summaryrefslogtreecommitdiff
path: root/drivers/mtd
diff options
context:
space:
mode:
authorMasahiro Yamada <yamada.masahiro@socionext.com>2019-12-20 14:31:54 +0300
committerMiquel Raynal <miquel.raynal@bootlin.com>2020-01-21 22:00:33 +0300
commit711fafc287e1be25b4420752062f852930e4c1d2 (patch)
tree9c012e5edf5190065a3aefae302b0f02c8d60656 /drivers/mtd
parent48aad493e353db386ea8fc82f082220342e7e633 (diff)
downloadlinux-711fafc287e1be25b4420752062f852930e4c1d2.tar.xz
mtd: rawnand: denali_dt: add reset controlling
According to the Denali NAND Flash Memory Controller User's Guide, this IP has two reset signals. rst_n: reset most of FFs in the controller core reg_rst_n: reset all FFs in the register interface, and in the initialization sequencer This commit supports controlling those reset signals. It is possible to control them separately from the IP point of view although they might be often tied up together in actual SoC integration. The IP spec says, asserting only the reg_rst_n without asserting rst_n will cause unpredictable behavior in the controller. So, the driver deasserts ->rst_reg and ->rst in this order. Another thing that should be kept in mind is the automated initialization sequence (a.k.a. 'bootstrap' process) is kicked off when reg_rst_n is deasserted. When the reset is deasserted, the controller issues a RESET command to the chip select 0, and attempts to read out the chip ID, and further more, ONFI parameters if it is an ONFI-compliant device. Then, the controller sets up the relevant registers based on the detected device parameters. This process might be useful for tiny boot firmware, but is redundant for Linux Kernel because nand_scan_ident() probes devices and sets up parameters accordingly. Rather, this hardware feature is annoying because it ends up with misdetection due to bugs. So, commit 0615e7ad5d52 ("mtd: nand: denali: remove Toshiba and Hynix specific fixup code") changed the driver to not rely on it. However, there is no way to prevent it from running. The IP provides the 'bootstrap_inhibit_init' port to suppress this sequence, but it is usually out of software control, and dependent on SoC implementation. As for the Socionext UniPhier platform, LD4 always enables it. For the later SoCs, the bootstrap sequence runs depending on the boot mode. I added usleep_range() to make the driver wait until the sequence finishes. Otherwise, the driver would fail to detect the chip due to the race between the driver and hardware-controlled sequence. Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com> Reviewed-by: Philipp Zabel <p.zabel@pengutronix.de> Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com>
Diffstat (limited to 'drivers/mtd')
-rw-r--r--drivers/mtd/nand/raw/denali_dt.c40
1 files changed, 39 insertions, 1 deletions
diff --git a/drivers/mtd/nand/raw/denali_dt.c b/drivers/mtd/nand/raw/denali_dt.c
index 699255fb2dd8..f08740ae282b 100644
--- a/drivers/mtd/nand/raw/denali_dt.c
+++ b/drivers/mtd/nand/raw/denali_dt.c
@@ -6,6 +6,7 @@
*/
#include <linux/clk.h>
+#include <linux/delay.h>
#include <linux/err.h>
#include <linux/io.h>
#include <linux/ioport.h>
@@ -14,6 +15,7 @@
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
+#include <linux/reset.h>
#include "denali.h"
@@ -22,6 +24,8 @@ struct denali_dt {
struct clk *clk; /* core clock */
struct clk *clk_x; /* bus interface clock */
struct clk *clk_ecc; /* ECC circuit clock */
+ struct reset_control *rst; /* core reset */
+ struct reset_control *rst_reg; /* register reset */
};
struct denali_dt_data {
@@ -157,6 +161,14 @@ static int denali_dt_probe(struct platform_device *pdev)
if (IS_ERR(dt->clk_ecc))
return PTR_ERR(dt->clk_ecc);
+ dt->rst = devm_reset_control_get_optional_shared(dev, "nand");
+ if (IS_ERR(dt->rst))
+ return PTR_ERR(dt->rst);
+
+ dt->rst_reg = devm_reset_control_get_optional_shared(dev, "reg");
+ if (IS_ERR(dt->rst_reg))
+ return PTR_ERR(dt->rst_reg);
+
ret = clk_prepare_enable(dt->clk);
if (ret)
return ret;
@@ -172,10 +184,30 @@ static int denali_dt_probe(struct platform_device *pdev)
denali->clk_rate = clk_get_rate(dt->clk);
denali->clk_x_rate = clk_get_rate(dt->clk_x);
- ret = denali_init(denali);
+ /*
+ * Deassert the register reset, and the core reset in this order.
+ * Deasserting the core reset while the register reset is asserted
+ * will cause unpredictable behavior in the controller.
+ */
+ ret = reset_control_deassert(dt->rst_reg);
if (ret)
goto out_disable_clk_ecc;
+ ret = reset_control_deassert(dt->rst);
+ if (ret)
+ goto out_assert_rst_reg;
+
+ /*
+ * When the reset is deasserted, the initialization sequence is kicked
+ * (bootstrap process). The driver must wait until it finished.
+ * Otherwise, it will result in unpredictable behavior.
+ */
+ usleep_range(200, 1000);
+
+ ret = denali_init(denali);
+ if (ret)
+ goto out_assert_rst;
+
for_each_child_of_node(dev->of_node, np) {
ret = denali_dt_chip_init(denali, np);
if (ret) {
@@ -190,6 +222,10 @@ static int denali_dt_probe(struct platform_device *pdev)
out_remove_denali:
denali_remove(denali);
+out_assert_rst:
+ reset_control_assert(dt->rst);
+out_assert_rst_reg:
+ reset_control_assert(dt->rst_reg);
out_disable_clk_ecc:
clk_disable_unprepare(dt->clk_ecc);
out_disable_clk_x:
@@ -205,6 +241,8 @@ static int denali_dt_remove(struct platform_device *pdev)
struct denali_dt *dt = platform_get_drvdata(pdev);
denali_remove(&dt->controller);
+ reset_control_assert(dt->rst);
+ reset_control_assert(dt->rst_reg);
clk_disable_unprepare(dt->clk_ecc);
clk_disable_unprepare(dt->clk_x);
clk_disable_unprepare(dt->clk);