diff options
author | Jeff Kirsher <jeffrey.t.kirsher@intel.com> | 2011-07-31 11:06:29 +0400 |
---|---|---|
committer | Jeff Kirsher <jeffrey.t.kirsher@intel.com> | 2011-08-27 11:58:13 +0400 |
commit | 33f810b2036f13f1b123062a9e5c1794d400ce81 (patch) | |
tree | 370b55026f4bd856e96842f86af631ca2bab3da2 /drivers/net/defxx.c | |
parent | 3cd0999d134235d64b175edd2eb1d46ebc97b377 (diff) | |
download | linux-33f810b2036f13f1b123062a9e5c1794d400ce81.tar.xz |
fddi: Move the FDDI drivers
Move the FDDI drivers into drivers/net/fddi/ and make the
necessary Kconfig and Makefile changes.
CC: "Maciej W. Rozycki" <macro@linux-mips.org>
CC: Christoph Goos <cgoos@syskonnect.de>
CC: <linux@syskonnect.de>
Signed-off-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com>
Diffstat (limited to 'drivers/net/defxx.c')
-rw-r--r-- | drivers/net/defxx.c | 3739 |
1 files changed, 0 insertions, 3739 deletions
diff --git a/drivers/net/defxx.c b/drivers/net/defxx.c deleted file mode 100644 index 4ad80f771099..000000000000 --- a/drivers/net/defxx.c +++ /dev/null @@ -1,3739 +0,0 @@ -/* - * File Name: - * defxx.c - * - * Copyright Information: - * Copyright Digital Equipment Corporation 1996. - * - * This software may be used and distributed according to the terms of - * the GNU General Public License, incorporated herein by reference. - * - * Abstract: - * A Linux device driver supporting the Digital Equipment Corporation - * FDDI TURBOchannel, EISA and PCI controller families. Supported - * adapters include: - * - * DEC FDDIcontroller/TURBOchannel (DEFTA) - * DEC FDDIcontroller/EISA (DEFEA) - * DEC FDDIcontroller/PCI (DEFPA) - * - * The original author: - * LVS Lawrence V. Stefani <lstefani@yahoo.com> - * - * Maintainers: - * macro Maciej W. Rozycki <macro@linux-mips.org> - * - * Credits: - * I'd like to thank Patricia Cross for helping me get started with - * Linux, David Davies for a lot of help upgrading and configuring - * my development system and for answering many OS and driver - * development questions, and Alan Cox for recommendations and - * integration help on getting FDDI support into Linux. LVS - * - * Driver Architecture: - * The driver architecture is largely based on previous driver work - * for other operating systems. The upper edge interface and - * functions were largely taken from existing Linux device drivers - * such as David Davies' DE4X5.C driver and Donald Becker's TULIP.C - * driver. - * - * Adapter Probe - - * The driver scans for supported EISA adapters by reading the - * SLOT ID register for each EISA slot and making a match - * against the expected value. - * - * Bus-Specific Initialization - - * This driver currently supports both EISA and PCI controller - * families. While the custom DMA chip and FDDI logic is similar - * or identical, the bus logic is very different. After - * initialization, the only bus-specific differences is in how the - * driver enables and disables interrupts. Other than that, the - * run-time critical code behaves the same on both families. - * It's important to note that both adapter families are configured - * to I/O map, rather than memory map, the adapter registers. - * - * Driver Open/Close - - * In the driver open routine, the driver ISR (interrupt service - * routine) is registered and the adapter is brought to an - * operational state. In the driver close routine, the opposite - * occurs; the driver ISR is deregistered and the adapter is - * brought to a safe, but closed state. Users may use consecutive - * commands to bring the adapter up and down as in the following - * example: - * ifconfig fddi0 up - * ifconfig fddi0 down - * ifconfig fddi0 up - * - * Driver Shutdown - - * Apparently, there is no shutdown or halt routine support under - * Linux. This routine would be called during "reboot" or - * "shutdown" to allow the driver to place the adapter in a safe - * state before a warm reboot occurs. To be really safe, the user - * should close the adapter before shutdown (eg. ifconfig fddi0 down) - * to ensure that the adapter DMA engine is taken off-line. However, - * the current driver code anticipates this problem and always issues - * a soft reset of the adapter at the beginning of driver initialization. - * A future driver enhancement in this area may occur in 2.1.X where - * Alan indicated that a shutdown handler may be implemented. - * - * Interrupt Service Routine - - * The driver supports shared interrupts, so the ISR is registered for - * each board with the appropriate flag and the pointer to that board's - * device structure. This provides the context during interrupt - * processing to support shared interrupts and multiple boards. - * - * Interrupt enabling/disabling can occur at many levels. At the host - * end, you can disable system interrupts, or disable interrupts at the - * PIC (on Intel systems). Across the bus, both EISA and PCI adapters - * have a bus-logic chip interrupt enable/disable as well as a DMA - * controller interrupt enable/disable. - * - * The driver currently enables and disables adapter interrupts at the - * bus-logic chip and assumes that Linux will take care of clearing or - * acknowledging any host-based interrupt chips. - * - * Control Functions - - * Control functions are those used to support functions such as adding - * or deleting multicast addresses, enabling or disabling packet - * reception filters, or other custom/proprietary commands. Presently, - * the driver supports the "get statistics", "set multicast list", and - * "set mac address" functions defined by Linux. A list of possible - * enhancements include: - * - * - Custom ioctl interface for executing port interface commands - * - Custom ioctl interface for adding unicast addresses to - * adapter CAM (to support bridge functions). - * - Custom ioctl interface for supporting firmware upgrades. - * - * Hardware (port interface) Support Routines - - * The driver function names that start with "dfx_hw_" represent - * low-level port interface routines that are called frequently. They - * include issuing a DMA or port control command to the adapter, - * resetting the adapter, or reading the adapter state. Since the - * driver initialization and run-time code must make calls into the - * port interface, these routines were written to be as generic and - * usable as possible. - * - * Receive Path - - * The adapter DMA engine supports a 256 entry receive descriptor block - * of which up to 255 entries can be used at any given time. The - * architecture is a standard producer, consumer, completion model in - * which the driver "produces" receive buffers to the adapter, the - * adapter "consumes" the receive buffers by DMAing incoming packet data, - * and the driver "completes" the receive buffers by servicing the - * incoming packet, then "produces" a new buffer and starts the cycle - * again. Receive buffers can be fragmented in up to 16 fragments - * (descriptor entries). For simplicity, this driver posts - * single-fragment receive buffers of 4608 bytes, then allocates a - * sk_buff, copies the data, then reposts the buffer. To reduce CPU - * utilization, a better approach would be to pass up the receive - * buffer (no extra copy) then allocate and post a replacement buffer. - * This is a performance enhancement that should be looked into at - * some point. - * - * Transmit Path - - * Like the receive path, the adapter DMA engine supports a 256 entry - * transmit descriptor block of which up to 255 entries can be used at - * any given time. Transmit buffers can be fragmented in up to 255 - * fragments (descriptor entries). This driver always posts one - * fragment per transmit packet request. - * - * The fragment contains the entire packet from FC to end of data. - * Before posting the buffer to the adapter, the driver sets a three-byte - * packet request header (PRH) which is required by the Motorola MAC chip - * used on the adapters. The PRH tells the MAC the type of token to - * receive/send, whether or not to generate and append the CRC, whether - * synchronous or asynchronous framing is used, etc. Since the PRH - * definition is not necessarily consistent across all FDDI chipsets, - * the driver, rather than the common FDDI packet handler routines, - * sets these bytes. - * - * To reduce the amount of descriptor fetches needed per transmit request, - * the driver takes advantage of the fact that there are at least three - * bytes available before the skb->data field on the outgoing transmit - * request. This is guaranteed by having fddi_setup() in net_init.c set - * dev->hard_header_len to 24 bytes. 21 bytes accounts for the largest - * header in an 802.2 SNAP frame. The other 3 bytes are the extra "pad" - * bytes which we'll use to store the PRH. - * - * There's a subtle advantage to adding these pad bytes to the - * hard_header_len, it ensures that the data portion of the packet for - * an 802.2 SNAP frame is longword aligned. Other FDDI driver - * implementations may not need the extra padding and can start copying - * or DMAing directly from the FC byte which starts at skb->data. Should - * another driver implementation need ADDITIONAL padding, the net_init.c - * module should be updated and dev->hard_header_len should be increased. - * NOTE: To maintain the alignment on the data portion of the packet, - * dev->hard_header_len should always be evenly divisible by 4 and at - * least 24 bytes in size. - * - * Modification History: - * Date Name Description - * 16-Aug-96 LVS Created. - * 20-Aug-96 LVS Updated dfx_probe so that version information - * string is only displayed if 1 or more cards are - * found. Changed dfx_rcv_queue_process to copy - * 3 NULL bytes before FC to ensure that data is - * longword aligned in receive buffer. - * 09-Sep-96 LVS Updated dfx_ctl_set_multicast_list to enable - * LLC group promiscuous mode if multicast list - * is too large. LLC individual/group promiscuous - * mode is now disabled if IFF_PROMISC flag not set. - * dfx_xmt_queue_pkt no longer checks for NULL skb - * on Alan Cox recommendation. Added node address - * override support. - * 12-Sep-96 LVS Reset current address to factory address during - * device open. Updated transmit path to post a - * single fragment which includes PRH->end of data. - * Mar 2000 AC Did various cleanups for 2.3.x - * Jun 2000 jgarzik PCI and resource alloc cleanups - * Jul 2000 tjeerd Much cleanup and some bug fixes - * Sep 2000 tjeerd Fix leak on unload, cosmetic code cleanup - * Feb 2001 Skb allocation fixes - * Feb 2001 davej PCI enable cleanups. - * 04 Aug 2003 macro Converted to the DMA API. - * 14 Aug 2004 macro Fix device names reported. - * 14 Jun 2005 macro Use irqreturn_t. - * 23 Oct 2006 macro Big-endian host support. - * 14 Dec 2006 macro TURBOchannel support. - */ - -/* Include files */ -#include <linux/bitops.h> -#include <linux/compiler.h> -#include <linux/delay.h> -#include <linux/dma-mapping.h> -#include <linux/eisa.h> -#include <linux/errno.h> -#include <linux/fddidevice.h> -#include <linux/init.h> -#include <linux/interrupt.h> -#include <linux/ioport.h> -#include <linux/kernel.h> -#include <linux/module.h> -#include <linux/netdevice.h> -#include <linux/pci.h> -#include <linux/skbuff.h> -#include <linux/slab.h> -#include <linux/string.h> -#include <linux/tc.h> - -#include <asm/byteorder.h> -#include <asm/io.h> - -#include "defxx.h" - -/* Version information string should be updated prior to each new release! */ -#define DRV_NAME "defxx" -#define DRV_VERSION "v1.10" -#define DRV_RELDATE "2006/12/14" - -static char version[] __devinitdata = - DRV_NAME ": " DRV_VERSION " " DRV_RELDATE - " Lawrence V. Stefani and others\n"; - -#define DYNAMIC_BUFFERS 1 - -#define SKBUFF_RX_COPYBREAK 200 -/* - * NEW_SKB_SIZE = PI_RCV_DATA_K_SIZE_MAX+128 to allow 128 byte - * alignment for compatibility with old EISA boards. - */ -#define NEW_SKB_SIZE (PI_RCV_DATA_K_SIZE_MAX+128) - -#ifdef CONFIG_PCI -#define DFX_BUS_PCI(dev) (dev->bus == &pci_bus_type) -#else -#define DFX_BUS_PCI(dev) 0 -#endif - -#ifdef CONFIG_EISA -#define DFX_BUS_EISA(dev) (dev->bus == &eisa_bus_type) -#else -#define DFX_BUS_EISA(dev) 0 -#endif - -#ifdef CONFIG_TC -#define DFX_BUS_TC(dev) (dev->bus == &tc_bus_type) -#else -#define DFX_BUS_TC(dev) 0 -#endif - -#ifdef CONFIG_DEFXX_MMIO -#define DFX_MMIO 1 -#else -#define DFX_MMIO 0 -#endif - -/* Define module-wide (static) routines */ - -static void dfx_bus_init(struct net_device *dev); -static void dfx_bus_uninit(struct net_device *dev); -static void dfx_bus_config_check(DFX_board_t *bp); - -static int dfx_driver_init(struct net_device *dev, - const char *print_name, - resource_size_t bar_start); -static int dfx_adap_init(DFX_board_t *bp, int get_buffers); - -static int dfx_open(struct net_device *dev); -static int dfx_close(struct net_device *dev); - -static void dfx_int_pr_halt_id(DFX_board_t *bp); -static void dfx_int_type_0_process(DFX_board_t *bp); -static void dfx_int_common(struct net_device *dev); -static irqreturn_t dfx_interrupt(int irq, void *dev_id); - -static struct net_device_stats *dfx_ctl_get_stats(struct net_device *dev); -static void dfx_ctl_set_multicast_list(struct net_device *dev); -static int dfx_ctl_set_mac_address(struct net_device *dev, void *addr); -static int dfx_ctl_update_cam(DFX_board_t *bp); -static int dfx_ctl_update_filters(DFX_board_t *bp); - -static int dfx_hw_dma_cmd_req(DFX_board_t *bp); -static int dfx_hw_port_ctrl_req(DFX_board_t *bp, PI_UINT32 command, PI_UINT32 data_a, PI_UINT32 data_b, PI_UINT32 *host_data); -static void dfx_hw_adap_reset(DFX_board_t *bp, PI_UINT32 type); -static int dfx_hw_adap_state_rd(DFX_board_t *bp); -static int dfx_hw_dma_uninit(DFX_board_t *bp, PI_UINT32 type); - -static int dfx_rcv_init(DFX_board_t *bp, int get_buffers); -static void dfx_rcv_queue_process(DFX_board_t *bp); -static void dfx_rcv_flush(DFX_board_t *bp); - -static netdev_tx_t dfx_xmt_queue_pkt(struct sk_buff *skb, - struct net_device *dev); -static int dfx_xmt_done(DFX_board_t *bp); -static void dfx_xmt_flush(DFX_board_t *bp); - -/* Define module-wide (static) variables */ - -static struct pci_driver dfx_pci_driver; -static struct eisa_driver dfx_eisa_driver; -static struct tc_driver dfx_tc_driver; - - -/* - * ======================= - * = dfx_port_write_long = - * = dfx_port_read_long = - * ======================= - * - * Overview: - * Routines for reading and writing values from/to adapter - * - * Returns: - * None - * - * Arguments: - * bp - pointer to board information - * offset - register offset from base I/O address - * data - for dfx_port_write_long, this is a value to write; - * for dfx_port_read_long, this is a pointer to store - * the read value - * - * Functional Description: - * These routines perform the correct operation to read or write - * the adapter register. - * - * EISA port block base addresses are based on the slot number in which the - * controller is installed. For example, if the EISA controller is installed - * in slot 4, the port block base address is 0x4000. If the controller is - * installed in slot 2, the port block base address is 0x2000, and so on. - * This port block can be used to access PDQ, ESIC, and DEFEA on-board - * registers using the register offsets defined in DEFXX.H. - * - * PCI port block base addresses are assigned by the PCI BIOS or system - * firmware. There is one 128 byte port block which can be accessed. It - * allows for I/O mapping of both PDQ and PFI registers using the register - * offsets defined in DEFXX.H. - * - * Return Codes: - * None - * - * Assumptions: - * bp->base is a valid base I/O address for this adapter. - * offset is a valid register offset for this adapter. - * - * Side Effects: - * Rather than produce macros for these functions, these routines - * are defined using "inline" to ensure that the compiler will - * generate inline code and not waste a procedure call and return. - * This provides all the benefits of macros, but with the - * advantage of strict data type checking. - */ - -static inline void dfx_writel(DFX_board_t *bp, int offset, u32 data) -{ - writel(data, bp->base.mem + offset); - mb(); -} - -static inline void dfx_outl(DFX_board_t *bp, int offset, u32 data) -{ - outl(data, bp->base.port + offset); -} - -static void dfx_port_write_long(DFX_board_t *bp, int offset, u32 data) -{ - struct device __maybe_unused *bdev = bp->bus_dev; - int dfx_bus_tc = DFX_BUS_TC(bdev); - int dfx_use_mmio = DFX_MMIO || dfx_bus_tc; - - if (dfx_use_mmio) - dfx_writel(bp, offset, data); - else - dfx_outl(bp, offset, data); -} - - -static inline void dfx_readl(DFX_board_t *bp, int offset, u32 *data) -{ - mb(); - *data = readl(bp->base.mem + offset); -} - -static inline void dfx_inl(DFX_board_t *bp, int offset, u32 *data) -{ - *data = inl(bp->base.port + offset); -} - -static void dfx_port_read_long(DFX_board_t *bp, int offset, u32 *data) -{ - struct device __maybe_unused *bdev = bp->bus_dev; - int dfx_bus_tc = DFX_BUS_TC(bdev); - int dfx_use_mmio = DFX_MMIO || dfx_bus_tc; - - if (dfx_use_mmio) - dfx_readl(bp, offset, data); - else - dfx_inl(bp, offset, data); -} - - -/* - * ================ - * = dfx_get_bars = - * ================ - * - * Overview: - * Retrieves the address range used to access control and status - * registers. - * - * Returns: - * None - * - * Arguments: - * bdev - pointer to device information - * bar_start - pointer to store the start address - * bar_len - pointer to store the length of the area - * - * Assumptions: - * I am sure there are some. - * - * Side Effects: - * None - */ -static void dfx_get_bars(struct device *bdev, - resource_size_t *bar_start, resource_size_t *bar_len) -{ - int dfx_bus_pci = DFX_BUS_PCI(bdev); - int dfx_bus_eisa = DFX_BUS_EISA(bdev); - int dfx_bus_tc = DFX_BUS_TC(bdev); - int dfx_use_mmio = DFX_MMIO || dfx_bus_tc; - - if (dfx_bus_pci) { - int num = dfx_use_mmio ? 0 : 1; - - *bar_start = pci_resource_start(to_pci_dev(bdev), num); - *bar_len = pci_resource_len(to_pci_dev(bdev), num); - } - if (dfx_bus_eisa) { - unsigned long base_addr = to_eisa_device(bdev)->base_addr; - resource_size_t bar; - - if (dfx_use_mmio) { - bar = inb(base_addr + PI_ESIC_K_MEM_ADD_CMP_2); - bar <<= 8; - bar |= inb(base_addr + PI_ESIC_K_MEM_ADD_CMP_1); - bar <<= 8; - bar |= inb(base_addr + PI_ESIC_K_MEM_ADD_CMP_0); - bar <<= 16; - *bar_start = bar; - bar = inb(base_addr + PI_ESIC_K_MEM_ADD_MASK_2); - bar <<= 8; - bar |= inb(base_addr + PI_ESIC_K_MEM_ADD_MASK_1); - bar <<= 8; - bar |= inb(base_addr + PI_ESIC_K_MEM_ADD_MASK_0); - bar <<= 16; - *bar_len = (bar | PI_MEM_ADD_MASK_M) + 1; - } else { - *bar_start = base_addr; - *bar_len = PI_ESIC_K_CSR_IO_LEN; - } - } - if (dfx_bus_tc) { - *bar_start = to_tc_dev(bdev)->resource.start + - PI_TC_K_CSR_OFFSET; - *bar_len = PI_TC_K_CSR_LEN; - } -} - -static const struct net_device_ops dfx_netdev_ops = { - .ndo_open = dfx_open, - .ndo_stop = dfx_close, - .ndo_start_xmit = dfx_xmt_queue_pkt, - .ndo_get_stats = dfx_ctl_get_stats, - .ndo_set_rx_mode = dfx_ctl_set_multicast_list, - .ndo_set_mac_address = dfx_ctl_set_mac_address, -}; - -/* - * ================ - * = dfx_register = - * ================ - * - * Overview: - * Initializes a supported FDDI controller - * - * Returns: - * Condition code - * - * Arguments: - * bdev - pointer to device information - * - * Functional Description: - * - * Return Codes: - * 0 - This device (fddi0, fddi1, etc) configured successfully - * -EBUSY - Failed to get resources, or dfx_driver_init failed. - * - * Assumptions: - * It compiles so it should work :-( (PCI cards do :-) - * - * Side Effects: - * Device structures for FDDI adapters (fddi0, fddi1, etc) are - * initialized and the board resources are read and stored in - * the device structure. - */ -static int __devinit dfx_register(struct device *bdev) -{ - static int version_disp; - int dfx_bus_pci = DFX_BUS_PCI(bdev); - int dfx_bus_tc = DFX_BUS_TC(bdev); - int dfx_use_mmio = DFX_MMIO || dfx_bus_tc; - const char *print_name = dev_name(bdev); - struct net_device *dev; - DFX_board_t *bp; /* board pointer */ - resource_size_t bar_start = 0; /* pointer to port */ - resource_size_t bar_len = 0; /* resource length */ - int alloc_size; /* total buffer size used */ - struct resource *region; - int err = 0; - - if (!version_disp) { /* display version info if adapter is found */ - version_disp = 1; /* set display flag to TRUE so that */ - printk(version); /* we only display this string ONCE */ - } - - dev = alloc_fddidev(sizeof(*bp)); - if (!dev) { - printk(KERN_ERR "%s: Unable to allocate fddidev, aborting\n", - print_name); - return -ENOMEM; - } - - /* Enable PCI device. */ - if (dfx_bus_pci && pci_enable_device(to_pci_dev(bdev))) { - printk(KERN_ERR "%s: Cannot enable PCI device, aborting\n", - print_name); - goto err_out; - } - - SET_NETDEV_DEV(dev, bdev); - - bp = netdev_priv(dev); - bp->bus_dev = bdev; - dev_set_drvdata(bdev, dev); - - dfx_get_bars(bdev, &bar_start, &bar_len); - - if (dfx_use_mmio) - region = request_mem_region(bar_start, bar_len, print_name); - else - region = request_region(bar_start, bar_len, print_name); - if (!region) { - printk(KERN_ERR "%s: Cannot reserve I/O resource " - "0x%lx @ 0x%lx, aborting\n", - print_name, (long)bar_len, (long)bar_start); - err = -EBUSY; - goto err_out_disable; - } - - /* Set up I/O base address. */ - if (dfx_use_mmio) { - bp->base.mem = ioremap_nocache(bar_start, bar_len); - if (!bp->base.mem) { - printk(KERN_ERR "%s: Cannot map MMIO\n", print_name); - err = -ENOMEM; - goto err_out_region; - } - } else { - bp->base.port = bar_start; - dev->base_addr = bar_start; - } - - /* Initialize new device structure */ - dev->netdev_ops = &dfx_netdev_ops; - - if (dfx_bus_pci) - pci_set_master(to_pci_dev(bdev)); - - if (dfx_driver_init(dev, print_name, bar_start) != DFX_K_SUCCESS) { - err = -ENODEV; - goto err_out_unmap; - } - - err = register_netdev(dev); - if (err) - goto err_out_kfree; - - printk("%s: registered as %s\n", print_name, dev->name); - return 0; - -err_out_kfree: - alloc_size = sizeof(PI_DESCR_BLOCK) + - PI_CMD_REQ_K_SIZE_MAX + PI_CMD_RSP_K_SIZE_MAX + -#ifndef DYNAMIC_BUFFERS - (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX) + -#endif - sizeof(PI_CONSUMER_BLOCK) + - (PI_ALIGN_K_DESC_BLK - 1); - if (bp->kmalloced) - dma_free_coherent(bdev, alloc_size, - bp->kmalloced, bp->kmalloced_dma); - -err_out_unmap: - if (dfx_use_mmio) - iounmap(bp->base.mem); - -err_out_region: - if (dfx_use_mmio) - release_mem_region(bar_start, bar_len); - else - release_region(bar_start, bar_len); - -err_out_disable: - if (dfx_bus_pci) - pci_disable_device(to_pci_dev(bdev)); - -err_out: - free_netdev(dev); - return err; -} - - -/* - * ================ - * = dfx_bus_init = - * ================ - * - * Overview: - * Initializes the bus-specific controller logic. - * - * Returns: - * None - * - * Arguments: - * dev - pointer to device information - * - * Functional Description: - * Determine and save adapter IRQ in device table, - * then perform bus-specific logic initialization. - * - * Return Codes: - * None - * - * Assumptions: - * bp->base has already been set with the proper - * base I/O address for this device. - * - * Side Effects: - * Interrupts are enabled at the adapter bus-specific logic. - * Note: Interrupts at the DMA engine (PDQ chip) are not - * enabled yet. - */ - -static void __devinit dfx_bus_init(struct net_device *dev) -{ - DFX_board_t *bp = netdev_priv(dev); - struct device *bdev = bp->bus_dev; - int dfx_bus_pci = DFX_BUS_PCI(bdev); - int dfx_bus_eisa = DFX_BUS_EISA(bdev); - int dfx_bus_tc = DFX_BUS_TC(bdev); - int dfx_use_mmio = DFX_MMIO || dfx_bus_tc; - u8 val; - - DBG_printk("In dfx_bus_init...\n"); - - /* Initialize a pointer back to the net_device struct */ - bp->dev = dev; - - /* Initialize adapter based on bus type */ - - if (dfx_bus_tc) - dev->irq = to_tc_dev(bdev)->interrupt; - if (dfx_bus_eisa) { - unsigned long base_addr = to_eisa_device(bdev)->base_addr; - - /* Get the interrupt level from the ESIC chip. */ - val = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0); - val &= PI_CONFIG_STAT_0_M_IRQ; - val >>= PI_CONFIG_STAT_0_V_IRQ; - - switch (val) { - case PI_CONFIG_STAT_0_IRQ_K_9: - dev->irq = 9; - break; - - case PI_CONFIG_STAT_0_IRQ_K_10: - dev->irq = 10; - break; - - case PI_CONFIG_STAT_0_IRQ_K_11: - dev->irq = 11; - break; - - case PI_CONFIG_STAT_0_IRQ_K_15: - dev->irq = 15; - break; - } - - /* - * Enable memory decoding (MEMCS0) and/or port decoding - * (IOCS1/IOCS0) as appropriate in Function Control - * Register. One of the port chip selects seems to be - * used for the Burst Holdoff register, but this bit of - * documentation is missing and as yet it has not been - * determined which of the two. This is also the reason - * the size of the decoded port range is twice as large - * as one required by the PDQ. - */ - - /* Set the decode range of the board. */ - val = ((bp->base.port >> 12) << PI_IO_CMP_V_SLOT); - outb(base_addr + PI_ESIC_K_IO_ADD_CMP_0_1, val); - outb(base_addr + PI_ESIC_K_IO_ADD_CMP_0_0, 0); - outb(base_addr + PI_ESIC_K_IO_ADD_CMP_1_1, val); - outb(base_addr + PI_ESIC_K_IO_ADD_CMP_1_0, 0); - val = PI_ESIC_K_CSR_IO_LEN - 1; - outb(base_addr + PI_ESIC_K_IO_ADD_MASK_0_1, (val >> 8) & 0xff); - outb(base_addr + PI_ESIC_K_IO_ADD_MASK_0_0, val & 0xff); - outb(base_addr + PI_ESIC_K_IO_ADD_MASK_1_1, (val >> 8) & 0xff); - outb(base_addr + PI_ESIC_K_IO_ADD_MASK_1_0, val & 0xff); - - /* Enable the decoders. */ - val = PI_FUNCTION_CNTRL_M_IOCS1 | PI_FUNCTION_CNTRL_M_IOCS0; - if (dfx_use_mmio) - val |= PI_FUNCTION_CNTRL_M_MEMCS0; - outb(base_addr + PI_ESIC_K_FUNCTION_CNTRL, val); - - /* - * Enable access to the rest of the module - * (including PDQ and packet memory). - */ - val = PI_SLOT_CNTRL_M_ENB; - outb(base_addr + PI_ESIC_K_SLOT_CNTRL, val); - - /* - * Map PDQ registers into memory or port space. This is - * done with a bit in the Burst Holdoff register. - */ - val = inb(base_addr + PI_DEFEA_K_BURST_HOLDOFF); - if (dfx_use_mmio) - val |= PI_BURST_HOLDOFF_V_MEM_MAP; - else - val &= ~PI_BURST_HOLDOFF_V_MEM_MAP; - outb(base_addr + PI_DEFEA_K_BURST_HOLDOFF, val); - - /* Enable interrupts at EISA bus interface chip (ESIC) */ - val = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0); - val |= PI_CONFIG_STAT_0_M_INT_ENB; - outb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0, val); - } - if (dfx_bus_pci) { - struct pci_dev *pdev = to_pci_dev(bdev); - - /* Get the interrupt level from the PCI Configuration Table */ - - dev->irq = pdev->irq; - - /* Check Latency Timer and set if less than minimal */ - - pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &val); - if (val < PFI_K_LAT_TIMER_MIN) { - val = PFI_K_LAT_TIMER_DEF; - pci_write_config_byte(pdev, PCI_LATENCY_TIMER, val); - } - - /* Enable interrupts at PCI bus interface chip (PFI) */ - val = PFI_MODE_M_PDQ_INT_ENB | PFI_MODE_M_DMA_ENB; - dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL, val); - } -} - -/* - * ================== - * = dfx_bus_uninit = - * ================== - * - * Overview: - * Uninitializes the bus-specific controller logic. - * - * Returns: - * None - * - * Arguments: - * dev - pointer to device information - * - * Functional Description: - * Perform bus-specific logic uninitialization. - * - * Return Codes: - * None - * - * Assumptions: - * bp->base has already been set with the proper - * base I/O address for this device. - * - * Side Effects: - * Interrupts are disabled at the adapter bus-specific logic. - */ - -static void __devexit dfx_bus_uninit(struct net_device *dev) -{ - DFX_board_t *bp = netdev_priv(dev); - struct device *bdev = bp->bus_dev; - int dfx_bus_pci = DFX_BUS_PCI(bdev); - int dfx_bus_eisa = DFX_BUS_EISA(bdev); - u8 val; - - DBG_printk("In dfx_bus_uninit...\n"); - - /* Uninitialize adapter based on bus type */ - - if (dfx_bus_eisa) { - unsigned long base_addr = to_eisa_device(bdev)->base_addr; - - /* Disable interrupts at EISA bus interface chip (ESIC) */ - val = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0); - val &= ~PI_CONFIG_STAT_0_M_INT_ENB; - outb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0, val); - } - if (dfx_bus_pci) { - /* Disable interrupts at PCI bus interface chip (PFI) */ - dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL, 0); - } -} - - -/* - * ======================== - * = dfx_bus_config_check = - * ======================== - * - * Overview: - * Checks the configuration (burst size, full-duplex, etc.) If any parameters - * are illegal, then this routine will set new defaults. - * - * Returns: - * None - * - * Arguments: - * bp - pointer to board information - * - * Functional Description: - * For Revision 1 FDDI EISA, Revision 2 or later FDDI EISA with rev E or later - * PDQ, and all FDDI PCI controllers, all values are legal. - * - * Return Codes: - * None - * - * Assumptions: - * dfx_adap_init has NOT been called yet so burst size and other items have - * not been set. - * - * Side Effects: - * None - */ - -static void __devinit dfx_bus_config_check(DFX_board_t *bp) -{ - struct device __maybe_unused *bdev = bp->bus_dev; - int dfx_bus_eisa = DFX_BUS_EISA(bdev); - int status; /* return code from adapter port control call */ - u32 host_data; /* LW data returned from port control call */ - - DBG_printk("In dfx_bus_config_check...\n"); - - /* Configuration check only valid for EISA adapter */ - - if (dfx_bus_eisa) { - /* - * First check if revision 2 EISA controller. Rev. 1 cards used - * PDQ revision B, so no workaround needed in this case. Rev. 3 - * cards used PDQ revision E, so no workaround needed in this - * case, either. Only Rev. 2 cards used either Rev. D or E - * chips, so we must verify the chip revision on Rev. 2 cards. - */ - if (to_eisa_device(bdev)->id.driver_data == DEFEA_PROD_ID_2) { - /* - * Revision 2 FDDI EISA controller found, - * so let's check PDQ revision of adapter. - */ - status = dfx_hw_port_ctrl_req(bp, - PI_PCTRL_M_SUB_CMD, - PI_SUB_CMD_K_PDQ_REV_GET, - 0, - &host_data); - if ((status != DFX_K_SUCCESS) || (host_data == 2)) - { - /* - * Either we couldn't determine the PDQ revision, or - * we determined that it is at revision D. In either case, - * we need to implement the workaround. - */ - - /* Ensure that the burst size is set to 8 longwords or less */ - - switch (bp->burst_size) - { - case PI_PDATA_B_DMA_BURST_SIZE_32: - case PI_PDATA_B_DMA_BURST_SIZE_16: - bp->burst_size = PI_PDATA_B_DMA_BURST_SIZE_8; - break; - - default: - break; - } - - /* Ensure that full-duplex mode is not enabled */ - - bp->full_duplex_enb = PI_SNMP_K_FALSE; - } - } - } - } - - -/* - * =================== - * = dfx_driver_init = - * =================== - * - * Overview: - * Initializes remaining adapter board structure information - * and makes sure adapter is in a safe state prior to dfx_open(). - * - * Returns: - * Condition code - * - * Arguments: - * dev - pointer to device information - * print_name - printable device name - * - * Functional Description: - * This function allocates additional resources such as the host memory - * blocks needed by the adapter (eg. descriptor and consumer blocks). - * Remaining bus initialization steps are also completed. The adapter - * is also reset so that it is in the DMA_UNAVAILABLE state. The OS - * must call dfx_open() to open the adapter and bring it on-line. - * - * Return Codes: - * DFX_K_SUCCESS - initialization succeeded - * DFX_K_FAILURE - initialization failed - could not allocate memory - * or read adapter MAC address - * - * Assumptions: - * Memory allocated from pci_alloc_consistent() call is physically - * contiguous, locked memory. - * - * Side Effects: - * Adapter is reset and should be in DMA_UNAVAILABLE state before - * returning from this routine. - */ - -static int __devinit dfx_driver_init(struct net_device *dev, - const char *print_name, - resource_size_t bar_start) -{ - DFX_board_t *bp = netdev_priv(dev); - struct device *bdev = bp->bus_dev; - int dfx_bus_pci = DFX_BUS_PCI(bdev); - int dfx_bus_eisa = DFX_BUS_EISA(bdev); - int dfx_bus_tc = DFX_BUS_TC(bdev); - int dfx_use_mmio = DFX_MMIO || dfx_bus_tc; - int alloc_size; /* total buffer size needed */ - char *top_v, *curr_v; /* virtual addrs into memory block */ - dma_addr_t top_p, curr_p; /* physical addrs into memory block */ - u32 data; /* host data register value */ - __le32 le32; - char *board_name = NULL; - - DBG_printk("In dfx_driver_init...\n"); - - /* Initialize bus-specific hardware registers */ - - dfx_bus_init(dev); - - /* - * Initialize default values for configurable parameters - * - * Note: All of these parameters are ones that a user may - * want to customize. It'd be nice to break these - * out into Space.c or someplace else that's more - * accessible/understandable than this file. - */ - - bp->full_duplex_enb = PI_SNMP_K_FALSE; - bp->req_ttrt = 8 * 12500; /* 8ms in 80 nanosec units */ - bp->burst_size = PI_PDATA_B_DMA_BURST_SIZE_DEF; - bp->rcv_bufs_to_post = RCV_BUFS_DEF; - - /* - * Ensure that HW configuration is OK - * - * Note: Depending on the hardware revision, we may need to modify - * some of the configurable parameters to workaround hardware - * limitations. We'll perform this configuration check AFTER - * setting the parameters to their default values. - */ - - dfx_bus_config_check(bp); - - /* Disable PDQ interrupts first */ - - dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS); - - /* Place adapter in DMA_UNAVAILABLE state by resetting adapter */ - - (void) dfx_hw_dma_uninit(bp, PI_PDATA_A_RESET_M_SKIP_ST); - - /* Read the factory MAC address from the adapter then save it */ - - if (dfx_hw_port_ctrl_req(bp, PI_PCTRL_M_MLA, PI_PDATA_A_MLA_K_LO, 0, - &data) != DFX_K_SUCCESS) { - printk("%s: Could not read adapter factory MAC address!\n", - print_name); - return DFX_K_FAILURE; - } - le32 = cpu_to_le32(data); - memcpy(&bp->factory_mac_addr[0], &le32, sizeof(u32)); - - if (dfx_hw_port_ctrl_req(bp, PI_PCTRL_M_MLA, PI_PDATA_A_MLA_K_HI, 0, - &data) != DFX_K_SUCCESS) { - printk("%s: Could not read adapter factory MAC address!\n", - print_name); - return DFX_K_FAILURE; - } - le32 = cpu_to_le32(data); - memcpy(&bp->factory_mac_addr[4], &le32, sizeof(u16)); - - /* - * Set current address to factory address - * - * Note: Node address override support is handled through - * dfx_ctl_set_mac_address. - */ - - memcpy(dev->dev_addr, bp->factory_mac_addr, FDDI_K_ALEN); - if (dfx_bus_tc) - board_name = "DEFTA"; - if (dfx_bus_eisa) - board_name = "DEFEA"; - if (dfx_bus_pci) - board_name = "DEFPA"; - pr_info("%s: %s at %saddr = 0x%llx, IRQ = %d, Hardware addr = %pMF\n", - print_name, board_name, dfx_use_mmio ? "" : "I/O ", - (long long)bar_start, dev->irq, dev->dev_addr); - - /* - * Get memory for descriptor block, consumer block, and other buffers - * that need to be DMA read or written to by the adapter. - */ - - alloc_size = sizeof(PI_DESCR_BLOCK) + - PI_CMD_REQ_K_SIZE_MAX + - PI_CMD_RSP_K_SIZE_MAX + -#ifndef DYNAMIC_BUFFERS - (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX) + -#endif - sizeof(PI_CONSUMER_BLOCK) + - (PI_ALIGN_K_DESC_BLK - 1); - bp->kmalloced = top_v = dma_alloc_coherent(bp->bus_dev, alloc_size, - &bp->kmalloced_dma, - GFP_ATOMIC); - if (top_v == NULL) { - printk("%s: Could not allocate memory for host buffers " - "and structures!\n", print_name); - return DFX_K_FAILURE; - } - memset(top_v, 0, alloc_size); /* zero out memory before continuing */ - top_p = bp->kmalloced_dma; /* get physical address of buffer */ - - /* - * To guarantee the 8K alignment required for the descriptor block, 8K - 1 - * plus the amount of memory needed was allocated. The physical address - * is now 8K aligned. By carving up the memory in a specific order, - * we'll guarantee the alignment requirements for all other structures. - * - * Note: If the assumptions change regarding the non-paged, non-cached, - * physically contiguous nature of the memory block or the address - * alignments, then we'll need to implement a different algorithm - * for allocating the needed memory. - */ - - curr_p = ALIGN(top_p, PI_ALIGN_K_DESC_BLK); - curr_v = top_v + (curr_p - top_p); - - /* Reserve space for descriptor block */ - - bp->descr_block_virt = (PI_DESCR_BLOCK *) curr_v; - bp->descr_block_phys = curr_p; - curr_v += sizeof(PI_DESCR_BLOCK); - curr_p += sizeof(PI_DESCR_BLOCK); - - /* Reserve space for command request buffer */ - - bp->cmd_req_virt = (PI_DMA_CMD_REQ *) curr_v; - bp->cmd_req_phys = curr_p; - curr_v += PI_CMD_REQ_K_SIZE_MAX; - curr_p += PI_CMD_REQ_K_SIZE_MAX; - - /* Reserve space for command response buffer */ - - bp->cmd_rsp_virt = (PI_DMA_CMD_RSP *) curr_v; - bp->cmd_rsp_phys = curr_p; - curr_v += PI_CMD_RSP_K_SIZE_MAX; - curr_p += PI_CMD_RSP_K_SIZE_MAX; - - /* Reserve space for the LLC host receive queue buffers */ - - bp->rcv_block_virt = curr_v; - bp->rcv_block_phys = curr_p; - -#ifndef DYNAMIC_BUFFERS - curr_v += (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX); - curr_p += (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX); -#endif - - /* Reserve space for the consumer block */ - - bp->cons_block_virt = (PI_CONSUMER_BLOCK *) curr_v; - bp->cons_block_phys = curr_p; - - /* Display virtual and physical addresses if debug driver */ - - DBG_printk("%s: Descriptor block virt = %0lX, phys = %0X\n", - print_name, - (long)bp->descr_block_virt, bp->descr_block_phys); - DBG_printk("%s: Command Request buffer virt = %0lX, phys = %0X\n", - print_name, (long)bp->cmd_req_virt, bp->cmd_req_phys); - DBG_printk("%s: Command Response buffer virt = %0lX, phys = %0X\n", - print_name, (long)bp->cmd_rsp_virt, bp->cmd_rsp_phys); - DBG_printk("%s: Receive buffer block virt = %0lX, phys = %0X\n", - print_name, (long)bp->rcv_block_virt, bp->rcv_block_phys); - DBG_printk("%s: Consumer block virt = %0lX, phys = %0X\n", - print_name, (long)bp->cons_block_virt, bp->cons_block_phys); - - return DFX_K_SUCCESS; -} - - -/* - * ================= - * = dfx_adap_init = - * ================= - * - * Overview: - * Brings the adapter to the link avail/link unavailable state. - * - * Returns: - * Condition code - * - * Arguments: - * bp - pointer to board information - * get_buffers - non-zero if buffers to be allocated - * - * Functional Description: - * Issues the low-level firmware/hardware calls necessary to bring - * the adapter up, or to properly reset and restore adapter during - * run-time. - * - * Return Codes: - * DFX_K_SUCCESS - Adapter brought up successfully - * DFX_K_FAILURE - Adapter initialization failed - * - * Assumptions: - * bp->reset_type should be set to a valid reset type value before - * calling this routine. - * - * Side Effects: - * Adapter should be in LINK_AVAILABLE or LINK_UNAVAILABLE state - * upon a successful return of this routine. - */ - -static int dfx_adap_init(DFX_board_t *bp, int get_buffers) - { - DBG_printk("In dfx_adap_init...\n"); - - /* Disable PDQ interrupts first */ - - dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS); - - /* Place adapter in DMA_UNAVAILABLE state by resetting adapter */ - - if (dfx_hw_dma_uninit(bp, bp->reset_type) != DFX_K_SUCCESS) - { - printk("%s: Could not uninitialize/reset adapter!\n", bp->dev->name); - return DFX_K_FAILURE; - } - - /* - * When the PDQ is reset, some false Type 0 interrupts may be pending, - * so we'll acknowledge all Type 0 interrupts now before continuing. - */ - - dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_0_STATUS, PI_HOST_INT_K_ACK_ALL_TYPE_0); - - /* - * Clear Type 1 and Type 2 registers before going to DMA_AVAILABLE state - * - * Note: We only need to clear host copies of these registers. The PDQ reset - * takes care of the on-board register values. - */ - - bp->cmd_req_reg.lword = 0; - bp->cmd_rsp_reg.lword = 0; - bp->rcv_xmt_reg.lword = 0; - - /* Clear consumer block before going to DMA_AVAILABLE state */ - - memset(bp->cons_block_virt, 0, sizeof(PI_CONSUMER_BLOCK)); - - /* Initialize the DMA Burst Size */ - - if (dfx_hw_port_ctrl_req(bp, - PI_PCTRL_M_SUB_CMD, - PI_SUB_CMD_K_BURST_SIZE_SET, - bp->burst_size, - NULL) != DFX_K_SUCCESS) - { - printk("%s: Could not set adapter burst size!\n", bp->dev->name); - return DFX_K_FAILURE; - } - - /* - * Set base address of Consumer Block - * - * Assumption: 32-bit physical address of consumer block is 64 byte - * aligned. That is, bits 0-5 of the address must be zero. - */ - - if (dfx_hw_port_ctrl_req(bp, - PI_PCTRL_M_CONS_BLOCK, - bp->cons_block_phys, - 0, - NULL) != DFX_K_SUCCESS) - { - printk("%s: Could not set consumer block address!\n", bp->dev->name); - return DFX_K_FAILURE; - } - - /* - * Set the base address of Descriptor Block and bring adapter - * to DMA_AVAILABLE state. - * - * Note: We also set the literal and data swapping requirements - * in this command. - * - * Assumption: 32-bit physical address of descriptor block - * is 8Kbyte aligned. - */ - if (dfx_hw_port_ctrl_req(bp, PI_PCTRL_M_INIT, - (u32)(bp->descr_block_phys | - PI_PDATA_A_INIT_M_BSWAP_INIT), - 0, NULL) != DFX_K_SUCCESS) { - printk("%s: Could not set descriptor block address!\n", - bp->dev->name); - return DFX_K_FAILURE; - } - - /* Set transmit flush timeout value */ - - bp->cmd_req_virt->cmd_type = PI_CMD_K_CHARS_SET; - bp->cmd_req_virt->char_set.item[0].item_code = PI_ITEM_K_FLUSH_TIME; - bp->cmd_req_virt->char_set.item[0].value = 3; /* 3 seconds */ - bp->cmd_req_virt->char_set.item[0].item_index = 0; - bp->cmd_req_virt->char_set.item[1].item_code = PI_ITEM_K_EOL; - if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS) - { - printk("%s: DMA command request failed!\n", bp->dev->name); - return DFX_K_FAILURE; - } - - /* Set the initial values for eFDXEnable and MACTReq MIB objects */ - - bp->cmd_req_virt->cmd_type = PI_CMD_K_SNMP_SET; - bp->cmd_req_virt->snmp_set.item[0].item_code = PI_ITEM_K_FDX_ENB_DIS; - bp->cmd_req_virt->snmp_set.item[0].value = bp->full_duplex_enb; - bp->cmd_req_virt->snmp_set.item[0].item_index = 0; - bp->cmd_req_virt->snmp_set.item[1].item_code = PI_ITEM_K_MAC_T_REQ; - bp->cmd_req_virt->snmp_set.item[1].value = bp->req_ttrt; - bp->cmd_req_virt->snmp_set.item[1].item_index = 0; - bp->cmd_req_virt->snmp_set.item[2].item_code = PI_ITEM_K_EOL; - if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS) - { - printk("%s: DMA command request failed!\n", bp->dev->name); - return DFX_K_FAILURE; - } - - /* Initialize adapter CAM */ - - if (dfx_ctl_update_cam(bp) != DFX_K_SUCCESS) - { - printk("%s: Adapter CAM update failed!\n", bp->dev->name); - return DFX_K_FAILURE; - } - - /* Initialize adapter filters */ - - if (dfx_ctl_update_filters(bp) != DFX_K_SUCCESS) - { - printk("%s: Adapter filters update failed!\n", bp->dev->name); - return DFX_K_FAILURE; - } - - /* - * Remove any existing dynamic buffers (i.e. if the adapter is being - * reinitialized) - */ - - if (get_buffers) - dfx_rcv_flush(bp); - - /* Initialize receive descriptor block and produce buffers */ - - if (dfx_rcv_init(bp, get_buffers)) - { - printk("%s: Receive buffer allocation failed\n", bp->dev->name); - if (get_buffers) - dfx_rcv_flush(bp); - return DFX_K_FAILURE; - } - - /* Issue START command and bring adapter to LINK_(UN)AVAILABLE state */ - - bp->cmd_req_virt->cmd_type = PI_CMD_K_START; - if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS) - { - printk("%s: Start command failed\n", bp->dev->name); - if (get_buffers) - dfx_rcv_flush(bp); - return DFX_K_FAILURE; - } - - /* Initialization succeeded, reenable PDQ interrupts */ - - dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_ENABLE_DEF_INTS); - return DFX_K_SUCCESS; - } - - -/* - * ============ - * = dfx_open = - * ============ - * - * Overview: - * Opens the adapter - * - * Returns: - * Condition code - * - * Arguments: - * dev - pointer to device information - * - * Functional Description: - * This function brings the adapter to an operational state. - * - * Return Codes: - * 0 - Adapter was successfully opened - * -EAGAIN - Could not register IRQ or adapter initialization failed - * - * Assumptions: - * This routine should only be called for a device that was - * initialized successfully. - * - * Side Effects: - * Adapter should be in LINK_AVAILABLE or LINK_UNAVAILABLE state - * if the open is successful. - */ - -static int dfx_open(struct net_device *dev) -{ - DFX_board_t *bp = netdev_priv(dev); - int ret; - - DBG_printk("In dfx_open...\n"); - - /* Register IRQ - support shared interrupts by passing device ptr */ - - ret = request_irq(dev->irq, dfx_interrupt, IRQF_SHARED, dev->name, - dev); - if (ret) { - printk(KERN_ERR "%s: Requested IRQ %d is busy\n", dev->name, dev->irq); - return ret; - } - - /* - * Set current address to factory MAC address - * - * Note: We've already done this step in dfx_driver_init. - * However, it's possible that a user has set a node - * address override, then closed and reopened the - * adapter. Unless we reset the device address field - * now, we'll continue to use the existing modified - * address. - */ - - memcpy(dev->dev_addr, bp->factory_mac_addr, FDDI_K_ALEN); - - /* Clear local unicast/multicast address tables and counts */ - - memset(bp->uc_table, 0, sizeof(bp->uc_table)); - memset(bp->mc_table, 0, sizeof(bp->mc_table)); - bp->uc_count = 0; - bp->mc_count = 0; - - /* Disable promiscuous filter settings */ - - bp->ind_group_prom = PI_FSTATE_K_BLOCK; - bp->group_prom = PI_FSTATE_K_BLOCK; - - spin_lock_init(&bp->lock); - - /* Reset and initialize adapter */ - - bp->reset_type = PI_PDATA_A_RESET_M_SKIP_ST; /* skip self-test */ - if (dfx_adap_init(bp, 1) != DFX_K_SUCCESS) - { - printk(KERN_ERR "%s: Adapter open failed!\n", dev->name); - free_irq(dev->irq, dev); - return -EAGAIN; - } - - /* Set device structure info */ - netif_start_queue(dev); - return 0; -} - - -/* - * ============= - * = dfx_close = - * ============= - * - * Overview: - * Closes the device/module. - * - * Returns: - * Condition code - * - * Arguments: - * dev - pointer to device information - * - * Functional Description: - * This routine closes the adapter and brings it to a safe state. - * The interrupt service routine is deregistered with the OS. - * The adapter can be opened again with another call to dfx_open(). - * - * Return Codes: - * Always return 0. - * - * Assumptions: - * No further requests for this adapter are made after this routine is - * called. dfx_open() can be called to reset and reinitialize the - * adapter. - * - * Side Effects: - * Adapter should be in DMA_UNAVAILABLE state upon completion of this - * routine. - */ - -static int dfx_close(struct net_device *dev) -{ - DFX_board_t *bp = netdev_priv(dev); - - DBG_printk("In dfx_close...\n"); - - /* Disable PDQ interrupts first */ - - dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS); - - /* Place adapter in DMA_UNAVAILABLE state by resetting adapter */ - - (void) dfx_hw_dma_uninit(bp, PI_PDATA_A_RESET_M_SKIP_ST); - - /* - * Flush any pending transmit buffers - * - * Note: It's important that we flush the transmit buffers - * BEFORE we clear our copy of the Type 2 register. - * Otherwise, we'll have no idea how many buffers - * we need to free. - */ - - dfx_xmt_flush(bp); - - /* - * Clear Type 1 and Type 2 registers after adapter reset - * - * Note: Even though we're closing the adapter, it's - * possible that an interrupt will occur after - * dfx_close is called. Without some assurance to - * the contrary we want to make sure that we don't - * process receive and transmit LLC frames and update - * the Type 2 register with bad information. - */ - - bp->cmd_req_reg.lword = 0; - bp->cmd_rsp_reg.lword = 0; - bp->rcv_xmt_reg.lword = 0; - - /* Clear consumer block for the same reason given above */ - - memset(bp->cons_block_virt, 0, sizeof(PI_CONSUMER_BLOCK)); - - /* Release all dynamically allocate skb in the receive ring. */ - - dfx_rcv_flush(bp); - - /* Clear device structure flags */ - - netif_stop_queue(dev); - - /* Deregister (free) IRQ */ - - free_irq(dev->irq, dev); - - return 0; -} - - -/* - * ====================== - * = dfx_int_pr_halt_id = - * ====================== - * - * Overview: - * Displays halt id's in string form. - * - * Returns: - * None - * - * Arguments: - * bp - pointer to board information - * - * Functional Description: - * Determine current halt id and display appropriate string. - * - * Return Codes: - * None - * - * Assumptions: - * None - * - * Side Effects: - * None - */ - -static void dfx_int_pr_halt_id(DFX_board_t *bp) - { - PI_UINT32 port_status; /* PDQ port status register value */ - PI_UINT32 halt_id; /* PDQ port status halt ID */ - - /* Read the latest port status */ - - dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &port_status); - - /* Display halt state transition information */ - - halt_id = (port_status & PI_PSTATUS_M_HALT_ID) >> PI_PSTATUS_V_HALT_ID; - switch (halt_id) - { - case PI_HALT_ID_K_SELFTEST_TIMEOUT: - printk("%s: Halt ID: Selftest Timeout\n", bp->dev->name); - break; - - case PI_HALT_ID_K_PARITY_ERROR: - printk("%s: Halt ID: Host Bus Parity Error\n", bp->dev->name); - break; - - case PI_HALT_ID_K_HOST_DIR_HALT: - printk("%s: Halt ID: Host-Directed Halt\n", bp->dev->name); - break; - - case PI_HALT_ID_K_SW_FAULT: - printk("%s: Halt ID: Adapter Software Fault\n", bp->dev->name); - break; - - case PI_HALT_ID_K_HW_FAULT: - printk("%s: Halt ID: Adapter Hardware Fault\n", bp->dev->name); - break; - - case PI_HALT_ID_K_PC_TRACE: - printk("%s: Halt ID: FDDI Network PC Trace Path Test\n", bp->dev->name); - break; - - case PI_HALT_ID_K_DMA_ERROR: - printk("%s: Halt ID: Adapter DMA Error\n", bp->dev->name); - break; - - case PI_HALT_ID_K_IMAGE_CRC_ERROR: - printk("%s: Halt ID: Firmware Image CRC Error\n", bp->dev->name); - break; - - case PI_HALT_ID_K_BUS_EXCEPTION: - printk("%s: Halt ID: 68000 Bus Exception\n", bp->dev->name); - break; - - default: - printk("%s: Halt ID: Unknown (code = %X)\n", bp->dev->name, halt_id); - break; - } - } - - -/* - * ========================== - * = dfx_int_type_0_process = - * ========================== - * - * Overview: - * Processes Type 0 interrupts. - * - * Returns: - * None - * - * Arguments: - * bp - pointer to board information - * - * Functional Description: - * Processes all enabled Type 0 interrupts. If the reason for the interrupt - * is a serious fault on the adapter, then an error message is displayed - * and the adapter is reset. - * - * One tricky potential timing window is the rapid succession of "link avail" - * "link unavail" state change interrupts. The acknowledgement of the Type 0 - * interrupt must be done before reading the state from the Port Status - * register. This is true because a state change could occur after reading - * the data, but before acknowledging the interrupt. If this state change - * does happen, it would be lost because the driver is using the old state, - * and it will never know about the new state because it subsequently - * acknowledges the state change interrupt. - * - * INCORRECT CORRECT - * read type 0 int reasons read type 0 int reasons - * read adapter state ack type 0 interrupts - * ack type 0 interrupts read adapter state - * ... process interrupt ... ... process interrupt ... - * - * Return Codes: - * None - * - * Assumptions: - * None - * - * Side Effects: - * An adapter reset may occur if the adapter has any Type 0 error interrupts - * or if the port status indicates that the adapter is halted. The driver - * is responsible for reinitializing the adapter with the current CAM - * contents and adapter filter settings. - */ - -static void dfx_int_type_0_process(DFX_board_t *bp) - - { - PI_UINT32 type_0_status; /* Host Interrupt Type 0 register */ - PI_UINT32 state; /* current adap state (from port status) */ - - /* - * Read host interrupt Type 0 register to determine which Type 0 - * interrupts are pending. Immediately write it back out to clear - * those interrupts. - */ - - dfx_port_read_long(bp, PI_PDQ_K_REG_TYPE_0_STATUS, &type_0_status); - dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_0_STATUS, type_0_status); - - /* Check for Type 0 error interrupts */ - - if (type_0_status & (PI_TYPE_0_STAT_M_NXM | - PI_TYPE_0_STAT_M_PM_PAR_ERR | - PI_TYPE_0_STAT_M_BUS_PAR_ERR)) - { - /* Check for Non-Existent Memory error */ - - if (type_0_status & PI_TYPE_0_STAT_M_NXM) - printk("%s: Non-Existent Memory Access Error\n", bp->dev->name); - - /* Check for Packet Memory Parity error */ - - if (type_0_status & PI_TYPE_0_STAT_M_PM_PAR_ERR) - printk("%s: Packet Memory Parity Error\n", bp->dev->name); - - /* Check for Host Bus Parity error */ - - if (type_0_status & PI_TYPE_0_STAT_M_BUS_PAR_ERR) - printk("%s: Host Bus Parity Error\n", bp->dev->name); - - /* Reset adapter and bring it back on-line */ - - bp->link_available = PI_K_FALSE; /* link is no longer available */ - bp->reset_type = 0; /* rerun on-board diagnostics */ - printk("%s: Resetting adapter...\n", bp->dev->name); - if (dfx_adap_init(bp, 0) != DFX_K_SUCCESS) - { - printk("%s: Adapter reset failed! Disabling adapter interrupts.\n", bp->dev->name); - dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS); - return; - } - printk("%s: Adapter reset successful!\n", bp->dev->name); - return; - } - - /* Check for transmit flush interrupt */ - - if (type_0_status & PI_TYPE_0_STAT_M_XMT_FLUSH) - { - /* Flush any pending xmt's and acknowledge the flush interrupt */ - - bp->link_available = PI_K_FALSE; /* link is no longer available */ - dfx_xmt_flush(bp); /* flush any outstanding packets */ - (void) dfx_hw_port_ctrl_req(bp, - PI_PCTRL_M_XMT_DATA_FLUSH_DONE, - 0, - 0, - NULL); - } - - /* Check for adapter state change */ - - if (type_0_status & PI_TYPE_0_STAT_M_STATE_CHANGE) - { - /* Get latest adapter state */ - - state = dfx_hw_adap_state_rd(bp); /* get adapter state */ - if (state == PI_STATE_K_HALTED) - { - /* - * Adapter has transitioned to HALTED state, try to reset - * adapter to bring it back on-line. If reset fails, - * leave the adapter in the broken state. - */ - - printk("%s: Controller has transitioned to HALTED state!\n", bp->dev->name); - dfx_int_pr_halt_id(bp); /* display halt id as string */ - - /* Reset adapter and bring it back on-line */ - - bp->link_available = PI_K_FALSE; /* link is no longer available */ - bp->reset_type = 0; /* rerun on-board diagnostics */ - printk("%s: Resetting adapter...\n", bp->dev->name); - if (dfx_adap_init(bp, 0) != DFX_K_SUCCESS) - { - printk("%s: Adapter reset failed! Disabling adapter interrupts.\n", bp->dev->name); - dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS); - return; - } - printk("%s: Adapter reset successful!\n", bp->dev->name); - } - else if (state == PI_STATE_K_LINK_AVAIL) - { - bp->link_available = PI_K_TRUE; /* set link available flag */ - } - } - } - - -/* - * ================== - * = dfx_int_common = - * ================== - * - * Overview: - * Interrupt service routine (ISR) - * - * Returns: - * None - * - * Arguments: - * bp - pointer to board information - * - * Functional Description: - * This is the ISR which processes incoming adapter interrupts. - * - * Return Codes: - * None - * - * Assumptions: - * This routine assumes PDQ interrupts have not been disabled. - * When interrupts are disabled at the PDQ, the Port Status register - * is automatically cleared. This routine uses the Port Status - * register value to determine whether a Type 0 interrupt occurred, - * so it's important that adapter interrupts are not normally - * enabled/disabled at the PDQ. - * - * It's vital that this routine is NOT reentered for the - * same board and that the OS is not in another section of - * code (eg. dfx_xmt_queue_pkt) for the same board on a - * different thread. - * - * Side Effects: - * Pending interrupts are serviced. Depending on the type of - * interrupt, acknowledging and clearing the interrupt at the - * PDQ involves writing a register to clear the interrupt bit - * or updating completion indices. - */ - -static void dfx_int_common(struct net_device *dev) -{ - DFX_board_t *bp = netdev_priv(dev); - PI_UINT32 port_status; /* Port Status register */ - - /* Process xmt interrupts - frequent case, so always call this routine */ - - if(dfx_xmt_done(bp)) /* free consumed xmt packets */ - netif_wake_queue(dev); - - /* Process rcv interrupts - frequent case, so always call this routine */ - - dfx_rcv_queue_process(bp); /* service received LLC frames */ - - /* - * Transmit and receive producer and completion indices are updated on the - * adapter by writing to the Type 2 Producer register. Since the frequent - * case is that we'll be processing either LLC transmit or receive buffers, - * we'll optimize I/O writes by doing a single register write here. - */ - - dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_2_PROD, bp->rcv_xmt_reg.lword); - - /* Read PDQ Port Status register to find out which interrupts need processing */ - - dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &port_status); - - /* Process Type 0 interrupts (if any) - infrequent, so only call when needed */ - - if (port_status & PI_PSTATUS_M_TYPE_0_PENDING) - dfx_int_type_0_process(bp); /* process Type 0 interrupts */ - } - - -/* - * ================= - * = dfx_interrupt = - * ================= - * - * Overview: - * Interrupt processing routine - * - * Returns: - * Whether a valid interrupt was seen. - * - * Arguments: - * irq - interrupt vector - * dev_id - pointer to device information - * - * Functional Description: - * This routine calls the interrupt processing routine for this adapter. It - * disables and reenables adapter interrupts, as appropriate. We can support - * shared interrupts since the incoming dev_id pointer provides our device - * structure context. - * - * Return Codes: - * IRQ_HANDLED - an IRQ was handled. - * IRQ_NONE - no IRQ was handled. - * - * Assumptions: - * The interrupt acknowledgement at the hardware level (eg. ACKing the PIC - * on Intel-based systems) is done by the operating system outside this - * routine. - * - * System interrupts are enabled through this call. - * - * Side Effects: - * Interrupts are disabled, then reenabled at the adapter. - */ - -static irqreturn_t dfx_interrupt(int irq, void *dev_id) -{ - struct net_device *dev = dev_id; - DFX_board_t *bp = netdev_priv(dev); - struct device *bdev = bp->bus_dev; - int dfx_bus_pci = DFX_BUS_PCI(bdev); - int dfx_bus_eisa = DFX_BUS_EISA(bdev); - int dfx_bus_tc = DFX_BUS_TC(bdev); - - /* Service adapter interrupts */ - - if (dfx_bus_pci) { - u32 status; - - dfx_port_read_long(bp, PFI_K_REG_STATUS, &status); - if (!(status & PFI_STATUS_M_PDQ_INT)) - return IRQ_NONE; - - spin_lock(&bp->lock); - - /* Disable PDQ-PFI interrupts at PFI */ - dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL, - PFI_MODE_M_DMA_ENB); - - /* Call interrupt service routine for this adapter */ - dfx_int_common(dev); - - /* Clear PDQ interrupt status bit and reenable interrupts */ - dfx_port_write_long(bp, PFI_K_REG_STATUS, - PFI_STATUS_M_PDQ_INT); - dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL, - (PFI_MODE_M_PDQ_INT_ENB | - PFI_MODE_M_DMA_ENB)); - - spin_unlock(&bp->lock); - } - if (dfx_bus_eisa) { - unsigned long base_addr = to_eisa_device(bdev)->base_addr; - u8 status; - - status = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0); - if (!(status & PI_CONFIG_STAT_0_M_PEND)) - return IRQ_NONE; - - spin_lock(&bp->lock); - - /* Disable interrupts at the ESIC */ - status &= ~PI_CONFIG_STAT_0_M_INT_ENB; - outb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0, status); - - /* Call interrupt service routine for this adapter */ - dfx_int_common(dev); - - /* Reenable interrupts at the ESIC */ - status = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0); - status |= PI_CONFIG_STAT_0_M_INT_ENB; - outb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0, status); - - spin_unlock(&bp->lock); - } - if (dfx_bus_tc) { - u32 status; - - dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &status); - if (!(status & (PI_PSTATUS_M_RCV_DATA_PENDING | - PI_PSTATUS_M_XMT_DATA_PENDING | - PI_PSTATUS_M_SMT_HOST_PENDING | - PI_PSTATUS_M_UNSOL_PENDING | - PI_PSTATUS_M_CMD_RSP_PENDING | - PI_PSTATUS_M_CMD_REQ_PENDING | - PI_PSTATUS_M_TYPE_0_PENDING))) - return IRQ_NONE; - - spin_lock(&bp->lock); - - /* Call interrupt service routine for this adapter */ - dfx_int_common(dev); - - spin_unlock(&bp->lock); - } - - return IRQ_HANDLED; -} - - -/* - * ===================== - * = dfx_ctl_get_stats = - * ===================== - * - * Overview: - * Get statistics for FDDI adapter - * - * Returns: - * Pointer to FDDI statistics structure - * - * Arguments: - * dev - pointer to device information - * - * Functional Description: - * Gets current MIB objects from adapter, then - * returns FDDI statistics structure as defined - * in if_fddi.h. - * - * Note: Since the FDDI statistics structure is - * still new and the device structure doesn't - * have an FDDI-specific get statistics handler, - * we'll return the FDDI statistics structure as - * a pointer to an Ethernet statistics structure. - * That way, at least the first part of the statistics - * structure can be decoded properly, and it allows - * "smart" applications to perform a second cast to - * decode the FDDI-specific statistics. - * - * We'll have to pay attention to this routine as the - * device structure becomes more mature and LAN media - * independent. - * - * Return Codes: - * None - * - * Assumptions: - * None - * - * Side Effects: - * None - */ - -static struct net_device_stats *dfx_ctl_get_stats(struct net_device *dev) - { - DFX_board_t *bp = netdev_priv(dev); - - /* Fill the bp->stats structure with driver-maintained counters */ - - bp->stats.gen.rx_packets = bp->rcv_total_frames; - bp->stats.gen.tx_packets = bp->xmt_total_frames; - bp->stats.gen.rx_bytes = bp->rcv_total_bytes; - bp->stats.gen.tx_bytes = bp->xmt_total_bytes; - bp->stats.gen.rx_errors = bp->rcv_crc_errors + - bp->rcv_frame_status_errors + - bp->rcv_length_errors; - bp->stats.gen.tx_errors = bp->xmt_length_errors; - bp->stats.gen.rx_dropped = bp->rcv_discards; - bp->stats.gen.tx_dropped = bp->xmt_discards; - bp->stats.gen.multicast = bp->rcv_multicast_frames; - bp->stats.gen.collisions = 0; /* always zero (0) for FDDI */ - - /* Get FDDI SMT MIB objects */ - - bp->cmd_req_virt->cmd_type = PI_CMD_K_SMT_MIB_GET; - if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS) - return (struct net_device_stats *)&bp->stats; - - /* Fill the bp->stats structure with the SMT MIB object values */ - - memcpy(bp->stats.smt_station_id, &bp->cmd_rsp_virt->smt_mib_get.smt_station_id, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_station_id)); - bp->stats.smt_op_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_op_version_id; - bp->stats.smt_hi_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_hi_version_id; - bp->stats.smt_lo_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_lo_version_id; - memcpy(bp->stats.smt_user_data, &bp->cmd_rsp_virt->smt_mib_get.smt_user_data, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_user_data)); - bp->stats.smt_mib_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_mib_version_id; - bp->stats.smt_mac_cts = bp->cmd_rsp_virt->smt_mib_get.smt_mac_ct; - bp->stats.smt_non_master_cts = bp->cmd_rsp_virt->smt_mib_get.smt_non_master_ct; - bp->stats.smt_master_cts = bp->cmd_rsp_virt->smt_mib_get.smt_master_ct; - bp->stats.smt_available_paths = bp->cmd_rsp_virt->smt_mib_get.smt_available_paths; - bp->stats.smt_config_capabilities = bp->cmd_rsp_virt->smt_mib_get.smt_config_capabilities; - bp->stats.smt_config_policy = bp->cmd_rsp_virt->smt_mib_get.smt_config_policy; - bp->stats.smt_connection_policy = bp->cmd_rsp_virt->smt_mib_get.smt_connection_policy; - bp->stats.smt_t_notify = bp->cmd_rsp_virt->smt_mib_get.smt_t_notify; - bp->stats.smt_stat_rpt_policy = bp->cmd_rsp_virt->smt_mib_get.smt_stat_rpt_policy; - bp->stats.smt_trace_max_expiration = bp->cmd_rsp_virt->smt_mib_get.smt_trace_max_expiration; - bp->stats.smt_bypass_present = bp->cmd_rsp_virt->smt_mib_get.smt_bypass_present; - bp->stats.smt_ecm_state = bp->cmd_rsp_virt->smt_mib_get.smt_ecm_state; - bp->stats.smt_cf_state = bp->cmd_rsp_virt->smt_mib_get.smt_cf_state; - bp->stats.smt_remote_disconnect_flag = bp->cmd_rsp_virt->smt_mib_get.smt_remote_disconnect_flag; - bp->stats.smt_station_status = bp->cmd_rsp_virt->smt_mib_get.smt_station_status; - bp->stats.smt_peer_wrap_flag = bp->cmd_rsp_virt->smt_mib_get.smt_peer_wrap_flag; - bp->stats.smt_time_stamp = bp->cmd_rsp_virt->smt_mib_get.smt_msg_time_stamp.ls; - bp->stats.smt_transition_time_stamp = bp->cmd_rsp_virt->smt_mib_get.smt_transition_time_stamp.ls; - bp->stats.mac_frame_status_functions = bp->cmd_rsp_virt->smt_mib_get.mac_frame_status_functions; - bp->stats.mac_t_max_capability = bp->cmd_rsp_virt->smt_mib_get.mac_t_max_capability; - bp->stats.mac_tvx_capability = bp->cmd_rsp_virt->smt_mib_get.mac_tvx_capability; - bp->stats.mac_available_paths = bp->cmd_rsp_virt->smt_mib_get.mac_available_paths; - bp->stats.mac_current_path = bp->cmd_rsp_virt->smt_mib_get.mac_current_path; - memcpy(bp->stats.mac_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_upstream_nbr, FDDI_K_ALEN); - memcpy(bp->stats.mac_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_downstream_nbr, FDDI_K_ALEN); - memcpy(bp->stats.mac_old_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_upstream_nbr, FDDI_K_ALEN); - memcpy(bp->stats.mac_old_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_downstream_nbr, FDDI_K_ALEN); - bp->stats.mac_dup_address_test = bp->cmd_rsp_virt->smt_mib_get.mac_dup_address_test; - bp->stats.mac_requested_paths = bp->cmd_rsp_virt->smt_mib_get.mac_requested_paths; - bp->stats.mac_downstream_port_type = bp->cmd_rsp_virt->smt_mib_get.mac_downstream_port_type; - memcpy(bp->stats.mac_smt_address, &bp->cmd_rsp_virt->smt_mib_get.mac_smt_address, FDDI_K_ALEN); - bp->stats.mac_t_req = bp->cmd_rsp_virt->smt_mib_get.mac_t_req; - bp->stats.mac_t_neg = bp->cmd_rsp_virt->smt_mib_get.mac_t_neg; - bp->stats.mac_t_max = bp->cmd_rsp_virt->smt_mib_get.mac_t_max; - bp->stats.mac_tvx_value = bp->cmd_rsp_virt->smt_mib_get.mac_tvx_value; - bp->stats.mac_frame_error_threshold = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_threshold; - bp->stats.mac_frame_error_ratio = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_ratio; - bp->stats.mac_rmt_state = bp->cmd_rsp_virt->smt_mib_get.mac_rmt_state; - bp->stats.mac_da_flag = bp->cmd_rsp_virt->smt_mib_get.mac_da_flag; - bp->stats.mac_una_da_flag = bp->cmd_rsp_virt->smt_mib_get.mac_unda_flag; - bp->stats.mac_frame_error_flag = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_flag; - bp->stats.mac_ma_unitdata_available = bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_available; - bp->stats.mac_hardware_present = bp->cmd_rsp_virt->smt_mib_get.mac_hardware_present; - bp->stats.mac_ma_unitdata_enable = bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_enable; - bp->stats.path_tvx_lower_bound = bp->cmd_rsp_virt->smt_mib_get.path_tvx_lower_bound; - bp->stats.path_t_max_lower_bound = bp->cmd_rsp_virt->smt_mib_get.path_t_max_lower_bound; - bp->stats.path_max_t_req = bp->cmd_rsp_virt->smt_mib_get.path_max_t_req; - memcpy(bp->stats.path_configuration, &bp->cmd_rsp_virt->smt_mib_get.path_configuration, sizeof(bp->cmd_rsp_virt->smt_mib_get.path_configuration)); - bp->stats.port_my_type[0] = bp->cmd_rsp_virt->smt_mib_get.port_my_type[0]; - bp->stats.port_my_type[1] = bp->cmd_rsp_virt->smt_mib_get.port_my_type[1]; - bp->stats.port_neighbor_type[0] = bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[0]; - bp->stats.port_neighbor_type[1] = bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[1]; - bp->stats.port_connection_policies[0] = bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[0]; - bp->stats.port_connection_policies[1] = bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[1]; - bp->stats.port_mac_indicated[0] = bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[0]; - bp->stats.port_mac_indicated[1] = bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[1]; - bp->stats.port_current_path[0] = bp->cmd_rsp_virt->smt_mib_get.port_current_path[0]; - bp->stats.port_current_path[1] = bp->cmd_rsp_virt->smt_mib_get.port_current_path[1]; - memcpy(&bp->stats.port_requested_paths[0*3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[0], 3); - memcpy(&bp->stats.port_requested_paths[1*3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[1], 3); - bp->stats.port_mac_placement[0] = bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[0]; - bp->stats.port_mac_placement[1] = bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[1]; - bp->stats.port_available_paths[0] = bp->cmd_rsp_virt->smt_mib_get.port_available_paths[0]; - bp->stats.port_available_paths[1] = bp->cmd_rsp_virt->smt_mib_get.port_available_paths[1]; - bp->stats.port_pmd_class[0] = bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[0]; - bp->stats.port_pmd_class[1] = bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[1]; - bp->stats.port_connection_capabilities[0] = bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[0]; - bp->stats.port_connection_capabilities[1] = bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[1]; - bp->stats.port_bs_flag[0] = bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[0]; - bp->stats.port_bs_flag[1] = bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[1]; - bp->stats.port_ler_estimate[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[0]; - bp->stats.port_ler_estimate[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[1]; - bp->stats.port_ler_cutoff[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[0]; - bp->stats.port_ler_cutoff[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[1]; - bp->stats.port_ler_alarm[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[0]; - bp->stats.port_ler_alarm[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[1]; - bp->stats.port_connect_state[0] = bp->cmd_rsp_virt->smt_mib_get.port_connect_state[0]; - bp->stats.port_connect_state[1] = bp->cmd_rsp_virt->smt_mib_get.port_connect_state[1]; - bp->stats.port_pcm_state[0] = bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[0]; - bp->stats.port_pcm_state[1] = bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[1]; - bp->stats.port_pc_withhold[0] = bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[0]; - bp->stats.port_pc_withhold[1] = bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[1]; - bp->stats.port_ler_flag[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[0]; - bp->stats.port_ler_flag[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[1]; - bp->stats.port_hardware_present[0] = bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[0]; - bp->stats.port_hardware_present[1] = bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[1]; - - /* Get FDDI counters */ - - bp->cmd_req_virt->cmd_type = PI_CMD_K_CNTRS_GET; - if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS) - return (struct net_device_stats *)&bp->stats; - - /* Fill the bp->stats structure with the FDDI counter values */ - - bp->stats.mac_frame_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.frame_cnt.ls; - bp->stats.mac_copied_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.copied_cnt.ls; - bp->stats.mac_transmit_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.transmit_cnt.ls; - bp->stats.mac_error_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.error_cnt.ls; - bp->stats.mac_lost_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.lost_cnt.ls; - bp->stats.port_lct_fail_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[0].ls; - bp->stats.port_lct_fail_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[1].ls; - bp->stats.port_lem_reject_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[0].ls; - bp->stats.port_lem_reject_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[1].ls; - bp->stats.port_lem_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[0].ls; - bp->stats.port_lem_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[1].ls; - - return (struct net_device_stats *)&bp->stats; - } - - -/* - * ============================== - * = dfx_ctl_set_multicast_list = - * ============================== - * - * Overview: - * Enable/Disable LLC frame promiscuous mode reception - * on the adapter and/or update multicast address table. - * - * Returns: - * None - * - * Arguments: - * dev - pointer to device information - * - * Functional Description: - * This routine follows a fairly simple algorithm for setting the - * adapter filters and CAM: - * - * if IFF_PROMISC flag is set - * enable LLC individual/group promiscuous mode - * else - * disable LLC individual/group promiscuous mode - * if number of incoming multicast addresses > - * (CAM max size - number of unicast addresses in CAM) - * enable LLC group promiscuous mode - * set driver-maintained multicast address count to zero - * else - * disable LLC group promiscuous mode - * set driver-maintained multicast address count to incoming count - * update adapter CAM - * update adapter filters - * - * Return Codes: - * None - * - * Assumptions: - * Multicast addresses are presented in canonical (LSB) format. - * - * Side Effects: - * On-board adapter CAM and filters are updated. - */ - -static void dfx_ctl_set_multicast_list(struct net_device *dev) -{ - DFX_board_t *bp = netdev_priv(dev); - int i; /* used as index in for loop */ - struct netdev_hw_addr *ha; - - /* Enable LLC frame promiscuous mode, if necessary */ - - if (dev->flags & IFF_PROMISC) - bp->ind_group_prom = PI_FSTATE_K_PASS; /* Enable LLC ind/group prom mode */ - - /* Else, update multicast address table */ - - else - { - bp->ind_group_prom = PI_FSTATE_K_BLOCK; /* Disable LLC ind/group prom mode */ - /* - * Check whether incoming multicast address count exceeds table size - * - * Note: The adapters utilize an on-board 64 entry CAM for - * supporting perfect filtering of multicast packets - * and bridge functions when adding unicast addresses. - * There is no hash function available. To support - * additional multicast addresses, the all multicast - * filter (LLC group promiscuous mode) must be enabled. - * - * The firmware reserves two CAM entries for SMT-related - * multicast addresses, which leaves 62 entries available. - * The following code ensures that we're not being asked - * to add more than 62 addresses to the CAM. If we are, - * the driver will enable the all multicast filter. - * Should the number of multicast addresses drop below - * the high water mark, the filter will be disabled and - * perfect filtering will be used. - */ - - if (netdev_mc_count(dev) > (PI_CMD_ADDR_FILTER_K_SIZE - bp->uc_count)) - { - bp->group_prom = PI_FSTATE_K_PASS; /* Enable LLC group prom mode */ - bp->mc_count = 0; /* Don't add mc addrs to CAM */ - } - else - { - bp->group_prom = PI_FSTATE_K_BLOCK; /* Disable LLC group prom mode */ - bp->mc_count = netdev_mc_count(dev); /* Add mc addrs to CAM */ - } - - /* Copy addresses to multicast address table, then update adapter CAM */ - - i = 0; - netdev_for_each_mc_addr(ha, dev) - memcpy(&bp->mc_table[i++ * FDDI_K_ALEN], - ha->addr, FDDI_K_ALEN); - - if (dfx_ctl_update_cam(bp) != DFX_K_SUCCESS) - { - DBG_printk("%s: Could not update multicast address table!\n", dev->name); - } - else - { - DBG_printk("%s: Multicast address table updated! Added %d addresses.\n", dev->name, bp->mc_count); - } - } - - /* Update adapter filters */ - - if (dfx_ctl_update_filters(bp) != DFX_K_SUCCESS) - { - DBG_printk("%s: Could not update adapter filters!\n", dev->name); - } - else - { - DBG_printk("%s: Adapter filters updated!\n", dev->name); - } - } - - -/* - * =========================== - * = dfx_ctl_set_mac_address = - * =========================== - * - * Overview: - * Add node address override (unicast address) to adapter - * CAM and update dev_addr field in device table. - * - * Returns: - * None - * - * Arguments: - * dev - pointer to device information - * addr - pointer to sockaddr structure containing unicast address to add - * - * Functional Description: - * The adapter supports node address overrides by adding one or more - * unicast addresses to the adapter CAM. This is similar to adding - * multicast addresses. In this routine we'll update the driver and - * device structures with the new address, then update the adapter CAM - * to ensure that the adapter will copy and strip frames destined and - * sourced by that address. - * - * Return Codes: - * Always returns zero. - * - * Assumptions: - * The address pointed to by addr->sa_data is a valid unicast - * address and is presented in canonical (LSB) format. - * - * Side Effects: - * On-board adapter CAM is updated. On-board adapter filters - * may be updated. - */ - -static int dfx_ctl_set_mac_address(struct net_device *dev, void *addr) - { - struct sockaddr *p_sockaddr = (struct sockaddr *)addr; - DFX_board_t *bp = netdev_priv(dev); - - /* Copy unicast address to driver-maintained structs and update count */ - - memcpy(dev->dev_addr, p_sockaddr->sa_data, FDDI_K_ALEN); /* update device struct */ - memcpy(&bp->uc_table[0], p_sockaddr->sa_data, FDDI_K_ALEN); /* update driver struct */ - bp->uc_count = 1; - - /* - * Verify we're not exceeding the CAM size by adding unicast address - * - * Note: It's possible that before entering this routine we've - * already filled the CAM with 62 multicast addresses. - * Since we need to place the node address override into - * the CAM, we have to check to see that we're not - * exceeding the CAM size. If we are, we have to enable - * the LLC group (multicast) promiscuous mode filter as - * in dfx_ctl_set_multicast_list. - */ - - if ((bp->uc_count + bp->mc_count) > PI_CMD_ADDR_FILTER_K_SIZE) - { - bp->group_prom = PI_FSTATE_K_PASS; /* Enable LLC group prom mode */ - bp->mc_count = 0; /* Don't add mc addrs to CAM */ - - /* Update adapter filters */ - - if (dfx_ctl_update_filters(bp) != DFX_K_SUCCESS) - { - DBG_printk("%s: Could not update adapter filters!\n", dev->name); - } - else - { - DBG_printk("%s: Adapter filters updated!\n", dev->name); - } - } - - /* Update adapter CAM with new unicast address */ - - if (dfx_ctl_update_cam(bp) != DFX_K_SUCCESS) - { - DBG_printk("%s: Could not set new MAC address!\n", dev->name); - } - else - { - DBG_printk("%s: Adapter CAM updated with new MAC address\n", dev->name); - } - return 0; /* always return zero */ - } - - -/* - * ====================== - * = dfx_ctl_update_cam = - * ====================== - * - * Overview: - * Procedure to update adapter CAM (Content Addressable Memory) - * with desired unicast and multicast address entries. - * - * Returns: - * Condition code - * - * Arguments: - * bp - pointer to board information - * - * Functional Description: - * Updates adapter CAM with current contents of board structure - * unicast and multicast address tables. Since there are only 62 - * free entries in CAM, this routine ensures that the command - * request buffer is not overrun. - * - * Return Codes: - * DFX_K_SUCCESS - Request succeeded - * DFX_K_FAILURE - Request failed - * - * Assumptions: - * All addresses being added (unicast and multicast) are in canonical - * order. - * - * Side Effects: - * On-board adapter CAM is updated. - */ - -static int dfx_ctl_update_cam(DFX_board_t *bp) - { - int i; /* used as index */ - PI_LAN_ADDR *p_addr; /* pointer to CAM entry */ - - /* - * Fill in command request information - * - * Note: Even though both the unicast and multicast address - * table entries are stored as contiguous 6 byte entries, - * the firmware address filter set command expects each - * entry to be two longwords (8 bytes total). We must be - * careful to only copy the six bytes of each unicast and - * multicast table entry into each command entry. This - * is also why we must first clear the entire command - * request buffer. - */ - - memset(bp->cmd_req_virt, 0, PI_CMD_REQ_K_SIZE_MAX); /* first clear buffer */ - bp->cmd_req_virt->cmd_type = PI_CMD_K_ADDR_FILTER_SET; - p_addr = &bp->cmd_req_virt->addr_filter_set.entry[0]; - - /* Now add unicast addresses to command request buffer, if any */ - - for (i=0; i < (int)bp->uc_count; i++) - { - if (i < PI_CMD_ADDR_FILTER_K_SIZE) - { - memcpy(p_addr, &bp->uc_table[i*FDDI_K_ALEN], FDDI_K_ALEN); - p_addr++; /* point to next command entry */ - } - } - - /* Now add multicast addresses to command request buffer, if any */ - - for (i=0; i < (int)bp->mc_count; i++) - { - if ((i + bp->uc_count) < PI_CMD_ADDR_FILTER_K_SIZE) - { - memcpy(p_addr, &bp->mc_table[i*FDDI_K_ALEN], FDDI_K_ALEN); - p_addr++; /* point to next command entry */ - } - } - - /* Issue command to update adapter CAM, then return */ - - if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS) - return DFX_K_FAILURE; - return DFX_K_SUCCESS; - } - - -/* - * ========================== - * = dfx_ctl_update_filters = - * ========================== - * - * Overview: - * Procedure to update adapter filters with desired - * filter settings. - * - * Returns: - * Condition code - * - * Arguments: - * bp - pointer to board information - * - * Functional Description: - * Enables or disables filter using current filter settings. - * - * Return Codes: - * DFX_K_SUCCESS - Request succeeded. - * DFX_K_FAILURE - Request failed. - * - * Assumptions: - * We must always pass up packets destined to the broadcast - * address (FF-FF-FF-FF-FF-FF), so we'll always keep the - * broadcast filter enabled. - * - * Side Effects: - * On-board adapter filters are updated. - */ - -static int dfx_ctl_update_filters(DFX_board_t *bp) - { - int i = 0; /* used as index */ - - /* Fill in command request information */ - - bp->cmd_req_virt->cmd_type = PI_CMD_K_FILTERS_SET; - - /* Initialize Broadcast filter - * ALWAYS ENABLED * */ - - bp->cmd_req_virt->filter_set.item[i].item_code = PI_ITEM_K_BROADCAST; - bp->cmd_req_virt->filter_set.item[i++].value = PI_FSTATE_K_PASS; - - /* Initialize LLC Individual/Group Promiscuous filter */ - - bp->cmd_req_virt->filter_set.item[i].item_code = PI_ITEM_K_IND_GROUP_PROM; - bp->cmd_req_virt->filter_set.item[i++].value = bp->ind_group_prom; - - /* Initialize LLC Group Promiscuous filter */ - - bp->cmd_req_virt->filter_set.item[i].item_code = PI_ITEM_K_GROUP_PROM; - bp->cmd_req_virt->filter_set.item[i++].value = bp->group_prom; - - /* Terminate the item code list */ - - bp->cmd_req_virt->filter_set.item[i].item_code = PI_ITEM_K_EOL; - - /* Issue command to update adapter filters, then return */ - - if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS) - return DFX_K_FAILURE; - return DFX_K_SUCCESS; - } - - -/* - * ====================== - * = dfx_hw_dma_cmd_req = - * ====================== - * - * Overview: - * Sends PDQ DMA command to adapter firmware - * - * Returns: - * Condition code - * - * Arguments: - * bp - pointer to board information - * - * Functional Description: - * The command request and response buffers are posted to the adapter in the manner - * described in the PDQ Port Specification: - * - * 1. Command Response Buffer is posted to adapter. - * 2. Command Request Buffer is posted to adapter. - * 3. Command Request consumer index is polled until it indicates that request - * buffer has been DMA'd to adapter. - * 4. Command Response consumer index is polled until it indicates that response - * buffer has been DMA'd from adapter. - * - * This ordering ensures that a response buffer is already available for the firmware - * to use once it's done processing the request buffer. - * - * Return Codes: - * DFX_K_SUCCESS - DMA command succeeded - * DFX_K_OUTSTATE - Adapter is NOT in proper state - * DFX_K_HW_TIMEOUT - DMA command timed out - * - * Assumptions: - * Command request buffer has already been filled with desired DMA command. - * - * Side Effects: - * None - */ - -static int dfx_hw_dma_cmd_req(DFX_board_t *bp) - { - int status; /* adapter status */ - int timeout_cnt; /* used in for loops */ - - /* Make sure the adapter is in a state that we can issue the DMA command in */ - - status = dfx_hw_adap_state_rd(bp); - if ((status == PI_STATE_K_RESET) || - (status == PI_STATE_K_HALTED) || - (status == PI_STATE_K_DMA_UNAVAIL) || - (status == PI_STATE_K_UPGRADE)) - return DFX_K_OUTSTATE; - - /* Put response buffer on the command response queue */ - - bp->descr_block_virt->cmd_rsp[bp->cmd_rsp_reg.index.prod].long_0 = (u32) (PI_RCV_DESCR_M_SOP | - ((PI_CMD_RSP_K_SIZE_MAX / PI_ALIGN_K_CMD_RSP_BUFF) << PI_RCV_DESCR_V_SEG_LEN)); - bp->descr_block_virt->cmd_rsp[bp->cmd_rsp_reg.index.prod].long_1 = bp->cmd_rsp_phys; - - /* Bump (and wrap) the producer index and write out to register */ - - bp->cmd_rsp_reg.index.prod += 1; - bp->cmd_rsp_reg.index.prod &= PI_CMD_RSP_K_NUM_ENTRIES-1; - dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_RSP_PROD, bp->cmd_rsp_reg.lword); - - /* Put request buffer on the command request queue */ - - bp->descr_block_virt->cmd_req[bp->cmd_req_reg.index.prod].long_0 = (u32) (PI_XMT_DESCR_M_SOP | - PI_XMT_DESCR_M_EOP | (PI_CMD_REQ_K_SIZE_MAX << PI_XMT_DESCR_V_SEG_LEN)); - bp->descr_block_virt->cmd_req[bp->cmd_req_reg.index.prod].long_1 = bp->cmd_req_phys; - - /* Bump (and wrap) the producer index and write out to register */ - - bp->cmd_req_reg.index.prod += 1; - bp->cmd_req_reg.index.prod &= PI_CMD_REQ_K_NUM_ENTRIES-1; - dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_REQ_PROD, bp->cmd_req_reg.lword); - - /* - * Here we wait for the command request consumer index to be equal - * to the producer, indicating that the adapter has DMAed the request. - */ - - for (timeout_cnt = 20000; timeout_cnt > 0; timeout_cnt--) - { - if (bp->cmd_req_reg.index.prod == (u8)(bp->cons_block_virt->cmd_req)) - break; - udelay(100); /* wait for 100 microseconds */ - } - if (timeout_cnt == 0) - return DFX_K_HW_TIMEOUT; - - /* Bump (and wrap) the completion index and write out to register */ - - bp->cmd_req_reg.index.comp += 1; - bp->cmd_req_reg.index.comp &= PI_CMD_REQ_K_NUM_ENTRIES-1; - dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_REQ_PROD, bp->cmd_req_reg.lword); - - /* - * Here we wait for the command response consumer index to be equal - * to the producer, indicating that the adapter has DMAed the response. - */ - - for (timeout_cnt = 20000; timeout_cnt > 0; timeout_cnt--) - { - if (bp->cmd_rsp_reg.index.prod == (u8)(bp->cons_block_virt->cmd_rsp)) - break; - udelay(100); /* wait for 100 microseconds */ - } - if (timeout_cnt == 0) - return DFX_K_HW_TIMEOUT; - - /* Bump (and wrap) the completion index and write out to register */ - - bp->cmd_rsp_reg.index.comp += 1; - bp->cmd_rsp_reg.index.comp &= PI_CMD_RSP_K_NUM_ENTRIES-1; - dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_RSP_PROD, bp->cmd_rsp_reg.lword); - return DFX_K_SUCCESS; - } - - -/* - * ======================== - * = dfx_hw_port_ctrl_req = - * ======================== - * - * Overview: - * Sends PDQ port control command to adapter firmware - * - * Returns: - * Host data register value in host_data if ptr is not NULL - * - * Arguments: - * bp - pointer to board information - * command - port control command - * data_a - port data A register value - * data_b - port data B register value - * host_data - ptr to host data register value - * - * Functional Description: - * Send generic port control command to adapter by writing - * to various PDQ port registers, then polling for completion. - * - * Return Codes: - * DFX_K_SUCCESS - port control command succeeded - * DFX_K_HW_TIMEOUT - port control command timed out - * - * Assumptions: - * None - * - * Side Effects: - * None - */ - -static int dfx_hw_port_ctrl_req( - DFX_board_t *bp, - PI_UINT32 command, - PI_UINT32 data_a, - PI_UINT32 data_b, - PI_UINT32 *host_data - ) - - { - PI_UINT32 port_cmd; /* Port Control command register value */ - int timeout_cnt; /* used in for loops */ - - /* Set Command Error bit in command longword */ - - port_cmd = (PI_UINT32) (command | PI_PCTRL_M_CMD_ERROR); - - /* Issue port command to the adapter */ - - dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_DATA_A, data_a); - dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_DATA_B, data_b); - dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_CTRL, port_cmd); - - /* Now wait for command to complete */ - - if (command == PI_PCTRL_M_BLAST_FLASH) - timeout_cnt = 600000; /* set command timeout count to 60 seconds */ - else - timeout_cnt = 20000; /* set command timeout count to 2 seconds */ - - for (; timeout_cnt > 0; timeout_cnt--) - { - dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_CTRL, &port_cmd); - if (!(port_cmd & PI_PCTRL_M_CMD_ERROR)) - break; - udelay(100); /* wait for 100 microseconds */ - } - if (timeout_cnt == 0) - return DFX_K_HW_TIMEOUT; - - /* - * If the address of host_data is non-zero, assume caller has supplied a - * non NULL pointer, and return the contents of the HOST_DATA register in - * it. - */ - - if (host_data != NULL) - dfx_port_read_long(bp, PI_PDQ_K_REG_HOST_DATA, host_data); - return DFX_K_SUCCESS; - } - - -/* - * ===================== - * = dfx_hw_adap_reset = - * ===================== - * - * Overview: - * Resets adapter - * - * Returns: - * None - * - * Arguments: - * bp - pointer to board information - * type - type of reset to perform - * - * Functional Description: - * Issue soft reset to adapter by writing to PDQ Port Reset - * register. Use incoming reset type to tell adapter what - * kind of reset operation to perform. - * - * Return Codes: - * None - * - * Assumptions: - * This routine merely issues a soft reset to the adapter. - * It is expected that after this routine returns, the caller - * will appropriately poll the Port Status register for the - * adapter to enter the proper state. - * - * Side Effects: - * Internal adapter registers are cleared. - */ - -static void dfx_hw_adap_reset( - DFX_board_t *bp, - PI_UINT32 type - ) - - { - /* Set Reset type and assert reset */ - - dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_DATA_A, type); /* tell adapter type of reset */ - dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_RESET, PI_RESET_M_ASSERT_RESET); - - /* Wait for at least 1 Microsecond according to the spec. We wait 20 just to be safe */ - - udelay(20); - - /* Deassert reset */ - - dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_RESET, 0); - } - - -/* - * ======================== - * = dfx_hw_adap_state_rd = - * ======================== - * - * Overview: - * Returns current adapter state - * - * Returns: - * Adapter state per PDQ Port Specification - * - * Arguments: - * bp - pointer to board information - * - * Functional Description: - * Reads PDQ Port Status register and returns adapter state. - * - * Return Codes: - * None - * - * Assumptions: - * None - * - * Side Effects: - * None - */ - -static int dfx_hw_adap_state_rd(DFX_board_t *bp) - { - PI_UINT32 port_status; /* Port Status register value */ - - dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &port_status); - return (port_status & PI_PSTATUS_M_STATE) >> PI_PSTATUS_V_STATE; - } - - -/* - * ===================== - * = dfx_hw_dma_uninit = - * ===================== - * - * Overview: - * Brings adapter to DMA_UNAVAILABLE state - * - * Returns: - * Condition code - * - * Arguments: - * bp - pointer to board information - * type - type of reset to perform - * - * Functional Description: - * Bring adapter to DMA_UNAVAILABLE state by performing the following: - * 1. Set reset type bit in Port Data A Register then reset adapter. - * 2. Check that adapter is in DMA_UNAVAILABLE state. - * - * Return Codes: - * DFX_K_SUCCESS - adapter is in DMA_UNAVAILABLE state - * DFX_K_HW_TIMEOUT - adapter did not reset properly - * - * Assumptions: - * None - * - * Side Effects: - * Internal adapter registers are cleared. - */ - -static int dfx_hw_dma_uninit(DFX_board_t *bp, PI_UINT32 type) - { - int timeout_cnt; /* used in for loops */ - - /* Set reset type bit and reset adapter */ - - dfx_hw_adap_reset(bp, type); - - /* Now wait for adapter to enter DMA_UNAVAILABLE state */ - - for (timeout_cnt = 100000; timeout_cnt > 0; timeout_cnt--) - { - if (dfx_hw_adap_state_rd(bp) == PI_STATE_K_DMA_UNAVAIL) - break; - udelay(100); /* wait for 100 microseconds */ - } - if (timeout_cnt == 0) - return DFX_K_HW_TIMEOUT; - return DFX_K_SUCCESS; - } - -/* - * Align an sk_buff to a boundary power of 2 - * - */ - -static void my_skb_align(struct sk_buff *skb, int n) -{ - unsigned long x = (unsigned long)skb->data; - unsigned long v; - - v = ALIGN(x, n); /* Where we want to be */ - - skb_reserve(skb, v - x); -} - - -/* - * ================ - * = dfx_rcv_init = - * ================ - * - * Overview: - * Produces buffers to adapter LLC Host receive descriptor block - * - * Returns: - * None - * - * Arguments: - * bp - pointer to board information - * get_buffers - non-zero if buffers to be allocated - * - * Functional Description: - * This routine can be called during dfx_adap_init() or during an adapter - * reset. It initializes the descriptor block and produces all allocated - * LLC Host queue receive buffers. - * - * Return Codes: - * Return 0 on success or -ENOMEM if buffer allocation failed (when using - * dynamic buffer allocation). If the buffer allocation failed, the - * already allocated buffers will not be released and the caller should do - * this. - * - * Assumptions: - * The PDQ has been reset and the adapter and driver maintained Type 2 - * register indices are cleared. - * - * Side Effects: - * Receive buffers are posted to the adapter LLC queue and the adapter - * is notified. - */ - -static int dfx_rcv_init(DFX_board_t *bp, int get_buffers) - { - int i, j; /* used in for loop */ - - /* - * Since each receive buffer is a single fragment of same length, initialize - * first longword in each receive descriptor for entire LLC Host descriptor - * block. Also initialize second longword in each receive descriptor with - * physical address of receive buffer. We'll always allocate receive - * buffers in powers of 2 so that we can easily fill the 256 entry descriptor - * block and produce new receive buffers by simply updating the receive - * producer index. - * - * Assumptions: - * To support all shipping versions of PDQ, the receive buffer size - * must be mod 128 in length and the physical address must be 128 byte - * aligned. In other words, bits 0-6 of the length and address must - * be zero for the following descriptor field entries to be correct on - * all PDQ-based boards. We guaranteed both requirements during - * driver initialization when we allocated memory for the receive buffers. - */ - - if (get_buffers) { -#ifdef DYNAMIC_BUFFERS - for (i = 0; i < (int)(bp->rcv_bufs_to_post); i++) - for (j = 0; (i + j) < (int)PI_RCV_DATA_K_NUM_ENTRIES; j += bp->rcv_bufs_to_post) - { - struct sk_buff *newskb = __netdev_alloc_skb(bp->dev, NEW_SKB_SIZE, GFP_NOIO); - if (!newskb) - return -ENOMEM; - bp->descr_block_virt->rcv_data[i+j].long_0 = (u32) (PI_RCV_DESCR_M_SOP | - ((PI_RCV_DATA_K_SIZE_MAX / PI_ALIGN_K_RCV_DATA_BUFF) << PI_RCV_DESCR_V_SEG_LEN)); - /* - * align to 128 bytes for compatibility with - * the old EISA boards. - */ - - my_skb_align(newskb, 128); - bp->descr_block_virt->rcv_data[i + j].long_1 = - (u32)dma_map_single(bp->bus_dev, newskb->data, - NEW_SKB_SIZE, - DMA_FROM_DEVICE); - /* - * p_rcv_buff_va is only used inside the - * kernel so we put the skb pointer here. - */ - bp->p_rcv_buff_va[i+j] = (char *) newskb; - } -#else - for (i=0; i < (int)(bp->rcv_bufs_to_post); i++) - for (j=0; (i + j) < (int)PI_RCV_DATA_K_NUM_ENTRIES; j += bp->rcv_bufs_to_post) - { - bp->descr_block_virt->rcv_data[i+j].long_0 = (u32) (PI_RCV_DESCR_M_SOP | - ((PI_RCV_DATA_K_SIZE_MAX / PI_ALIGN_K_RCV_DATA_BUFF) << PI_RCV_DESCR_V_SEG_LEN)); - bp->descr_block_virt->rcv_data[i+j].long_1 = (u32) (bp->rcv_block_phys + (i * PI_RCV_DATA_K_SIZE_MAX)); - bp->p_rcv_buff_va[i+j] = (char *) (bp->rcv_block_virt + (i * PI_RCV_DATA_K_SIZE_MAX)); - } -#endif - } - - /* Update receive producer and Type 2 register */ - - bp->rcv_xmt_reg.index.rcv_prod = bp->rcv_bufs_to_post; - dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_2_PROD, bp->rcv_xmt_reg.lword); - return 0; - } - - -/* - * ========================= - * = dfx_rcv_queue_process = - * ========================= - * - * Overview: - * Process received LLC frames. - * - * Returns: - * None - * - * Arguments: - * bp - pointer to board information - * - * Functional Description: - * Received LLC frames are processed until there are no more consumed frames. - * Once all frames are processed, the receive buffers are returned to the - * adapter. Note that this algorithm fixes the length of time that can be spent - * in this routine, because there are a fixed number of receive buffers to - * process and buffers are not produced until this routine exits and returns - * to the ISR. - * - * Return Codes: - * None - * - * Assumptions: - * None - * - * Side Effects: - * None - */ - -static void dfx_rcv_queue_process( - DFX_board_t *bp - ) - - { - PI_TYPE_2_CONSUMER *p_type_2_cons; /* ptr to rcv/xmt consumer block register */ - char *p_buff; /* ptr to start of packet receive buffer (FMC descriptor) */ - u32 descr, pkt_len; /* FMC descriptor field and packet length */ - struct sk_buff *skb; /* pointer to a sk_buff to hold incoming packet data */ - - /* Service all consumed LLC receive frames */ - - p_type_2_cons = (PI_TYPE_2_CONSUMER *)(&bp->cons_block_virt->xmt_rcv_data); - while (bp->rcv_xmt_reg.index.rcv_comp != p_type_2_cons->index.rcv_cons) - { - /* Process any errors */ - - int entry; - - entry = bp->rcv_xmt_reg.index.rcv_comp; -#ifdef DYNAMIC_BUFFERS - p_buff = (char *) (((struct sk_buff *)bp->p_rcv_buff_va[entry])->data); -#else - p_buff = (char *) bp->p_rcv_buff_va[entry]; -#endif - memcpy(&descr, p_buff + RCV_BUFF_K_DESCR, sizeof(u32)); - - if (descr & PI_FMC_DESCR_M_RCC_FLUSH) - { - if (descr & PI_FMC_DESCR_M_RCC_CRC) - bp->rcv_crc_errors++; - else - bp->rcv_frame_status_errors++; - } - else - { - int rx_in_place = 0; - - /* The frame was received without errors - verify packet length */ - - pkt_len = (u32)((descr & PI_FMC_DESCR_M_LEN) >> PI_FMC_DESCR_V_LEN); - pkt_len -= 4; /* subtract 4 byte CRC */ - if (!IN_RANGE(pkt_len, FDDI_K_LLC_ZLEN, FDDI_K_LLC_LEN)) - bp->rcv_length_errors++; - else{ -#ifdef DYNAMIC_BUFFERS - if (pkt_len > SKBUFF_RX_COPYBREAK) { - struct sk_buff *newskb; - - newskb = dev_alloc_skb(NEW_SKB_SIZE); - if (newskb){ - rx_in_place = 1; - - my_skb_align(newskb, 128); - skb = (struct sk_buff *)bp->p_rcv_buff_va[entry]; - dma_unmap_single(bp->bus_dev, - bp->descr_block_virt->rcv_data[entry].long_1, - NEW_SKB_SIZE, - DMA_FROM_DEVICE); - skb_reserve(skb, RCV_BUFF_K_PADDING); - bp->p_rcv_buff_va[entry] = (char *)newskb; - bp->descr_block_virt->rcv_data[entry].long_1 = - (u32)dma_map_single(bp->bus_dev, - newskb->data, - NEW_SKB_SIZE, - DMA_FROM_DEVICE); - } else - skb = NULL; - } else -#endif - skb = dev_alloc_skb(pkt_len+3); /* alloc new buffer to pass up, add room for PRH */ - if (skb == NULL) - { - printk("%s: Could not allocate receive buffer. Dropping packet.\n", bp->dev->name); - bp->rcv_discards++; - break; - } - else { -#ifndef DYNAMIC_BUFFERS - if (! rx_in_place) -#endif - { - /* Receive buffer allocated, pass receive packet up */ - - skb_copy_to_linear_data(skb, - p_buff + RCV_BUFF_K_PADDING, - pkt_len + 3); - } - - skb_reserve(skb,3); /* adjust data field so that it points to FC byte */ - skb_put(skb, pkt_len); /* pass up packet length, NOT including CRC */ - skb->protocol = fddi_type_trans(skb, bp->dev); - bp->rcv_total_bytes += skb->len; - netif_rx(skb); - - /* Update the rcv counters */ - bp->rcv_total_frames++; - if (*(p_buff + RCV_BUFF_K_DA) & 0x01) - bp->rcv_multicast_frames++; - } - } - } - - /* - * Advance the producer (for recycling) and advance the completion - * (for servicing received frames). Note that it is okay to - * advance the producer without checking that it passes the - * completion index because they are both advanced at the same - * rate. - */ - - bp->rcv_xmt_reg.index.rcv_prod += 1; - bp->rcv_xmt_reg.index.rcv_comp += 1; - } - } - - -/* - * ===================== - * = dfx_xmt_queue_pkt = - * ===================== - * - * Overview: - * Queues packets for transmission - * - * Returns: - * Condition code - * - * Arguments: - * skb - pointer to sk_buff to queue for transmission - * dev - pointer to device information - * - * Functional Description: - * Here we assume that an incoming skb transmit request - * is contained in a single physically contiguous buffer - * in which the virtual address of the start of packet - * (skb->data) can be converted to a physical address - * by using pci_map_single(). - * - * Since the adapter architecture requires a three byte - * packet request header to prepend the start of packet, - * we'll write the three byte field immediately prior to - * the FC byte. This assumption is valid because we've - * ensured that dev->hard_header_len includes three pad - * bytes. By posting a single fragment to the adapter, - * we'll reduce the number of descriptor fetches and - * bus traffic needed to send the request. - * - * Also, we can't free the skb until after it's been DMA'd - * out by the adapter, so we'll queue it in the driver and - * return it in dfx_xmt_done. - * - * Return Codes: - * 0 - driver queued packet, link is unavailable, or skbuff was bad - * 1 - caller should requeue the sk_buff for later transmission - * - * Assumptions: - * First and foremost, we assume the incoming skb pointer - * is NOT NULL and is pointing to a valid sk_buff structure. - * - * The outgoing packet is complete, starting with the - * frame control byte including the last byte of data, - * but NOT including the 4 byte CRC. We'll let the - * adapter hardware generate and append the CRC. - * - * The entire packet is stored in one physically - * contiguous buffer which is not cached and whose - * 32-bit physical address can be determined. - * - * It's vital that this routine is NOT reentered for the - * same board and that the OS is not in another section of - * code (eg. dfx_int_common) for the same board on a - * different thread. - * - * Side Effects: - * None - */ - -static netdev_tx_t dfx_xmt_queue_pkt(struct sk_buff *skb, - struct net_device *dev) - { - DFX_board_t *bp = netdev_priv(dev); - u8 prod; /* local transmit producer index */ - PI_XMT_DESCR *p_xmt_descr; /* ptr to transmit descriptor block entry */ - XMT_DRIVER_DESCR *p_xmt_drv_descr; /* ptr to transmit driver descriptor */ - unsigned long flags; - - netif_stop_queue(dev); - - /* - * Verify that incoming transmit request is OK - * - * Note: The packet size check is consistent with other - * Linux device drivers, although the correct packet - * size should be verified before calling the - * transmit routine. - */ - - if (!IN_RANGE(skb->len, FDDI_K_LLC_ZLEN, FDDI_K_LLC_LEN)) - { - printk("%s: Invalid packet length - %u bytes\n", - dev->name, skb->len); - bp->xmt_length_errors++; /* bump error counter */ - netif_wake_queue(dev); - dev_kfree_skb(skb); - return NETDEV_TX_OK; /* return "success" */ - } - /* - * See if adapter link is available, if not, free buffer - * - * Note: If the link isn't available, free buffer and return 0 - * rather than tell the upper layer to requeue the packet. - * The methodology here is that by the time the link - * becomes available, the packet to be sent will be - * fairly stale. By simply dropping the packet, the - * higher layer protocols will eventually time out - * waiting for response packets which it won't receive. - */ - - if (bp->link_available == PI_K_FALSE) - { - if (dfx_hw_adap_state_rd(bp) == PI_STATE_K_LINK_AVAIL) /* is link really available? */ - bp->link_available = PI_K_TRUE; /* if so, set flag and continue */ - else - { - bp->xmt_discards++; /* bump error counter */ - dev_kfree_skb(skb); /* free sk_buff now */ - netif_wake_queue(dev); - return NETDEV_TX_OK; /* return "success" */ - } - } - - spin_lock_irqsave(&bp->lock, flags); - - /* Get the current producer and the next free xmt data descriptor */ - - prod = bp->rcv_xmt_reg.index.xmt_prod; - p_xmt_descr = &(bp->descr_block_virt->xmt_data[prod]); - - /* - * Get pointer to auxiliary queue entry to contain information - * for this packet. - * - * Note: The current xmt producer index will become the - * current xmt completion index when we complete this - * packet later on. So, we'll get the pointer to the - * next auxiliary queue entry now before we bump the - * producer index. - */ - - p_xmt_drv_descr = &(bp->xmt_drv_descr_blk[prod++]); /* also bump producer index */ - - /* Write the three PRH bytes immediately before the FC byte */ - - skb_push(skb,3); - skb->data[0] = DFX_PRH0_BYTE; /* these byte values are defined */ - skb->data[1] = DFX_PRH1_BYTE; /* in the Motorola FDDI MAC chip */ - skb->data[2] = DFX_PRH2_BYTE; /* specification */ - - /* - * Write the descriptor with buffer info and bump producer - * - * Note: Since we need to start DMA from the packet request - * header, we'll add 3 bytes to the DMA buffer length, - * and we'll determine the physical address of the - * buffer from the PRH, not skb->data. - * - * Assumptions: - * 1. Packet starts with the frame control (FC) byte - * at skb->data. - * 2. The 4-byte CRC is not appended to the buffer or - * included in the length. - * 3. Packet length (skb->len) is from FC to end of - * data, inclusive. - * 4. The packet length does not exceed the maximum - * FDDI LLC frame length of 4491 bytes. - * 5. The entire packet is contained in a physically - * contiguous, non-cached, locked memory space - * comprised of a single buffer pointed to by - * skb->data. - * 6. The physical address of the start of packet - * can be determined from the virtual address - * by using pci_map_single() and is only 32-bits - * wide. - */ - - p_xmt_descr->long_0 = (u32) (PI_XMT_DESCR_M_SOP | PI_XMT_DESCR_M_EOP | ((skb->len) << PI_XMT_DESCR_V_SEG_LEN)); - p_xmt_descr->long_1 = (u32)dma_map_single(bp->bus_dev, skb->data, - skb->len, DMA_TO_DEVICE); - - /* - * Verify that descriptor is actually available - * - * Note: If descriptor isn't available, return 1 which tells - * the upper layer to requeue the packet for later - * transmission. - * - * We need to ensure that the producer never reaches the - * completion, except to indicate that the queue is empty. - */ - - if (prod == bp->rcv_xmt_reg.index.xmt_comp) - { - skb_pull(skb,3); - spin_unlock_irqrestore(&bp->lock, flags); - return NETDEV_TX_BUSY; /* requeue packet for later */ - } - - /* - * Save info for this packet for xmt done indication routine - * - * Normally, we'd save the producer index in the p_xmt_drv_descr - * structure so that we'd have it handy when we complete this - * packet later (in dfx_xmt_done). However, since the current - * transmit architecture guarantees a single fragment for the - * entire packet, we can simply bump the completion index by - * one (1) for each completed packet. - * - * Note: If this assumption changes and we're presented with - * an inconsistent number of transmit fragments for packet - * data, we'll need to modify this code to save the current - * transmit producer index. - */ - - p_xmt_drv_descr->p_skb = skb; - - /* Update Type 2 register */ - - bp->rcv_xmt_reg.index.xmt_prod = prod; - dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_2_PROD, bp->rcv_xmt_reg.lword); - spin_unlock_irqrestore(&bp->lock, flags); - netif_wake_queue(dev); - return NETDEV_TX_OK; /* packet queued to adapter */ - } - - -/* - * ================ - * = dfx_xmt_done = - * ================ - * - * Overview: - * Processes all frames that have been transmitted. - * - * Returns: - * None - * - * Arguments: - * bp - pointer to board information - * - * Functional Description: - * For all consumed transmit descriptors that have not - * yet been completed, we'll free the skb we were holding - * onto using dev_kfree_skb and bump the appropriate - * counters. - * - * Return Codes: - * None - * - * Assumptions: - * The Type 2 register is not updated in this routine. It is - * assumed that it will be updated in the ISR when dfx_xmt_done - * returns. - * - * Side Effects: - * None - */ - -static int dfx_xmt_done(DFX_board_t *bp) - { - XMT_DRIVER_DESCR *p_xmt_drv_descr; /* ptr to transmit driver descriptor */ - PI_TYPE_2_CONSUMER *p_type_2_cons; /* ptr to rcv/xmt consumer block register */ - u8 comp; /* local transmit completion index */ - int freed = 0; /* buffers freed */ - - /* Service all consumed transmit frames */ - - p_type_2_cons = (PI_TYPE_2_CONSUMER *)(&bp->cons_block_virt->xmt_rcv_data); - while (bp->rcv_xmt_reg.index.xmt_comp != p_type_2_cons->index.xmt_cons) - { - /* Get pointer to the transmit driver descriptor block information */ - - p_xmt_drv_descr = &(bp->xmt_drv_descr_blk[bp->rcv_xmt_reg.index.xmt_comp]); - - /* Increment transmit counters */ - - bp->xmt_total_frames++; - bp->xmt_total_bytes += p_xmt_drv_descr->p_skb->len; - - /* Return skb to operating system */ - comp = bp->rcv_xmt_reg.index.xmt_comp; - dma_unmap_single(bp->bus_dev, - bp->descr_block_virt->xmt_data[comp].long_1, - p_xmt_drv_descr->p_skb->len, - DMA_TO_DEVICE); - dev_kfree_skb_irq(p_xmt_drv_descr->p_skb); - - /* - * Move to start of next packet by updating completion index - * - * Here we assume that a transmit packet request is always - * serviced by posting one fragment. We can therefore - * simplify the completion code by incrementing the - * completion index by one. This code will need to be - * modified if this assumption changes. See comments - * in dfx_xmt_queue_pkt for more details. - */ - - bp->rcv_xmt_reg.index.xmt_comp += 1; - freed++; - } - return freed; - } - - -/* - * ================= - * = dfx_rcv_flush = - * ================= - * - * Overview: - * Remove all skb's in the receive ring. - * - * Returns: - * None - * - * Arguments: - * bp - pointer to board information - * - * Functional Description: - * Free's all the dynamically allocated skb's that are - * currently attached to the device receive ring. This - * function is typically only used when the device is - * initialized or reinitialized. - * - * Return Codes: - * None - * - * Side Effects: - * None - */ -#ifdef DYNAMIC_BUFFERS -static void dfx_rcv_flush( DFX_board_t *bp ) - { - int i, j; - - for (i = 0; i < (int)(bp->rcv_bufs_to_post); i++) - for (j = 0; (i + j) < (int)PI_RCV_DATA_K_NUM_ENTRIES; j += bp->rcv_bufs_to_post) - { - struct sk_buff *skb; - skb = (struct sk_buff *)bp->p_rcv_buff_va[i+j]; - if (skb) - dev_kfree_skb(skb); - bp->p_rcv_buff_va[i+j] = NULL; - } - - } -#else -static inline void dfx_rcv_flush( DFX_board_t *bp ) -{ -} -#endif /* DYNAMIC_BUFFERS */ - -/* - * ================= - * = dfx_xmt_flush = - * ================= - * - * Overview: - * Processes all frames whether they've been transmitted - * or not. - * - * Returns: - * None - * - * Arguments: - * bp - pointer to board information - * - * Functional Description: - * For all produced transmit descriptors that have not - * yet been completed, we'll free the skb we were holding - * onto using dev_kfree_skb and bump the appropriate - * counters. Of course, it's possible that some of - * these transmit requests actually did go out, but we - * won't make that distinction here. Finally, we'll - * update the consumer index to match the producer. - * - * Return Codes: - * None - * - * Assumptions: - * This routine does NOT update the Type 2 register. It - * is assumed that this routine is being called during a - * transmit flush interrupt, or a shutdown or close routine. - * - * Side Effects: - * None - */ - -static void dfx_xmt_flush( DFX_board_t *bp ) - { - u32 prod_cons; /* rcv/xmt consumer block longword */ - XMT_DRIVER_DESCR *p_xmt_drv_descr; /* ptr to transmit driver descriptor */ - u8 comp; /* local transmit completion index */ - - /* Flush all outstanding transmit frames */ - - while (bp->rcv_xmt_reg.index.xmt_comp != bp->rcv_xmt_reg.index.xmt_prod) - { - /* Get pointer to the transmit driver descriptor block information */ - - p_xmt_drv_descr = &(bp->xmt_drv_descr_blk[bp->rcv_xmt_reg.index.xmt_comp]); - - /* Return skb to operating system */ - comp = bp->rcv_xmt_reg.index.xmt_comp; - dma_unmap_single(bp->bus_dev, - bp->descr_block_virt->xmt_data[comp].long_1, - p_xmt_drv_descr->p_skb->len, - DMA_TO_DEVICE); - dev_kfree_skb(p_xmt_drv_descr->p_skb); - - /* Increment transmit error counter */ - - bp->xmt_discards++; - - /* - * Move to start of next packet by updating completion index - * - * Here we assume that a transmit packet request is always - * serviced by posting one fragment. We can therefore - * simplify the completion code by incrementing the - * completion index by one. This code will need to be - * modified if this assumption changes. See comments - * in dfx_xmt_queue_pkt for more details. - */ - - bp->rcv_xmt_reg.index.xmt_comp += 1; - } - - /* Update the transmit consumer index in the consumer block */ - - prod_cons = (u32)(bp->cons_block_virt->xmt_rcv_data & ~PI_CONS_M_XMT_INDEX); - prod_cons |= (u32)(bp->rcv_xmt_reg.index.xmt_prod << PI_CONS_V_XMT_INDEX); - bp->cons_block_virt->xmt_rcv_data = prod_cons; - } - -/* - * ================== - * = dfx_unregister = - * ================== - * - * Overview: - * Shuts down an FDDI controller - * - * Returns: - * Condition code - * - * Arguments: - * bdev - pointer to device information - * - * Functional Description: - * - * Return Codes: - * None - * - * Assumptions: - * It compiles so it should work :-( (PCI cards do :-) - * - * Side Effects: - * Device structures for FDDI adapters (fddi0, fddi1, etc) are - * freed. - */ -static void __devexit dfx_unregister(struct device *bdev) -{ - struct net_device *dev = dev_get_drvdata(bdev); - DFX_board_t *bp = netdev_priv(dev); - int dfx_bus_pci = DFX_BUS_PCI(bdev); - int dfx_bus_tc = DFX_BUS_TC(bdev); - int dfx_use_mmio = DFX_MMIO || dfx_bus_tc; - resource_size_t bar_start = 0; /* pointer to port */ - resource_size_t bar_len = 0; /* resource length */ - int alloc_size; /* total buffer size used */ - - unregister_netdev(dev); - - alloc_size = sizeof(PI_DESCR_BLOCK) + - PI_CMD_REQ_K_SIZE_MAX + PI_CMD_RSP_K_SIZE_MAX + -#ifndef DYNAMIC_BUFFERS - (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX) + -#endif - sizeof(PI_CONSUMER_BLOCK) + - (PI_ALIGN_K_DESC_BLK - 1); - if (bp->kmalloced) - dma_free_coherent(bdev, alloc_size, - bp->kmalloced, bp->kmalloced_dma); - - dfx_bus_uninit(dev); - - dfx_get_bars(bdev, &bar_start, &bar_len); - if (dfx_use_mmio) { - iounmap(bp->base.mem); - release_mem_region(bar_start, bar_len); - } else - release_region(bar_start, bar_len); - - if (dfx_bus_pci) - pci_disable_device(to_pci_dev(bdev)); - - free_netdev(dev); -} - - -static int __devinit __maybe_unused dfx_dev_register(struct device *); -static int __devexit __maybe_unused dfx_dev_unregister(struct device *); - -#ifdef CONFIG_PCI -static int __devinit dfx_pci_register(struct pci_dev *, - const struct pci_device_id *); -static void __devexit dfx_pci_unregister(struct pci_dev *); - -static DEFINE_PCI_DEVICE_TABLE(dfx_pci_table) = { - { PCI_DEVICE(PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_FDDI) }, - { } -}; -MODULE_DEVICE_TABLE(pci, dfx_pci_table); - -static struct pci_driver dfx_pci_driver = { - .name = "defxx", - .id_table = dfx_pci_table, - .probe = dfx_pci_register, - .remove = __devexit_p(dfx_pci_unregister), -}; - -static __devinit int dfx_pci_register(struct pci_dev *pdev, - const struct pci_device_id *ent) -{ - return dfx_register(&pdev->dev); -} - -static void __devexit dfx_pci_unregister(struct pci_dev *pdev) -{ - dfx_unregister(&pdev->dev); -} -#endif /* CONFIG_PCI */ - -#ifdef CONFIG_EISA -static struct eisa_device_id dfx_eisa_table[] = { - { "DEC3001", DEFEA_PROD_ID_1 }, - { "DEC3002", DEFEA_PROD_ID_2 }, - { "DEC3003", DEFEA_PROD_ID_3 }, - { "DEC3004", DEFEA_PROD_ID_4 }, - { } -}; -MODULE_DEVICE_TABLE(eisa, dfx_eisa_table); - -static struct eisa_driver dfx_eisa_driver = { - .id_table = dfx_eisa_table, - .driver = { - .name = "defxx", - .bus = &eisa_bus_type, - .probe = dfx_dev_register, - .remove = __devexit_p(dfx_dev_unregister), - }, -}; -#endif /* CONFIG_EISA */ - -#ifdef CONFIG_TC -static struct tc_device_id const dfx_tc_table[] = { - { "DEC ", "PMAF-FA " }, - { "DEC ", "PMAF-FD " }, - { "DEC ", "PMAF-FS " }, - { "DEC ", "PMAF-FU " }, - { } -}; -MODULE_DEVICE_TABLE(tc, dfx_tc_table); - -static struct tc_driver dfx_tc_driver = { - .id_table = dfx_tc_table, - .driver = { - .name = "defxx", - .bus = &tc_bus_type, - .probe = dfx_dev_register, - .remove = __devexit_p(dfx_dev_unregister), - }, -}; -#endif /* CONFIG_TC */ - -static int __devinit __maybe_unused dfx_dev_register(struct device *dev) -{ - int status; - - status = dfx_register(dev); - if (!status) - get_device(dev); - return status; -} - -static int __devexit __maybe_unused dfx_dev_unregister(struct device *dev) -{ - put_device(dev); - dfx_unregister(dev); - return 0; -} - - -static int __devinit dfx_init(void) -{ - int status; - - status = pci_register_driver(&dfx_pci_driver); - if (!status) - status = eisa_driver_register(&dfx_eisa_driver); - if (!status) - status = tc_register_driver(&dfx_tc_driver); - return status; -} - -static void __devexit dfx_cleanup(void) -{ - tc_unregister_driver(&dfx_tc_driver); - eisa_driver_unregister(&dfx_eisa_driver); - pci_unregister_driver(&dfx_pci_driver); -} - -module_init(dfx_init); -module_exit(dfx_cleanup); -MODULE_AUTHOR("Lawrence V. Stefani"); -MODULE_DESCRIPTION("DEC FDDIcontroller TC/EISA/PCI (DEFTA/DEFEA/DEFPA) driver " - DRV_VERSION " " DRV_RELDATE); -MODULE_LICENSE("GPL"); |