + skb_reserve(skb, RCV_BUFF_K_PADDING); + bp->p_rcv_buff_va[entry] = (char *)newskb; + bp->descr_block_virt->rcv_data[entry].long_1 = + (u32)pci_map_single(bp->pci_dev, + newskb->data, + NEW_SKB_SIZE, + PCI_DMA_FROMDEVICE); + } else + skb = NULL; + } else +#endif + skb = dev_alloc_skb(pkt_len+3); /* alloc new buffer to pass up, add room for PRH */ + if (skb == NULL) + { + printk("%s: Could not allocate receive buffer. Dropping packet.\n", bp->dev->name); + bp->rcv_discards++; + break; + } + else { +#ifndef DYNAMIC_BUFFERS + if (! rx_in_place) +#endif + { + /* Receive buffer allocated, pass receive packet up */ + + memcpy(skb->data, p_buff + RCV_BUFF_K_PADDING, pkt_len+3); + } + + skb_reserve(skb,3); /* adjust data field so that it points to FC byte */ + skb_put(skb, pkt_len); /* pass up packet length, NOT including CRC */ + skb->dev = bp->dev; /* pass up device pointer */ + + skb->protocol = fddi_type_trans(skb, bp->dev); + bp->rcv_total_bytes += skb->len; + netif_rx(skb); + + /* Update the rcv counters */ + bp->dev->last_rx = jiffies; + bp->rcv_total_frames++; + if (*(p_buff + RCV_BUFF_K_DA) & 0x01) + bp->rcv_multicast_frames++; + } + } + } + + /* + * Advance the producer (for recycling) and advance the completion + * (for servicing received frames). Note that it is okay to + * advance the producer without checking that it passes the + * completion index because they are both advanced at the same + * rate. + */ + + bp->rcv_xmt_reg.index.rcv_prod += 1; + bp->rcv_xmt_reg.index.rcv_comp += 1; + } + } + + +/* + * ===================== + * = dfx_xmt_queue_pkt = + * ===================== + * + * Overview: + * Queues packets for transmission + * + * Returns: + * Condition code + * + * Arguments: + * skb - pointer to sk_buff to queue for transmission + * dev - pointer to device information + * + * Functional Description: + * Here we assume that an incoming skb transmit request + * is contained in a single physically contiguous buffer + * in which the virtual address of the start of packet + * (skb->data) can be converted to a physical address + * by using pci_map_single(). + * + * Since the adapter architecture requires a three byte + * packet request header to prepend the start of packet, + * we'll write the three byte field immediately prior to + * the FC byte. This assumption is valid because we've + * ensured that dev->hard_header_len includes three pad + * bytes. By posting a single fragment to the adapter, + * we'll reduce the number of descriptor fetches and + * bus traffic needed to send the request. + * + * Also, we can't free the skb until after it's been DMA'd + * out by the adapter, so we'll queue it in the driver and + * return it in dfx_xmt_done. + * + * Return Codes: + * 0 - driver queued packet, link is unavailable, or skbuff was bad + * 1 - caller should requeue the sk_buff for later transmission + * + * Assumptions: + * First and foremost, we assume the incoming skb pointer + * is NOT NULL and is pointing to a valid sk_buff structure. + * + * The outgoing packet is complete, starting with the + * frame control byte including the last byte of data, + * but NOT including the 4 byte CRC. We'll let the + * adapter hardware generate and append the CRC. + * + * The entire packet is stored in one physically + * contiguous buffer which is not cached and whose + * 32-bit physical address can be determined. + * + * It's vital that this routine is NOT reentered for the + * same board and that the OS is not in another section of + * code (eg. dfx_int_common) for the same board on a + * different thread. + * + * Side Effects: + * None + */ + +static int dfx_xmt_queue_pkt( + struct sk_buff *skb, + struct net_device *dev + ) + + { + DFX_board_t *bp = dev->priv; + u8 prod; /* local transmit producer index */ + PI_XMT_DESCR *p_xmt_descr; /* ptr to transmit descriptor block entry */ + XMT_DRIVER_DESCR *p_xmt_drv_descr; /* ptr to transmit driver descriptor */ + unsigned long flags; + + netif_stop_queue(dev); + + /* + * Verify that incoming transmit request is OK + * + * Note: The packet size check is consistent with other + * Linux device drivers, although the correct packet + * size should be verified before calling the + * transmit routine. + */ + + if (!IN_RANGE(skb->len, FDDI_K_LLC_ZLEN, FDDI_K_LLC_LEN)) + { + printk("%s: Invalid packet length - %u bytes\n", + dev->name, skb->len); + bp->xmt_length_errors++; /* bump error counter */ + netif_wake_queue(dev); + dev_kfree_skb(skb); + return(0); /* return "success" */ + } + /* + * See if adapter link is available, if not, free buffer + * + * Note: If the link isn't available, free buffer and return 0 + * rather than tell the upper layer to requeue the packet. + * The methodology here is that by the time the link + * becomes available, the packet to be sent will be + * fairly stale. By simply dropping the packet, the + * higher layer protocols will eventually time out + * waiting for response packets which it won't receive. + */ + + if (bp->link_available == PI_K_FALSE) + { + if (dfx_hw_adap_state_rd(bp) == PI_STATE_K_LINK_AVAIL) /* is link really available? */ + bp->link_available = PI_K_TRUE; /* if so, set flag and continue */ + else + { + bp->xmt_discards++; /* bump error counter */ + dev_kfree_skb(skb); /* free sk_buff now */ + netif_wake_queue(dev); + return(0); /* return "success" */ + } + } + + spin_lock_irqsave(&bp->lock, flags); + + /* Get the current producer and the next free xmt data descriptor */ + + prod = bp->rcv_xmt_reg.index.xmt_prod; + p_xmt_descr = &(bp->descr_block_virt->xmt_data[prod]); + + /* + * Get pointer to auxiliary queue entry to contain information + * for this packet. + * + * Note: The current xmt producer index will become the + * current xmt completion index when we complete this + * packet later on. So, we'll get the pointer to the + * next auxiliary queue entry now before we bump the + * producer index. + */ + + p_xmt_drv_descr = &(bp->xmt_drv_descr_blk[prod++]); /* also bump producer index */ + + /* Write the three PRH bytes immediately before the FC byte */ + + skb_push(skb,3); + skb->data[0] = DFX_PRH0_BYTE; /* these byte values are defined */ + skb->data[1] = DFX_PRH1_BYTE; /* in the Motorola FDDI MAC chip */ + skb->data[2] = DFX_PRH2_BYTE; /* specification */ + + /* + * Write the descriptor with buffer info and bump producer + * + * Note: Since we need to start DMA from the packet request + * header, we'll add 3 bytes to the DMA buffer length, + * and we'll determine the physical address of the + * buffer from the PRH, not skb->data. + * + * Assumptions: + * 1. Packet starts with the frame control (FC) byte + * at skb->data. + * 2. The 4-byte CRC is not appended to the buffer or + * included in the length. + * 3. Packet length (skb->len) is from FC to end of + * data, inclusive. + * 4. The packet length does not exceed the maximum + * FDDI LLC frame length of 4491 bytes. + * 5. The entire packet is contained in a physically + * contiguous, non-cached, locked memory space + * comprised of a single buffer pointed to by + * skb->data. + * 6. The physical address of the start of packet + * can be determined from the virtual address + * by using pci_map_single() and is only 32-bits + * wide. + */ + + p_xmt_descr->long_0 = (u32) (PI_XMT_DESCR_M_SOP | PI_XMT_DESCR_M_EOP | ((skb->len) << PI_XMT_DESCR_V_SEG_LEN)); + p_xmt_descr->long_1 = (u32)pci_map_single(bp->pci_dev, skb->data, + skb->len, PCI_DMA_TODEVICE); + + /* + * Verify that descriptor is actually available + * + * Note: If descriptor isn't available, return 1 which tells + * the upper layer to requeue the packet for later + * transmission. + * + * We need to ensure that the producer never reaches the + * completion, except to indicate that the queue is empty. + */ + + if (prod == bp->rcv_xmt_reg.index.xmt_comp) + { + skb_pull(skb,3); + spin_unlock_irqrestore(&bp->lock, flags); + return(1); /* requeue packet for later */ + } + + /* + * Save info for this packet for xmt done indication routine + * + * Normally, we'd save the producer index in the p_xmt_drv_descr + * structure so that we'd have it handy when we complete this + * packet later (in dfx_xmt_done). However, since the current + * transmit architecture guarantees a single fragment for the + * entire packet, we can simply bump the completion index by + * one (1) for each completed packet. + * + * Note: If this assumption changes and we're presented with + * an inconsistent number of transmit fragments for packet + * data, we'll need to modify this code to save the current + * transmit producer index. + */ + + p_xmt_drv_descr->p_skb = skb; + + /* Update Type 2 register */ + + bp->rcv_xmt_reg.index.xmt_prod = prod; + dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_2_PROD, bp->rcv_xmt_reg.lword); + spin_unlock_irqrestore(&bp->lock, flags); + netif_wake_queue(dev); + return(0); /* packet queued to adapter */ + } + + +/* + * ================ + * = dfx_xmt_done = + * ================ + * + * Overview: + * Processes all frames that have been transmitted. + * + * Returns: + * None + * + * Arguments: + * bp - pointer to board information + * + * Functional Description: + * For all consumed transmit descriptors that have not + * yet been completed, we'll free the skb we were holding + * onto using dev_kfree_skb and bump the appropriate + * counters. + * + * Return Codes: + * None + * + * Assumptions: + * The Type 2 register is not updated in this routine. It is + * assumed that it will be updated in the ISR when dfx_xmt_done + * returns. + * + * Side Effects: + * None + */ + +static int dfx_xmt_done(DFX_board_t *bp) + { + XMT_DRIVER_DESCR *p_xmt_drv_descr; /* ptr to transmit driver descriptor */ + PI_TYPE_2_CONSUMER *p_type_2_cons; /* ptr to rcv/xmt consumer block register */ + u8 comp; /* local transmit completion index */ + int freed = 0; /* buffers freed */ + + /* Service all consumed transmit frames */ + + p_type_2_cons = (PI_TYPE_2_CONSUMER *)(&bp->cons_block_virt->xmt_rcv_data); + while (bp->rcv_xmt_reg.index.xmt_comp != p_type_2_cons->index.xmt_cons) + { + /* Get pointer to the transmit driver descriptor block information */ + + p_xmt_drv_descr = &(bp->xmt_drv_descr_blk[bp->rcv_xmt_reg.index.xmt_comp]); + + /* Increment transmit counters */ + + bp->xmt_total_frames++; + bp->xmt_total_bytes += p_xmt_drv_descr->p_skb->len; + + /* Return skb to operating system */ + comp = bp->rcv_xmt_reg.index.xmt_comp; + pci_unmap_single(bp->pci_dev, + bp->descr_block_virt->xmt_data[comp].long_1, + p_xmt_drv_descr->p_skb->len, + PCI_DMA_TODEVICE); + dev_kfree_skb_irq(p_xmt_drv_descr->p_skb); + + /* + * Move to start of next packet by updating completion index + * + * Here we assume that a transmit packet request is always + * serviced by posting one fragment. We can therefore + * simplify the completion code by incrementing the + * completion index by one. This code will need to be + * modified if this assumption changes. See comments + * in dfx_xmt_queue_pkt for more details. + */ + + bp->rcv_xmt_reg.index.xmt_comp += 1; + freed++; + } + return freed; + } + + +/* + * ================= + * = dfx_rcv_flush = + * ================= + * + * Overview: + * Remove all skb's in the receive ring. + * + * Returns: + * None + * + * Arguments: + * bp - pointer to board information + * + * Functional Description: + * Free's all the dynamically allocated skb's that are + * currently attached to the device receive ring. This + * function is typically only used when the device is + * initialized or reinitialized. + * + * Return Codes: + * None + * + * Side Effects: + * None + */ +#ifdef DYNAMIC_BUFFERS +static void dfx_rcv_flush( DFX_board_t *bp ) + { + int i, j; + + for (i = 0; i < (int)(bp->rcv_bufs_to_post); i++) + for (j = 0; (i + j) < (int)PI_RCV_DATA_K_NUM_ENTRIES; j += bp->rcv_bufs_to_post) + { + struct sk_buff *skb; + skb = (struct sk_buff *)bp->p_rcv_buff_va[i+j]; + if (skb) + dev_kfree_skb(skb); + bp->p_rcv_buff_va[i+j] = NULL; + } + + } +#else +static inline void dfx_rcv_flush( DFX_board_t *bp ) +{ +} +#endif /* DYNAMIC_BUFFERS */ + +/* + * ================= + * = dfx_xmt_flush = + * ================= + * + * Overview: + * Processes all frames whether they've been transmitted + * or not. + * + * Returns: + * None + * + * Arguments: + * bp - pointer to board information + * + * Functional Description: + * For all produced transmit descriptors that have not + * yet been completed, we'll free the skb we were holding + * onto using dev_kfree_skb and bump the appropriate + * counters. Of course, it's possible that some of + * these transmit requests actually did go out, but we + * won't make that distinction here. Finally, we'll + * update the consumer index to match the producer. + * + * Return Codes: + * None + * + * Assumptions: + * This routine does NOT update the Type 2 register. It + * is assumed that this routine is being called during a + * transmit flush interrupt, or a shutdown or close routine. + * + * Side Effects: + * None + */ + +static void dfx_xmt_flush( DFX_board_t *bp ) + { + u32 prod_cons; /* rcv/xmt consumer block longword */ + XMT_DRIVER_DESCR *p_xmt_drv_descr; /* ptr to transmit driver descriptor */ + u8 comp; /* local transmit completion index */ + + /* Flush all outstanding transmit frames */ + + while (bp->rcv_xmt_reg.index.xmt_comp != bp->rcv_xmt_reg.index.xmt_prod) + { + /* Get pointer to the transmit driver descriptor block information */ + + p_xmt_drv_descr = &(bp->xmt_drv_descr_blk[bp->rcv_xmt_reg.index.xmt_comp]); + + /* Return skb to operating system */ + comp = bp->rcv_xmt_reg.index.xmt_comp; + pci_unmap_single(bp->pci_dev, + bp->descr_block_virt->xmt_data[comp].long_1, + p_xmt_drv_descr->p_skb->len, + PCI_DMA_TODEVICE); + dev_kfree_skb(p_xmt_drv_descr->p_skb); + + /* Increment transmit error counter */ + + bp->xmt_discards++; + + /* + * Move to start of next packet by updating completion index + * + * Here we assume that a transmit packet request is always + * serviced by posting one fragment. We can therefore + * simplify the completion code by incrementing the + * completion index by one. This code will need to be + * modified if this assumption changes. See comments + * in dfx_xmt_queue_pkt for more details. + */ + + bp->rcv_xmt_reg.index.xmt_comp += 1; + } + + /* Update the transmit consumer index in the consumer block */ + + prod_cons = (u32)(bp->cons_block_virt->xmt_rcv_data & ~PI_CONS_M_XMT_INDEX); + prod_cons |= (u32)(bp->rcv_xmt_reg.index.xmt_prod << PI_CONS_V_XMT_INDEX); + bp->cons_block_virt->xmt_rcv_data = prod_cons; + } + +static void __devexit dfx_remove_one_pci_or_eisa(struct pci_dev *pdev, struct net_device *dev) +{ + DFX_board_t *bp = dev->priv; + int alloc_size; /* total buffer size used */ + + unregister_netdev(dev); + release_region(dev->base_addr, pdev ? PFI_K_CSR_IO_LEN : PI_ESIC_K_CSR_IO_LEN ); + + alloc_size = sizeof(PI_DESCR_BLOCK) + + PI_CMD_REQ_K_SIZE_MAX + PI_CMD_RSP_K_SIZE_MAX + +#ifndef DYNAMIC_BUFFERS + (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX) + +#endif + sizeof(PI_CONSUMER_BLOCK) + + (PI_ALIGN_K_DESC_BLK - 1); + if (bp->kmalloced) + pci_free_consistent(pdev, alloc_size, bp->kmalloced, + bp->kmalloced_dma); + free_netdev(dev); +} + +static void __devexit dfx_remove_one (struct pci_dev *pdev) +{ + struct net_device *dev = pci_get_drvdata(pdev); + + dfx_remove_one_pci_or_eisa(pdev, dev); + pci_set_drvdata(pdev, NULL); +} + +static struct pci_device_id dfx_pci_tbl[] = { + { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_FDDI, PCI_ANY_ID, PCI_ANY_ID, }, + { 0, } +}; +MODULE_DEVICE_TABLE(pci, dfx_pci_tbl); + +static struct pci_driver dfx_driver = { + .name = "defxx", + .probe = dfx_init_one, + .remove = __devexit_p(dfx_remove_one), + .id_table = dfx_pci_tbl, +}; + +static int dfx_have_pci; +static int dfx_have_eisa; + + +static void __exit dfx_eisa_cleanup(void) +{ + struct net_device *dev = root_dfx_eisa_dev; + + while (dev) + { + struct net_device *tmp; + DFX_board_t *bp; + + bp = (DFX_board_t*)dev->priv; + tmp = bp->next; + dfx_remove_one_pci_or_eisa(NULL, dev); + dev = tmp; + } +} + +static int __init dfx_init(void) +{ + int rc_pci, rc_eisa; + + rc_pci = pci_module_init(&dfx_driver); + if (rc_pci >= 0) dfx_have_pci = 1; + + rc_eisa = dfx_eisa_init(); + if (rc_eisa >= 0) dfx_have_eisa = 1; + + return ((rc_eisa < 0) ? 0 : rc_eisa) + ((rc_pci < 0) ? 0 : rc_pci); +} + +static void __exit dfx_cleanup(void) +{ + if (dfx_have_pci) + pci_unregister_driver(&dfx_driver); + if (dfx_have_eisa) + dfx_eisa_cleanup(); + +} + +module_init(dfx_init); +module_exit(dfx_cleanup); +MODULE_AUTHOR("Lawrence V. Stefani"); +MODULE_DESCRIPTION("DEC FDDIcontroller EISA/PCI (DEFEA/DEFPA) driver " + DRV_VERSION " " DRV_RELDATE); +MODULE_LICENSE("GPL"); + + +/* + * Local variables: + * kernel-compile-command: "gcc -D__KERNEL__ -I/root/linux/include -Wall -Wstrict-prototypes -O2 -pipe -fomit-frame-pointer -fno-strength-reduce -m486 -malign-loops=2 -malign-jumps=2 -malign-functions=2 -c defxx.c" + * End: + */ |