diff options
author | Miquel Raynal <miquel.raynal@bootlin.com> | 2021-12-31 15:31:23 +0300 |
---|---|---|
committer | Miquel Raynal <miquel.raynal@bootlin.com> | 2021-12-31 15:31:34 +0300 |
commit | 9ce47e43a0f088653aa25ca465836a84114e0940 (patch) | |
tree | b7de3c49e9ca311cfe417e513a9b77d656c13b63 /drivers/mtd/nand | |
parent | bee387131abe02f43da0ba784446ed4c0dd06dbb (diff) | |
parent | 2997e4871621bc56d3c19b447355091dafb6e505 (diff) | |
download | linux-9ce47e43a0f088653aa25ca465836a84114e0940.tar.xz |
Merge tag 'nand/for-5.17' into mtd/next
Raw NAND core:
* Export nand_read_page_hwecc_oob_first()
GPMC memory controller for OMAP2 NAND controller:
* GPMC:
- Add support for AM64 SoC and allow build on K3 platforms
- Use a compatible match table when checking for NAND controller
- Use platform_get_irq() to get the interrupt
Raw NAND controller drivers:
* OMAP2 NAND controller:
- Document the missing 'rb-gpios' DT property
- Drop unused variable
- Fix force_8bit flag behaviour for DMA mode
- Move to exec_op interface
- Use platform_get_irq() to get the interrupt
* Renesas:
- Add new NAND controller driver with its bindings and MAINTAINERS entry
* Onenand:
- Remove redundant variable ooblen
* MPC5121:
- Remove unused variable in ads5121_select_chip()
* GPMI:
- Add ERR007117 protection for nfc_apply_timings
- Remove explicit default gpmi clock setting for i.MX6
- Use platform_get_irq_byname() to get the interrupt
- Remove unneeded variable
* Ingenic:
- JZ4740 needs 'oob_first' read page function
* Davinci:
- Rewrite function description
- Avoid duplicated page read
- Don't calculate ECC when reading page
Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com>
Diffstat (limited to 'drivers/mtd/nand')
-rw-r--r-- | drivers/mtd/nand/onenand/onenand_bbt.c | 4 | ||||
-rw-r--r-- | drivers/mtd/nand/raw/Kconfig | 10 | ||||
-rw-r--r-- | drivers/mtd/nand/raw/Makefile | 1 | ||||
-rw-r--r-- | drivers/mtd/nand/raw/davinci_nand.c | 73 | ||||
-rw-r--r-- | drivers/mtd/nand/raw/gpmi-nand/gpmi-nand.c | 53 | ||||
-rw-r--r-- | drivers/mtd/nand/raw/ingenic/ingenic_nand_drv.c | 5 | ||||
-rw-r--r-- | drivers/mtd/nand/raw/mpc5121_nfc.c | 1 | ||||
-rw-r--r-- | drivers/mtd/nand/raw/nand_base.c | 67 | ||||
-rw-r--r-- | drivers/mtd/nand/raw/omap2.c | 507 | ||||
-rw-r--r-- | drivers/mtd/nand/raw/omap_elm.c | 16 | ||||
-rw-r--r-- | drivers/mtd/nand/raw/renesas-nand-controller.c | 1424 |
11 files changed, 1767 insertions, 394 deletions
diff --git a/drivers/mtd/nand/onenand/onenand_bbt.c b/drivers/mtd/nand/onenand/onenand_bbt.c index def89f108007..b17315f8e1d4 100644 --- a/drivers/mtd/nand/onenand/onenand_bbt.c +++ b/drivers/mtd/nand/onenand/onenand_bbt.c @@ -60,7 +60,7 @@ static int create_bbt(struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr int i, j, numblocks, len, scanlen; int startblock; loff_t from; - size_t readlen, ooblen; + size_t readlen; struct mtd_oob_ops ops; int rgn; @@ -69,7 +69,7 @@ static int create_bbt(struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr len = 2; /* We need only read few bytes from the OOB area */ - scanlen = ooblen = 0; + scanlen = 0; readlen = bd->len; /* chip == -1 case only */ diff --git a/drivers/mtd/nand/raw/Kconfig b/drivers/mtd/nand/raw/Kconfig index 67b7cb67c030..0cd5ebf0d5d7 100644 --- a/drivers/mtd/nand/raw/Kconfig +++ b/drivers/mtd/nand/raw/Kconfig @@ -40,8 +40,9 @@ config MTD_NAND_AMS_DELTA config MTD_NAND_OMAP2 tristate "OMAP2, OMAP3, OMAP4 and Keystone NAND controller" - depends on ARCH_OMAP2PLUS || ARCH_KEYSTONE || COMPILE_TEST + depends on ARCH_OMAP2PLUS || ARCH_KEYSTONE || ARCH_K3 || COMPILE_TEST depends on HAS_IOMEM + select OMAP_GPMC if ARCH_K3 help Support for NAND flash on Texas Instruments OMAP2, OMAP3, OMAP4 and Keystone platforms. @@ -461,6 +462,13 @@ config MTD_NAND_PL35X Enables support for PrimeCell SMC PL351 and PL353 NAND controller found on Zynq7000. +config MTD_NAND_RENESAS + tristate "Renesas R-Car Gen3 & RZ/N1 NAND controller" + depends on ARCH_RENESAS || COMPILE_TEST + help + Enables support for the NAND controller found on Renesas R-Car + Gen3 and RZ/N1 SoC families. + comment "Misc" config MTD_SM_COMMON diff --git a/drivers/mtd/nand/raw/Makefile b/drivers/mtd/nand/raw/Makefile index 2f97958c3a33..88a566513c56 100644 --- a/drivers/mtd/nand/raw/Makefile +++ b/drivers/mtd/nand/raw/Makefile @@ -58,6 +58,7 @@ obj-$(CONFIG_MTD_NAND_ARASAN) += arasan-nand-controller.o obj-$(CONFIG_MTD_NAND_INTEL_LGM) += intel-nand-controller.o obj-$(CONFIG_MTD_NAND_ROCKCHIP) += rockchip-nand-controller.o obj-$(CONFIG_MTD_NAND_PL35X) += pl35x-nand-controller.o +obj-$(CONFIG_MTD_NAND_RENESAS) += renesas-nand-controller.o nand-objs := nand_base.o nand_legacy.o nand_bbt.o nand_timings.o nand_ids.o nand-objs += nand_onfi.o diff --git a/drivers/mtd/nand/raw/davinci_nand.c b/drivers/mtd/nand/raw/davinci_nand.c index 118da9944e3b..45fec8c192ab 100644 --- a/drivers/mtd/nand/raw/davinci_nand.c +++ b/drivers/mtd/nand/raw/davinci_nand.c @@ -371,77 +371,6 @@ correct: return corrected; } -/** - * nand_read_page_hwecc_oob_first - hw ecc, read oob first - * @chip: nand chip info structure - * @buf: buffer to store read data - * @oob_required: caller requires OOB data read to chip->oob_poi - * @page: page number to read - * - * Hardware ECC for large page chips, require OOB to be read first. For this - * ECC mode, the write_page method is re-used from ECC_HW. These methods - * read/write ECC from the OOB area, unlike the ECC_HW_SYNDROME support with - * multiple ECC steps, follows the "infix ECC" scheme and reads/writes ECC from - * the data area, by overwriting the NAND manufacturer bad block markings. - */ -static int nand_davinci_read_page_hwecc_oob_first(struct nand_chip *chip, - uint8_t *buf, - int oob_required, int page) -{ - struct mtd_info *mtd = nand_to_mtd(chip); - int i, eccsize = chip->ecc.size, ret; - int eccbytes = chip->ecc.bytes; - int eccsteps = chip->ecc.steps; - uint8_t *p = buf; - uint8_t *ecc_code = chip->ecc.code_buf; - uint8_t *ecc_calc = chip->ecc.calc_buf; - unsigned int max_bitflips = 0; - - /* Read the OOB area first */ - ret = nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize); - if (ret) - return ret; - - ret = nand_read_page_op(chip, page, 0, NULL, 0); - if (ret) - return ret; - - ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0, - chip->ecc.total); - if (ret) - return ret; - - for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { - int stat; - - chip->ecc.hwctl(chip, NAND_ECC_READ); - - ret = nand_read_data_op(chip, p, eccsize, false, false); - if (ret) - return ret; - - chip->ecc.calculate(chip, p, &ecc_calc[i]); - - stat = chip->ecc.correct(chip, p, &ecc_code[i], NULL); - if (stat == -EBADMSG && - (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) { - /* check for empty pages with bitflips */ - stat = nand_check_erased_ecc_chunk(p, eccsize, - &ecc_code[i], - eccbytes, NULL, 0, - chip->ecc.strength); - } - - if (stat < 0) { - mtd->ecc_stats.failed++; - } else { - mtd->ecc_stats.corrected += stat; - max_bitflips = max_t(unsigned int, max_bitflips, stat); - } - } - return max_bitflips; -} - /*----------------------------------------------------------------------*/ /* An ECC layout for using 4-bit ECC with small-page flash, storing @@ -651,7 +580,7 @@ static int davinci_nand_attach_chip(struct nand_chip *chip) } else if (chunks == 4 || chunks == 8) { mtd_set_ooblayout(mtd, nand_get_large_page_ooblayout()); - chip->ecc.read_page = nand_davinci_read_page_hwecc_oob_first; + chip->ecc.read_page = nand_read_page_hwecc_oob_first; } else { return -EIO; } diff --git a/drivers/mtd/nand/raw/gpmi-nand/gpmi-nand.c b/drivers/mtd/nand/raw/gpmi-nand/gpmi-nand.c index 10cc71829dcb..1b64c5a5140d 100644 --- a/drivers/mtd/nand/raw/gpmi-nand/gpmi-nand.c +++ b/drivers/mtd/nand/raw/gpmi-nand/gpmi-nand.c @@ -713,14 +713,32 @@ static void gpmi_nfc_compute_timings(struct gpmi_nand_data *this, (use_half_period ? BM_GPMI_CTRL1_HALF_PERIOD : 0); } -static void gpmi_nfc_apply_timings(struct gpmi_nand_data *this) +static int gpmi_nfc_apply_timings(struct gpmi_nand_data *this) { struct gpmi_nfc_hardware_timing *hw = &this->hw; struct resources *r = &this->resources; void __iomem *gpmi_regs = r->gpmi_regs; unsigned int dll_wait_time_us; + int ret; + + /* Clock dividers do NOT guarantee a clean clock signal on its output + * during the change of the divide factor on i.MX6Q/UL/SX. On i.MX7/8, + * all clock dividers provide these guarantee. + */ + if (GPMI_IS_MX6Q(this) || GPMI_IS_MX6SX(this)) + clk_disable_unprepare(r->clock[0]); - clk_set_rate(r->clock[0], hw->clk_rate); + ret = clk_set_rate(r->clock[0], hw->clk_rate); + if (ret) { + dev_err(this->dev, "cannot set clock rate to %lu Hz: %d\n", hw->clk_rate, ret); + return ret; + } + + if (GPMI_IS_MX6Q(this) || GPMI_IS_MX6SX(this)) { + ret = clk_prepare_enable(r->clock[0]); + if (ret) + return ret; + } writel(hw->timing0, gpmi_regs + HW_GPMI_TIMING0); writel(hw->timing1, gpmi_regs + HW_GPMI_TIMING1); @@ -739,6 +757,8 @@ static void gpmi_nfc_apply_timings(struct gpmi_nand_data *this) /* Wait for the DLL to settle. */ udelay(dll_wait_time_us); + + return 0; } static int gpmi_setup_interface(struct nand_chip *chip, int chipnr, @@ -971,16 +991,13 @@ static int acquire_bch_irq(struct gpmi_nand_data *this, irq_handler_t irq_h) { struct platform_device *pdev = this->pdev; const char *res_name = GPMI_NAND_BCH_INTERRUPT_RES_NAME; - struct resource *r; int err; - r = platform_get_resource_byname(pdev, IORESOURCE_IRQ, res_name); - if (!r) { - dev_err(this->dev, "Can't get resource for %s\n", res_name); - return -ENODEV; - } + err = platform_get_irq_byname(pdev, res_name); + if (err < 0) + return err; - err = devm_request_irq(this->dev, r->start, irq_h, 0, res_name, this); + err = devm_request_irq(this->dev, err, irq_h, 0, res_name, this); if (err) dev_err(this->dev, "error requesting BCH IRQ\n"); @@ -1032,15 +1049,6 @@ static int gpmi_get_clks(struct gpmi_nand_data *this) r->clock[i] = clk; } - if (GPMI_IS_MX6(this)) - /* - * Set the default value for the gpmi clock. - * - * If you want to use the ONFI nand which is in the - * Synchronous Mode, you should change the clock as you need. - */ - clk_set_rate(r->clock[0], 22000000); - return 0; err_clock: @@ -1425,7 +1433,6 @@ static int gpmi_ecc_write_page(struct nand_chip *chip, const uint8_t *buf, struct mtd_info *mtd = nand_to_mtd(chip); struct gpmi_nand_data *this = nand_get_controller_data(chip); struct bch_geometry *nfc_geo = &this->bch_geometry; - int ret; dev_dbg(this->dev, "ecc write page.\n"); @@ -1445,9 +1452,7 @@ static int gpmi_ecc_write_page(struct nand_chip *chip, const uint8_t *buf, this->auxiliary_virt); } - ret = nand_prog_page_op(chip, page, 0, buf, nfc_geo->page_size); - - return ret; + return nand_prog_page_op(chip, page, 0, buf, nfc_geo->page_size); } /* @@ -2278,7 +2283,9 @@ static int gpmi_nfc_exec_op(struct nand_chip *chip, */ if (this->hw.must_apply_timings) { this->hw.must_apply_timings = false; - gpmi_nfc_apply_timings(this); + ret = gpmi_nfc_apply_timings(this); + if (ret) + return ret; } dev_dbg(this->dev, "%s: %d instructions\n", __func__, op->ninstrs); diff --git a/drivers/mtd/nand/raw/ingenic/ingenic_nand_drv.c b/drivers/mtd/nand/raw/ingenic/ingenic_nand_drv.c index 0e9d426fe4f2..b18861bdcdc8 100644 --- a/drivers/mtd/nand/raw/ingenic/ingenic_nand_drv.c +++ b/drivers/mtd/nand/raw/ingenic/ingenic_nand_drv.c @@ -32,6 +32,7 @@ struct jz_soc_info { unsigned long addr_offset; unsigned long cmd_offset; const struct mtd_ooblayout_ops *oob_layout; + bool oob_first; }; struct ingenic_nand_cs { @@ -240,6 +241,9 @@ static int ingenic_nand_attach_chip(struct nand_chip *chip) if (chip->bbt_options & NAND_BBT_USE_FLASH) chip->bbt_options |= NAND_BBT_NO_OOB; + if (nfc->soc_info->oob_first) + chip->ecc.read_page = nand_read_page_hwecc_oob_first; + /* For legacy reasons we use a different layout on the qi,lb60 board. */ if (of_machine_is_compatible("qi,lb60")) mtd_set_ooblayout(mtd, &qi_lb60_ooblayout_ops); @@ -534,6 +538,7 @@ static const struct jz_soc_info jz4740_soc_info = { .data_offset = 0x00000000, .cmd_offset = 0x00008000, .addr_offset = 0x00010000, + .oob_first = true, }; static const struct jz_soc_info jz4725b_soc_info = { diff --git a/drivers/mtd/nand/raw/mpc5121_nfc.c b/drivers/mtd/nand/raw/mpc5121_nfc.c index cb293c50acb8..5b9271b9c326 100644 --- a/drivers/mtd/nand/raw/mpc5121_nfc.c +++ b/drivers/mtd/nand/raw/mpc5121_nfc.c @@ -291,7 +291,6 @@ static int ads5121_chipselect_init(struct mtd_info *mtd) /* Control chips select signal on ADS5121 board */ static void ads5121_select_chip(struct nand_chip *nand, int chip) { - struct mtd_info *mtd = nand_to_mtd(nand); struct mpc5121_nfc_prv *prv = nand_get_controller_data(nand); u8 v; diff --git a/drivers/mtd/nand/raw/nand_base.c b/drivers/mtd/nand/raw/nand_base.c index b3a9bc08b4bb..9f48b4e71a11 100644 --- a/drivers/mtd/nand/raw/nand_base.c +++ b/drivers/mtd/nand/raw/nand_base.c @@ -3164,6 +3164,73 @@ static int nand_read_page_hwecc(struct nand_chip *chip, uint8_t *buf, } /** + * nand_read_page_hwecc_oob_first - Hardware ECC page read with ECC + * data read from OOB area + * @chip: nand chip info structure + * @buf: buffer to store read data + * @oob_required: caller requires OOB data read to chip->oob_poi + * @page: page number to read + * + * Hardware ECC for large page chips, which requires the ECC data to be + * extracted from the OOB before the actual data is read. + */ +int nand_read_page_hwecc_oob_first(struct nand_chip *chip, uint8_t *buf, + int oob_required, int page) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + int i, eccsize = chip->ecc.size, ret; + int eccbytes = chip->ecc.bytes; + int eccsteps = chip->ecc.steps; + uint8_t *p = buf; + uint8_t *ecc_code = chip->ecc.code_buf; + unsigned int max_bitflips = 0; + + /* Read the OOB area first */ + ret = nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize); + if (ret) + return ret; + + /* Move read cursor to start of page */ + ret = nand_change_read_column_op(chip, 0, NULL, 0, false); + if (ret) + return ret; + + ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0, + chip->ecc.total); + if (ret) + return ret; + + for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { + int stat; + + chip->ecc.hwctl(chip, NAND_ECC_READ); + + ret = nand_read_data_op(chip, p, eccsize, false, false); + if (ret) + return ret; + + stat = chip->ecc.correct(chip, p, &ecc_code[i], NULL); + if (stat == -EBADMSG && + (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) { + /* check for empty pages with bitflips */ + stat = nand_check_erased_ecc_chunk(p, eccsize, + &ecc_code[i], + eccbytes, NULL, 0, + chip->ecc.strength); + } + + if (stat < 0) { + mtd->ecc_stats.failed++; + } else { + mtd->ecc_stats.corrected += stat; + max_bitflips = max_t(unsigned int, max_bitflips, stat); + } + } + return max_bitflips; +} +EXPORT_SYMBOL_GPL(nand_read_page_hwecc_oob_first); + +/** * nand_read_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page read * @chip: nand chip info structure * @buf: buffer to store read data diff --git a/drivers/mtd/nand/raw/omap2.c b/drivers/mtd/nand/raw/omap2.c index b26d4947af02..f0bbbe401e76 100644 --- a/drivers/mtd/nand/raw/omap2.c +++ b/drivers/mtd/nand/raw/omap2.c @@ -19,7 +19,7 @@ #include <linux/mtd/rawnand.h> #include <linux/mtd/partitions.h> #include <linux/omap-dma.h> -#include <linux/io.h> +#include <linux/iopoll.h> #include <linux/slab.h> #include <linux/of.h> #include <linux/of_device.h> @@ -148,7 +148,6 @@ struct omap_nand_info { int gpmc_cs; bool dev_ready; enum nand_io xfer_type; - int devsize; enum omap_ecc ecc_opt; struct device_node *elm_of_node; @@ -164,6 +163,7 @@ struct omap_nand_info { u_char *buf; int buf_len; /* Interface to GPMC */ + void __iomem *fifo; struct gpmc_nand_regs reg; struct gpmc_nand_ops *ops; bool flash_bbt; @@ -175,6 +175,11 @@ struct omap_nand_info { unsigned int nsteps_per_eccpg; unsigned int eccpg_size; unsigned int eccpg_bytes; + void (*data_in)(struct nand_chip *chip, void *buf, + unsigned int len, bool force_8bit); + void (*data_out)(struct nand_chip *chip, + const void *buf, unsigned int len, + bool force_8bit); }; static inline struct omap_nand_info *mtd_to_omap(struct mtd_info *mtd) @@ -182,6 +187,13 @@ static inline struct omap_nand_info *mtd_to_omap(struct mtd_info *mtd) return container_of(mtd_to_nand(mtd), struct omap_nand_info, nand); } +static void omap_nand_data_in(struct nand_chip *chip, void *buf, + unsigned int len, bool force_8bit); + +static void omap_nand_data_out(struct nand_chip *chip, + const void *buf, unsigned int len, + bool force_8bit); + /** * omap_prefetch_enable - configures and starts prefetch transfer * @cs: cs (chip select) number @@ -241,169 +253,70 @@ static int omap_prefetch_reset(int cs, struct omap_nand_info *info) } /** - * omap_hwcontrol - hardware specific access to control-lines - * @chip: NAND chip object - * @cmd: command to device - * @ctrl: - * NAND_NCE: bit 0 -> don't care - * NAND_CLE: bit 1 -> Command Latch - * NAND_ALE: bit 2 -> Address Latch - * - * NOTE: boards may use different bits for these!! + * omap_nand_data_in_pref - NAND data in using prefetch engine */ -static void omap_hwcontrol(struct nand_chip *chip, int cmd, unsigned int ctrl) +static void omap_nand_data_in_pref(struct nand_chip *chip, void *buf, + unsigned int len, bool force_8bit) { struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip)); - - if (cmd != NAND_CMD_NONE) { - if (ctrl & NAND_CLE) - writeb(cmd, info->reg.gpmc_nand_command); - - else if (ctrl & NAND_ALE) - writeb(cmd, info->reg.gpmc_nand_address); - - else /* NAND_NCE */ - writeb(cmd, info->reg.gpmc_nand_data); - } -} - -/** - * omap_read_buf8 - read data from NAND controller into buffer - * @mtd: MTD device structure - * @buf: buffer to store date - * @len: number of bytes to read - */ -static void omap_read_buf8(struct mtd_info *mtd, u_char *buf, int len) -{ - struct nand_chip *nand = mtd_to_nand(mtd); - - ioread8_rep(nand->legacy.IO_ADDR_R, buf, len); -} - -/** - * omap_write_buf8 - write buffer to NAND controller - * @mtd: MTD device structure - * @buf: data buffer - * @len: number of bytes to write - */ -static void omap_write_buf8(struct mtd_info *mtd, const u_char *buf, int len) -{ - struct omap_nand_info *info = mtd_to_omap(mtd); - u_char *p = (u_char *)buf; - bool status; - - while (len--) { - iowrite8(*p++, info->nand.legacy.IO_ADDR_W); - /* wait until buffer is available for write */ - do { - status = info->ops->nand_writebuffer_empty(); - } while (!status); - } -} - -/** - * omap_read_buf16 - read data from NAND controller into buffer - * @mtd: MTD device structure - * @buf: buffer to store date - * @len: number of bytes to read - */ -static void omap_read_buf16(struct mtd_info *mtd, u_char *buf, int len) -{ - struct nand_chip *nand = mtd_to_nand(mtd); - - ioread16_rep(nand->legacy.IO_ADDR_R, buf, len / 2); -} - -/** - * omap_write_buf16 - write buffer to NAND controller - * @mtd: MTD device structure - * @buf: data buffer - * @len: number of bytes to write - */ -static void omap_write_buf16(struct mtd_info *mtd, const u_char * buf, int len) -{ - struct omap_nand_info *info = mtd_to_omap(mtd); - u16 *p = (u16 *) buf; - bool status; - /* FIXME try bursts of writesw() or DMA ... */ - len >>= 1; - - while (len--) { - iowrite16(*p++, info->nand.legacy.IO_ADDR_W); - /* wait until buffer is available for write */ - do { - status = info->ops->nand_writebuffer_empty(); - } while (!status); - } -} - -/** - * omap_read_buf_pref - read data from NAND controller into buffer - * @chip: NAND chip object - * @buf: buffer to store date - * @len: number of bytes to read - */ -static void omap_read_buf_pref(struct nand_chip *chip, u_char *buf, int len) -{ - struct mtd_info *mtd = nand_to_mtd(chip); - struct omap_nand_info *info = mtd_to_omap(mtd); uint32_t r_count = 0; int ret = 0; u32 *p = (u32 *)buf; + unsigned int pref_len; - /* take care of subpage reads */ - if (len % 4) { - if (info->nand.options & NAND_BUSWIDTH_16) - omap_read_buf16(mtd, buf, len % 4); - else - omap_read_buf8(mtd, buf, len % 4); - p = (u32 *) (buf + len % 4); - len -= len % 4; + if (force_8bit) { + omap_nand_data_in(chip, buf, len, force_8bit); + return; } + /* read 32-bit words using prefetch and remaining bytes normally */ + /* configure and start prefetch transfer */ + pref_len = len - (len & 3); ret = omap_prefetch_enable(info->gpmc_cs, - PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x0, info); + PREFETCH_FIFOTHRESHOLD_MAX, 0x0, pref_len, 0x0, info); if (ret) { - /* PFPW engine is busy, use cpu copy method */ - if (info->nand.options & NAND_BUSWIDTH_16) - omap_read_buf16(mtd, (u_char *)p, len); - else - omap_read_buf8(mtd, (u_char *)p, len); + /* prefetch engine is busy, use CPU copy method */ + omap_nand_data_in(chip, buf, len, false); } else { do { r_count = readl(info->reg.gpmc_prefetch_status); r_count = PREFETCH_STATUS_FIFO_CNT(r_count); r_count = r_count >> 2; - ioread32_rep(info->nand.legacy.IO_ADDR_R, p, r_count); + ioread32_rep(info->fifo, p, r_count); p += r_count; - len -= r_count << 2; - } while (len); - /* disable and stop the PFPW engine */ + pref_len -= r_count << 2; + } while (pref_len); + /* disable and stop the Prefetch engine */ omap_prefetch_reset(info->gpmc_cs, info); + /* fetch any remaining bytes */ + if (len & 3) + omap_nand_data_in(chip, p, len & 3, false); } } /** - * omap_write_buf_pref - write buffer to NAND controller - * @chip: NAND chip object - * @buf: data buffer - * @len: number of bytes to write + * omap_nand_data_out_pref - NAND data out using Write Posting engine */ -static void omap_write_buf_pref(struct nand_chip *chip, const u_char *buf, - int len) +static void omap_nand_data_out_pref(struct nand_chip *chip, + const void *buf, unsigned int len, + bool force_8bit) { - struct mtd_info *mtd = nand_to_mtd(chip); - struct omap_nand_info *info = mtd_to_omap(mtd); + struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip)); uint32_t w_count = 0; int i = 0, ret = 0; u16 *p = (u16 *)buf; unsigned long tim, limit; u32 val; + if (force_8bit) { + omap_nand_data_out(chip, buf, len, force_8bit); + return; + } + /* take care of subpage writes */ if (len % 2 != 0) { - writeb(*buf, info->nand.legacy.IO_ADDR_W); + writeb(*(u8 *)buf, info->fifo); p = (u16 *)(buf + 1); len--; } @@ -412,18 +325,15 @@ static void omap_write_buf_pref(struct nand_chip *chip, const u_char *buf, ret = omap_prefetch_enable(info->gpmc_cs, PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x1, info); if (ret) { - /* PFPW engine is busy, use cpu copy method */ - if (info->nand.options & NAND_BUSWIDTH_16) - omap_write_buf16(mtd, (u_char *)p, len); - else - omap_write_buf8(mtd, (u_char *)p, len); + /* write posting engine is busy, use CPU copy method */ + omap_nand_data_out(chip, buf, len, false); } else { while (len) { w_count = readl(info->reg.gpmc_prefetch_status); w_count = PREFETCH_STATUS_FIFO_CNT(w_count); w_count = w_count >> 1; for (i = 0; (i < w_count) && len; i++, len -= 2) - iowrite16(*p++, info->nand.legacy.IO_ADDR_W); + iowrite16(*p++, info->fifo); } /* wait for data to flushed-out before reset the prefetch */ tim = 0; @@ -451,15 +361,16 @@ static void omap_nand_dma_callback(void *data) /* * omap_nand_dma_transfer: configure and start dma transfer - * @mtd: MTD device structure + * @chip: nand chip structure * @addr: virtual address in RAM of source/destination * @len: number of data bytes to be transferred * @is_write: flag for read/write operation */ -static inline int omap_nand_dma_transfer(struct mtd_info *mtd, void *addr, - unsigned int len, int is_write) +static inline int omap_nand_dma_transfer(struct nand_chip *chip, + const void *addr, unsigned int len, + int is_write) { - struct omap_nand_info *info = mtd_to_omap(mtd); + struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip)); struct dma_async_tx_descriptor *tx; enum dma_data_direction dir = is_write ? DMA_TO_DEVICE : DMA_FROM_DEVICE; @@ -521,49 +432,51 @@ static inline int omap_nand_dma_transfer(struct mtd_info *mtd, void *addr, out_copy_unmap: dma_unmap_sg(info->dma->device->dev, &sg, 1, dir); out_copy: - if (info->nand.options & NAND_BUSWIDTH_16) - is_write == 0 ? omap_read_buf16(mtd, (u_char *) addr, len) - : omap_write_buf16(mtd, (u_char *) addr, len); - else - is_write == 0 ? omap_read_buf8(mtd, (u_char *) addr, len) - : omap_write_buf8(mtd, (u_char *) addr, len); + is_write == 0 ? omap_nand_data_in(chip, (void *)addr, len, false) + : omap_nand_data_out(chip, addr, len, false); + return 0; } /** - * omap_read_buf_dma_pref - read data from NAND controller into buffer - * @chip: NAND chip object - * @buf: buffer to store date - * @len: number of bytes to read + * omap_nand_data_in_dma_pref - NAND data in using DMA and Prefetch */ -static void omap_read_buf_dma_pref(struct nand_chip *chip, u_char *buf, - int len) +static void omap_nand_data_in_dma_pref(struct nand_chip *chip, void *buf, + unsigned int len, bool force_8bit) { struct mtd_info *mtd = nand_to_mtd(chip); + if (force_8bit) { + omap_nand_data_in(chip, buf, len, force_8bit); + return; + } + if (len <= mtd->oobsize) - omap_read_buf_pref(chip, buf, len); + omap_nand_data_in_pref(chip, buf, len, false); else /* start transfer in DMA mode */ - omap_nand_dma_transfer(mtd, buf, len, 0x0); + omap_nand_dma_transfer(chip, buf, len, 0x0); } /** - * omap_write_buf_dma_pref - write buffer to NAND controller - * @chip: NAND chip object - * @buf: data buffer - * @len: number of bytes to write + * omap_nand_data_out_dma_pref - NAND data out using DMA and write posting */ -static void omap_write_buf_dma_pref(struct nand_chip *chip, const u_char *buf, - int len) +static void omap_nand_data_out_dma_pref(struct nand_chip *chip, + const void *buf, unsigned int len, + bool force_8bit) { struct mtd_info *mtd = nand_to_mtd(chip); + if (force_8bit) { + omap_nand_data_out(chip, buf, len, force_8bit); + return; + } + if (len <= mtd->oobsize) - omap_write_buf_pref(chip, buf, len); + omap_nand_data_out_pref(chip, buf, len, false); else /* start transfer in DMA mode */ - omap_nand_dma_transfer(mtd, (u_char *)buf, len, 0x1); + omap_nand_dma_transfer(chip, buf, len, 0x1); } /* @@ -587,13 +500,13 @@ static irqreturn_t omap_nand_irq(int this_irq, void *dev) bytes = info->buf_len; else if (!info->buf_len) bytes = 0; - iowrite32_rep(info->nand.legacy.IO_ADDR_W, (u32 *)info->buf, + iowrite32_rep(info->fifo, (u32 *)info->buf, bytes >> 2); info->buf = info->buf + bytes; info->buf_len -= bytes; } else { - ioread32_rep(info->nand.legacy.IO_ADDR_R, (u32 *)info->buf, + ioread32_rep(info->fifo, (u32 *)info->buf, bytes >> 2); info->buf = info->buf + bytes; @@ -613,20 +526,17 @@ done: } /* - * omap_read_buf_irq_pref - read data from NAND controller into buffer - * @chip: NAND chip object - * @buf: buffer to store date - * @len: number of bytes to read + * omap_nand_data_in_irq_pref - NAND data in using Prefetch and IRQ */ -static void omap_read_buf_irq_pref(struct nand_chip *chip, u_char *buf, - int len) +static void omap_nand_data_in_irq_pref(struct nand_chip *chip, void *buf, + unsigned int len, bool force_8bit) { - struct mtd_info *mtd = nand_to_mtd(chip); - struct omap_nand_info *info = mtd_to_omap(mtd); + struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip)); + struct mtd_info *mtd = nand_to_mtd(&info->nand); int ret = 0; - if (len <= mtd->oobsize) { - omap_read_buf_pref(chip, buf, len); + if (len <= mtd->oobsize || force_8bit) { + omap_nand_data_in(chip, buf, len, force_8bit); return; } @@ -637,9 +547,11 @@ static void omap_read_buf_irq_pref(struct nand_chip *chip, u_char *buf, /* configure and start prefetch transfer */ ret = omap_prefetch_enable(info->gpmc_cs, PREFETCH_FIFOTHRESHOLD_MAX/2, 0x0, len, 0x0, info); - if (ret) + if (ret) { /* PFPW engine is busy, use cpu copy method */ - goto out_copy; + omap_nand_data_in(chip, buf, len, false); + return; + } info->buf_len = len; @@ -652,31 +564,23 @@ static void omap_read_buf_irq_pref(struct nand_chip *chip, u_char *buf, /* disable and stop the PFPW engine */ omap_prefetch_reset(info->gpmc_cs, info); return; - -out_copy: - if (info->nand.options & NAND_BUSWIDTH_16) - omap_read_buf16(mtd, buf, len); - else - omap_read_buf8(mtd, buf, len); } /* - * omap_write_buf_irq_pref - write buffer to NAND controller - * @chip: NAND chip object - * @buf: data buffer - * @len: number of bytes to write + * omap_nand_data_out_irq_pref - NAND out using write posting and IRQ */ -static void omap_write_buf_irq_pref(struct nand_chip *chip, const u_char *buf, - int len) +static void omap_nand_data_out_irq_pref(struct nand_chip *chip, + const void *buf, unsigned int len, + bool force_8bit) { - struct mtd_info *mtd = nand_to_mtd(chip); - struct omap_nand_info *info = mtd_to_omap(mtd); + struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip)); + struct mtd_info *mtd = nand_to_mtd(&info->nand); int ret = 0; unsigned long tim, limit; u32 val; - if (len <= mtd->oobsize) { - omap_write_buf_pref(chip, buf, len); + if (len <= mtd->oobsize || force_8bit) { + omap_nand_data_out(chip, buf, len, force_8bit); return; } @@ -687,9 +591,11 @@ static void omap_write_buf_irq_pref(struct nand_chip *chip, const u_char *buf, /* configure and start prefetch transfer : size=24 */ ret = omap_prefetch_enable(info->gpmc_cs, (PREFETCH_FIFOTHRESHOLD_MAX * 3) / 8, 0x0, len, 0x1, info); - if (ret) + if (ret) { /* PFPW engine is busy, use cpu copy method */ - goto out_copy; + omap_nand_data_out(chip, buf, len, false); + return; + } info->buf_len = len; @@ -711,12 +617,6 @@ static void omap_write_buf_irq_pref(struct nand_chip *chip, const u_char *buf, /* disable and stop the PFPW engine */ omap_prefetch_reset(info->gpmc_cs, info); return; - -out_copy: - if (info->nand.options & NAND_BUSWIDTH_16) - omap_write_buf16(mtd, buf, len); - else - omap_write_buf8(mtd, buf, len); } /** @@ -982,50 +882,6 @@ static void omap_enable_hwecc(struct nand_chip *chip, int mode) } /** - * omap_wait - wait until the command is done - * @this: NAND Chip structure - * - * Wait function is called during Program and erase operations and - * the way it is called from MTD layer, we should wait till the NAND - * chip is ready after the programming/erase operation has completed. - * - * Erase can take up to 400ms and program up to 20ms according to - * general NAND and SmartMedia specs - */ -static int omap_wait(struct nand_chip *this) -{ - struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(this)); - unsigned long timeo = jiffies; - int status; - - timeo += msecs_to_jiffies(400); - - writeb(NAND_CMD_STATUS & 0xFF, info->reg.gpmc_nand_command); - while (time_before(jiffies, timeo)) { - status = readb(info->reg.gpmc_nand_data); - if (status & NAND_STATUS_READY) - break; - cond_resched(); - } - - status = readb(info->reg.gpmc_nand_data); - return status; -} - -/** - * omap_dev_ready - checks the NAND Ready GPIO line - * @chip: NAND chip object - * - * Returns true if ready and false if busy. - */ -static int omap_dev_ready(struct nand_chip *chip) -{ - struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip)); - - return gpiod_get_value(info->ready_gpiod); -} - -/** * omap_enable_hwecc_bch - Program GPMC to perform BCH ECC calculation * @chip: NAND chip object * @mode: Read/Write mode @@ -1543,8 +1399,8 @@ static int omap_write_page_bch(struct nand_chip *chip, const uint8_t *buf, chip->ecc.hwctl(chip, NAND_ECC_WRITE); /* Write data */ - chip->legacy.write_buf(chip, buf + (eccpg * info->eccpg_size), - info->eccpg_size); + info->data_out(chip, buf + (eccpg * info->eccpg_size), + info->eccpg_size, false); /* Update ecc vector from GPMC result registers */ ret = omap_calculate_ecc_bch_multi(mtd, @@ -1562,7 +1418,7 @@ static int omap_write_page_bch(struct nand_chip *chip, const uint8_t *buf, } /* Write ecc vector to OOB area */ - chip->legacy.write_buf(chip, chip->oob_poi, mtd->oobsize); + info->data_out(chip, chip->oob_poi, mtd->oobsize, false); return nand_prog_page_end_op(chip); } @@ -1607,8 +1463,8 @@ static int omap_write_subpage_bch(struct nand_chip *chip, u32 offset, chip->ecc.hwctl(chip, NAND_ECC_WRITE); /* Write data */ - chip->legacy.write_buf(chip, buf + (eccpg * info->eccpg_size), - info->eccpg_size); + info->data_out(chip, buf + (eccpg * info->eccpg_size), + info->eccpg_size, false); for (step = 0; step < info->nsteps_per_eccpg; step++) { unsigned int base_step = eccpg * info->nsteps_per_eccpg; @@ -1641,7 +1497,7 @@ static int omap_write_subpage_bch(struct nand_chip *chip, u32 offset, } /* write OOB buffer to NAND device */ - chip->legacy.write_buf(chip, chip->oob_poi, mtd->oobsize); + info->data_out(chip, chip->oob_poi, mtd->oobsize, false); return nand_prog_page_end_op(chip); } @@ -1984,8 +1840,8 @@ static int omap_nand_attach_chip(struct nand_chip *chip) /* Re-populate low-level callbacks based on xfer modes */ switch (info->xfer_type) { case NAND_OMAP_PREFETCH_POLLED: - chip->legacy.read_buf = omap_read_buf_pref; - chip->legacy.write_buf = omap_write_buf_pref; + info->data_in = omap_nand_data_in_pref; + info->data_out = omap_nand_data_out_pref; break; case NAND_OMAP_POLLED: @@ -2017,8 +1873,9 @@ static int omap_nand_attach_chip(struct nand_chip *chip) err); return err; } - chip->legacy.read_buf = omap_read_buf_dma_pref; - chip->legacy.write_buf = omap_write_buf_dma_pref; + + info->data_in = omap_nand_data_in_dma_pref; + info->data_out = omap_nand_data_out_dma_pref; } break; @@ -2049,9 +1906,8 @@ static int omap_nand_attach_chip(struct nand_chip *chip) return err; } - chip->legacy.read_buf = omap_read_buf_irq_pref; - chip->legacy.write_buf = omap_write_buf_irq_pref; - + info->data_in = omap_nand_data_in_irq_pref; + info->data_out = omap_nand_data_out_irq_pref; break; default: @@ -2217,8 +2073,105 @@ static int omap_nand_attach_chip(struct nand_chip *chip) return 0; } +static void omap_nand_data_in(struct nand_chip *chip, void *buf, + unsigned int len, bool force_8bit) +{ + struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip)); + u32 alignment = ((uintptr_t)buf | len) & 3; + + if (force_8bit || (alignment & 1)) + ioread8_rep(info->fifo, buf, len); + else if (alignment & 3) + ioread16_rep(info->fifo, buf, len >> 1); + else + ioread32_rep(info->fifo, buf, len >> 2); +} + +static void omap_nand_data_out(struct nand_chip *chip, + const void *buf, unsigned int len, + bool force_8bit) +{ + struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip)); + u32 alignment = ((uintptr_t)buf | len) & 3; + + if (force_8bit || (alignment & 1)) + iowrite8_rep(info->fifo, buf, len); + else if (alignment & 3) + iowrite16_rep(info->fifo, buf, len >> 1); + else + iowrite32_rep(info->fifo, buf, len >> 2); +} + +static int omap_nand_exec_instr(struct nand_chip *chip, + const struct nand_op_instr *instr) +{ + struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip)); + unsigned int i; + int ret; + + switch (instr->type) { + case NAND_OP_CMD_INSTR: + iowrite8(instr->ctx.cmd.opcode, + info->reg.gpmc_nand_command); + break; + + case NAND_OP_ADDR_INSTR: + for (i = 0; i < instr->ctx.addr.naddrs; i++) { + iowrite8(instr->ctx.addr.addrs[i], + info->reg.gpmc_nand_address); + } + break; + + case NAND_OP_DATA_IN_INSTR: + info->data_in(chip, instr->ctx.data.buf.in, + instr->ctx.data.len, + instr->ctx.data.force_8bit); + break; + + case NAND_OP_DATA_OUT_INSTR: + info->data_out(chip, instr->ctx.data.buf.out, + instr->ctx.data.len, + instr->ctx.data.force_8bit); + break; + + case NAND_OP_WAITRDY_INSTR: + ret = info->ready_gpiod ? + nand_gpio_waitrdy(chip, info->ready_gpiod, instr->ctx.waitrdy.timeout_ms) : + nand_soft_waitrdy(chip, instr->ctx.waitrdy.timeout_ms); + if (ret) + return ret; + break; + } + + if (instr->delay_ns) + ndelay(instr->delay_ns); + + return 0; +} + +static int omap_nand_exec_op(struct nand_chip *chip, + const struct nand_operation *op, + bool check_only) +{ + unsigned int i; + + if (check_only) + return 0; + + for (i = 0; i < op->ninstrs; i++) { + int ret; + + ret = omap_nand_exec_instr(chip, &op->instrs[i]); + if (ret) + return ret; + } + + return 0; +} + static const struct nand_controller_ops omap_nand_controller_ops = { .attach_chip = omap_nand_attach_chip, + .exec_op = omap_nand_exec_op, }; /* Shared among all NAND instances to synchronize access to the ECC Engine */ @@ -2233,6 +2186,7 @@ static int omap_nand_probe(struct platform_device *pdev) int err; struct resource *res; struct device *dev = &pdev->dev; + void __iomem *vaddr; info = devm_kzalloc(&pdev->dev, sizeof(struct omap_nand_info), GFP_KERNEL); @@ -2266,10 +2220,11 @@ static int omap_nand_probe(struct platform_device *pdev) } res = platform_get_resource(pdev, IORESOURCE_MEM, 0); - nand_chip->legacy.IO_ADDR_R = devm_ioremap_resource(&pdev->dev, res); - if (IS_ERR(nand_chip->legacy.IO_ADDR_R)) - return PTR_ERR(nand_chip->legacy.IO_ADDR_R); + vaddr = devm_ioremap_resource(&pdev->dev, res); + if (IS_ERR(vaddr)) + return PTR_ERR(vaddr); + info->fifo = vaddr; info->phys_base = res->start; if (!omap_gpmc_controller_initialized) { @@ -2280,9 +2235,6 @@ static int omap_nand_probe(struct platform_device *pdev) nand_chip->controller = &omap_gpmc_controller; - nand_chip->legacy.IO_ADDR_W = nand_chip->legacy.IO_ADDR_R; - nand_chip->legacy.cmd_ctrl = omap_hwcontrol; - info->ready_gpiod = devm_gpiod_get_optional(&pdev->dev, "rb", GPIOD_IN); if (IS_ERR(info->ready_gpiod)) { @@ -2290,26 +2242,12 @@ static int omap_nand_probe(struct platform_device *pdev) return PTR_ERR(info->ready_gpiod); } - /* - * If RDY/BSY line is connected to OMAP then use the omap ready - * function and the generic nand_wait function which reads the status - * register after monitoring the RDY/BSY line. Otherwise use a standard - * chip delay which is slightly more than tR (AC Timing) of the NAND - * device and read status register until you get a failure or success - */ - if (info->ready_gpiod) { - nand_chip->legacy.dev_ready = omap_dev_ready; - nand_chip->legacy.chip_delay = 0; - } else { - nand_chip->legacy.waitfunc = omap_wait; - nand_chip->legacy.chip_delay = 50; - } - if (info->flash_bbt) nand_chip->bbt_options |= NAND_BBT_USE_FLASH; - /* scan NAND device connected to chip controller */ - nand_chip->options |= info->devsize & NAND_BUSWIDTH_16; + /* default operations */ + info->data_in = omap_nand_data_in; + info->data_out = omap_nand_data_out; err = nand_scan(nand_chip, 1); if (err) @@ -2352,10 +2290,7 @@ static int omap_nand_remove(struct platform_device *pdev) return ret; } -static const struct of_device_id omap_nand_ids[] = { - { .compatible = "ti,omap2-nand", }, - {}, -}; +/* omap_nand_ids defined in linux/platform_data/mtd-nand-omap2.h */ MODULE_DEVICE_TABLE(of, omap_nand_ids); static struct platform_driver omap_nand_driver = { diff --git a/drivers/mtd/nand/raw/omap_elm.c b/drivers/mtd/nand/raw/omap_elm.c index 8bab753211e9..db105d9b560c 100644 --- a/drivers/mtd/nand/raw/omap_elm.c +++ b/drivers/mtd/nand/raw/omap_elm.c @@ -384,8 +384,8 @@ static irqreturn_t elm_isr(int this_irq, void *dev_id) static int elm_probe(struct platform_device *pdev) { int ret = 0; - struct resource *irq; struct elm_info *info; + int irq; info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL); if (!info) @@ -393,20 +393,18 @@ static int elm_probe(struct platform_device *pdev) info->dev = &pdev->dev; - irq = platform_get_resource(pdev, IORESOURCE_IRQ, 0); - if (!irq) { - dev_err(&pdev->dev, "no irq resource defined\n"); - return -ENODEV; - } + irq = platform_get_irq(pdev, 0); + if (irq < 0) + return irq; info->elm_base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(info->elm_base)) return PTR_ERR(info->elm_base); - ret = devm_request_irq(&pdev->dev, irq->start, elm_isr, 0, - pdev->name, info); + ret = devm_request_irq(&pdev->dev, irq, elm_isr, 0, + pdev->name, info); if (ret) { - dev_err(&pdev->dev, "failure requesting %pr\n", irq); + dev_err(&pdev->dev, "failure requesting %d\n", irq); return ret; } diff --git a/drivers/mtd/nand/raw/renesas-nand-controller.c b/drivers/mtd/nand/raw/renesas-nand-controller.c new file mode 100644 index 000000000000..428e08362956 --- /dev/null +++ b/drivers/mtd/nand/raw/renesas-nand-controller.c @@ -0,0 +1,1424 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Evatronix/Renesas R-Car Gen3, RZ/N1D, RZ/N1S, RZ/N1L NAND controller driver + * + * Copyright (C) 2021 Schneider Electric + * Author: Miquel RAYNAL <miquel.raynal@bootlin.com> + */ + +#include <linux/bitfield.h> +#include <linux/clk.h> +#include <linux/dma-mapping.h> +#include <linux/interrupt.h> +#include <linux/iopoll.h> +#include <linux/module.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/rawnand.h> +#include <linux/of.h> +#include <linux/platform_device.h> +#include <linux/slab.h> + +#define COMMAND_REG 0x00 +#define COMMAND_SEQ(x) FIELD_PREP(GENMASK(5, 0), (x)) +#define COMMAND_SEQ_10 COMMAND_SEQ(0x2A) +#define COMMAND_SEQ_12 COMMAND_SEQ(0x0C) +#define COMMAND_SEQ_18 COMMAND_SEQ(0x32) +#define COMMAND_SEQ_19 COMMAND_SEQ(0x13) +#define COMMAND_SEQ_GEN_IN COMMAND_SEQ_18 +#define COMMAND_SEQ_GEN_OUT COMMAND_SEQ_19 +#define COMMAND_SEQ_READ_PAGE COMMAND_SEQ_10 +#define COMMAND_SEQ_WRITE_PAGE COMMAND_SEQ_12 +#define COMMAND_INPUT_SEL_AHBS 0 +#define COMMAND_INPUT_SEL_DMA BIT(6) +#define COMMAND_FIFO_SEL 0 +#define COMMAND_DATA_SEL BIT(7) +#define COMMAND_0(x) FIELD_PREP(GENMASK(15, 8), (x)) +#define COMMAND_1(x) FIELD_PREP(GENMASK(23, 16), (x)) +#define COMMAND_2(x) FIELD_PREP(GENMASK(31, 24), (x)) + +#define CONTROL_REG 0x04 +#define CONTROL_CHECK_RB_LINE 0 +#define CONTROL_ECC_BLOCK_SIZE(x) FIELD_PREP(GENMASK(2, 1), (x)) +#define CONTROL_ECC_BLOCK_SIZE_256 CONTROL_ECC_BLOCK_SIZE(0) +#define CONTROL_ECC_BLOCK_SIZE_512 CONTROL_ECC_BLOCK_SIZE(1) +#define CONTROL_ECC_BLOCK_SIZE_1024 CONTROL_ECC_BLOCK_SIZE(2) +#define CONTROL_INT_EN BIT(4) +#define CONTROL_ECC_EN BIT(5) +#define CONTROL_BLOCK_SIZE(x) FIELD_PREP(GENMASK(7, 6), (x)) +#define CONTROL_BLOCK_SIZE_32P CONTROL_BLOCK_SIZE(0) +#define CONTROL_BLOCK_SIZE_64P CONTROL_BLOCK_SIZE(1) +#define CONTROL_BLOCK_SIZE_128P CONTROL_BLOCK_SIZE(2) +#define CONTROL_BLOCK_SIZE_256P CONTROL_BLOCK_SIZE(3) + +#define STATUS_REG 0x8 +#define MEM_RDY(cs, reg) (FIELD_GET(GENMASK(3, 0), (reg)) & BIT(cs)) +#define CTRL_RDY(reg) (FIELD_GET(BIT(8), (reg)) == 0) + +#define ECC_CTRL_REG 0x18 +#define ECC_CTRL_CAP(x) FIELD_PREP(GENMASK(2, 0), (x)) +#define ECC_CTRL_CAP_2B ECC_CTRL_CAP(0) +#define ECC_CTRL_CAP_4B ECC_CTRL_CAP(1) +#define ECC_CTRL_CAP_8B ECC_CTRL_CAP(2) +#define ECC_CTRL_CAP_16B ECC_CTRL_CAP(3) +#define ECC_CTRL_CAP_24B ECC_CTRL_CAP(4) +#define ECC_CTRL_CAP_32B ECC_CTRL_CAP(5) +#define ECC_CTRL_ERR_THRESHOLD(x) FIELD_PREP(GENMASK(13, 8), (x)) + +#define INT_MASK_REG 0x10 +#define INT_STATUS_REG 0x14 +#define INT_CMD_END BIT(1) +#define INT_DMA_END BIT(3) +#define INT_MEM_RDY(cs) FIELD_PREP(GENMASK(11, 8), BIT(cs)) +#define INT_DMA_ENDED BIT(3) +#define MEM_IS_RDY(cs, reg) (FIELD_GET(GENMASK(11, 8), (reg)) & BIT(cs)) +#define DMA_HAS_ENDED(reg) FIELD_GET(BIT(3), (reg)) + +#define ECC_OFFSET_REG 0x1C +#define ECC_OFFSET(x) FIELD_PREP(GENMASK(15, 0), (x)) + +#define ECC_STAT_REG 0x20 +#define ECC_STAT_CORRECTABLE(cs, reg) (FIELD_GET(GENMASK(3, 0), (reg)) & BIT(cs)) +#define ECC_STAT_UNCORRECTABLE(cs, reg) (FIELD_GET(GENMASK(11, 8), (reg)) & BIT(cs)) + +#define ADDR0_COL_REG 0x24 +#define ADDR0_COL(x) FIELD_PREP(GENMASK(15, 0), (x)) + +#define ADDR0_ROW_REG 0x28 +#define ADDR0_ROW(x) FIELD_PREP(GENMASK(23, 0), (x)) + +#define ADDR1_COL_REG 0x2C +#define ADDR1_COL(x) FIELD_PREP(GENMASK(15, 0), (x)) + +#define ADDR1_ROW_REG 0x30 +#define ADDR1_ROW(x) FIELD_PREP(GENMASK(23, 0), (x)) + +#define FIFO_DATA_REG 0x38 + +#define DATA_REG 0x3C + +#define DATA_REG_SIZE_REG 0x40 + +#define DMA_ADDR_LOW_REG 0x64 + +#define DMA_ADDR_HIGH_REG 0x68 + +#define DMA_CNT_REG 0x6C + +#define DMA_CTRL_REG 0x70 +#define DMA_CTRL_INCREMENT_BURST_4 0 +#define DMA_CTRL_REGISTER_MANAGED_MODE 0 +#define DMA_CTRL_START BIT(7) + +#define MEM_CTRL_REG 0x80 +#define MEM_CTRL_CS(cs) FIELD_PREP(GENMASK(1, 0), (cs)) +#define MEM_CTRL_DIS_WP(cs) FIELD_PREP(GENMASK(11, 8), BIT((cs))) + +#define DATA_SIZE_REG 0x84 +#define DATA_SIZE(x) FIELD_PREP(GENMASK(14, 0), (x)) + +#define TIMINGS_ASYN_REG 0x88 +#define TIMINGS_ASYN_TRWP(x) FIELD_PREP(GENMASK(3, 0), max((x), 1U) - 1) +#define TIMINGS_ASYN_TRWH(x) FIELD_PREP(GENMASK(7, 4), max((x), 1U) - 1) + +#define TIM_SEQ0_REG 0x90 +#define TIM_SEQ0_TCCS(x) FIELD_PREP(GENMASK(5, 0), max((x), 1U) - 1) +#define TIM_SEQ0_TADL(x) FIELD_PREP(GENMASK(13, 8), max((x), 1U) - 1) +#define TIM_SEQ0_TRHW(x) FIELD_PREP(GENMASK(21, 16), max((x), 1U) - 1) +#define TIM_SEQ0_TWHR(x) FIELD_PREP(GENMASK(29, 24), max((x), 1U) - 1) + +#define TIM_SEQ1_REG 0x94 +#define TIM_SEQ1_TWB(x) FIELD_PREP(GENMASK(5, 0), max((x), 1U) - 1) +#define TIM_SEQ1_TRR(x) FIELD_PREP(GENMASK(13, 8), max((x), 1U) - 1) +#define TIM_SEQ1_TWW(x) FIELD_PREP(GENMASK(21, 16), max((x), 1U) - 1) + +#define TIM_GEN_SEQ0_REG 0x98 +#define TIM_GEN_SEQ0_D0(x) FIELD_PREP(GENMASK(5, 0), max((x), 1U) - 1) +#define TIM_GEN_SEQ0_D1(x) FIELD_PREP(GENMASK(13, 8), max((x), 1U) - 1) +#define TIM_GEN_SEQ0_D2(x) FIELD_PREP(GENMASK(21, 16), max((x), 1U) - 1) +#define TIM_GEN_SEQ0_D3(x) FIELD_PREP(GENMASK(29, 24), max((x), 1U) - 1) + +#define TIM_GEN_SEQ1_REG 0x9c +#define TIM_GEN_SEQ1_D4(x) FIELD_PREP(GENMASK(5, 0), max((x), 1U) - 1) +#define TIM_GEN_SEQ1_D5(x) FIELD_PREP(GENMASK(13, 8), max((x), 1U) - 1) +#define TIM_GEN_SEQ1_D6(x) FIELD_PREP(GENMASK(21, 16), max((x), 1U) - 1) +#define TIM_GEN_SEQ1_D7(x) FIELD_PREP(GENMASK(29, 24), max((x), 1U) - 1) + +#define TIM_GEN_SEQ2_REG 0xA0 +#define TIM_GEN_SEQ2_D8(x) FIELD_PREP(GENMASK(5, 0), max((x), 1U) - 1) +#define TIM_GEN_SEQ2_D9(x) FIELD_PREP(GENMASK(13, 8), max((x), 1U) - 1) +#define TIM_GEN_SEQ2_D10(x) FIELD_PREP(GENMASK(21, 16), max((x), 1U) - 1) +#define TIM_GEN_SEQ2_D11(x) FIELD_PREP(GENMASK(29, 24), max((x), 1U) - 1) + +#define FIFO_INIT_REG 0xB4 +#define FIFO_INIT BIT(0) + +#define FIFO_STATE_REG 0xB4 +#define FIFO_STATE_R_EMPTY(reg) FIELD_GET(BIT(0), (reg)) +#define FIFO_STATE_W_FULL(reg) FIELD_GET(BIT(1), (reg)) +#define FIFO_STATE_C_EMPTY(reg) FIELD_GET(BIT(2), (reg)) +#define FIFO_STATE_R_FULL(reg) FIELD_GET(BIT(6), (reg)) +#define FIFO_STATE_W_EMPTY(reg) FIELD_GET(BIT(7), (reg)) + +#define GEN_SEQ_CTRL_REG 0xB8 +#define GEN_SEQ_CMD0_EN BIT(0) +#define GEN_SEQ_CMD1_EN BIT(1) +#define GEN_SEQ_CMD2_EN BIT(2) +#define GEN_SEQ_CMD3_EN BIT(3) +#define GEN_SEQ_COL_A0(x) FIELD_PREP(GENMASK(5, 4), min((x), 2U)) +#define GEN_SEQ_COL_A1(x) FIELD_PREP(GENMASK(7, 6), min((x), 2U)) +#define GEN_SEQ_ROW_A0(x) FIELD_PREP(GENMASK(9, 8), min((x), 3U)) +#define GEN_SEQ_ROW_A1(x) FIELD_PREP(GENMASK(11, 10), min((x), 3U)) +#define GEN_SEQ_DATA_EN BIT(12) +#define GEN_SEQ_DELAY_EN(x) FIELD_PREP(GENMASK(14, 13), (x)) +#define GEN_SEQ_DELAY0_EN GEN_SEQ_DELAY_EN(1) +#define GEN_SEQ_DELAY1_EN GEN_SEQ_DELAY_EN(2) +#define GEN_SEQ_IMD_SEQ BIT(15) +#define GEN_SEQ_COMMAND_3(x) FIELD_PREP(GENMASK(26, 16), (x)) + +#define DMA_TLVL_REG 0x114 +#define DMA_TLVL(x) FIELD_PREP(GENMASK(7, 0), (x)) +#define DMA_TLVL_MAX DMA_TLVL(0xFF) + +#define TIM_GEN_SEQ3_REG 0x134 +#define TIM_GEN_SEQ3_D12(x) FIELD_PREP(GENMASK(5, 0), max((x), 1U) - 1) + +#define ECC_CNT_REG 0x14C +#define ECC_CNT(cs, reg) FIELD_GET(GENMASK(5, 0), (reg) >> ((cs) * 8)) + +#define RNANDC_CS_NUM 4 + +#define TO_CYCLES64(ps, period_ns) ((unsigned int)DIV_ROUND_UP_ULL(div_u64(ps, 1000), \ + period_ns)) + +struct rnand_chip_sel { + unsigned int cs; +}; + +struct rnand_chip { + struct nand_chip chip; + struct list_head node; + int selected_die; + u32 ctrl; + unsigned int nsels; + u32 control; + u32 ecc_ctrl; + u32 timings_asyn; + u32 tim_seq0; + u32 tim_seq1; + u32 tim_gen_seq0; + u32 tim_gen_seq1; + u32 tim_gen_seq2; + u32 tim_gen_seq3; + struct rnand_chip_sel sels[]; +}; + +struct rnandc { + struct nand_controller controller; + struct device *dev; + void __iomem *regs; + struct clk *hclk; + struct clk *eclk; + unsigned long assigned_cs; + struct list_head chips; + struct nand_chip *selected_chip; + struct completion complete; + bool use_polling; + u8 *buf; + unsigned int buf_sz; +}; + +struct rnandc_op { + u32 command; + u32 addr0_col; + u32 addr0_row; + u32 addr1_col; + u32 addr1_row; + u32 data_size; + u32 ecc_offset; + u32 gen_seq_ctrl; + u8 *buf; + bool read; + unsigned int len; +}; + +static inline struct rnandc *to_rnandc(struct nand_controller *ctrl) +{ + return container_of(ctrl, struct rnandc, controller); +} + +static inline struct rnand_chip *to_rnand(struct nand_chip *chip) +{ + return container_of(chip, struct rnand_chip, chip); +} + +static inline unsigned int to_rnandc_cs(struct rnand_chip *nand) +{ + return nand->sels[nand->selected_die].cs; +} + +static void rnandc_dis_correction(struct rnandc *rnandc) +{ + u32 control; + + control = readl_relaxed(rnandc->regs + CONTROL_REG); + control &= ~CONTROL_ECC_EN; + writel_relaxed(control, rnandc->regs + CONTROL_REG); +} + +static void rnandc_en_correction(struct rnandc *rnandc) +{ + u32 control; + + control = readl_relaxed(rnandc->regs + CONTROL_REG); + control |= CONTROL_ECC_EN; + writel_relaxed(control, rnandc->regs + CONTROL_REG); +} + +static void rnandc_clear_status(struct rnandc *rnandc) +{ + writel_relaxed(0, rnandc->regs + INT_STATUS_REG); + writel_relaxed(0, rnandc->regs + ECC_STAT_REG); + writel_relaxed(0, rnandc->regs + ECC_CNT_REG); +} + +static void rnandc_dis_interrupts(struct rnandc *rnandc) +{ + writel_relaxed(0, rnandc->regs + INT_MASK_REG); +} + +static void rnandc_en_interrupts(struct rnandc *rnandc, u32 val) +{ + if (!rnandc->use_polling) + writel_relaxed(val, rnandc->regs + INT_MASK_REG); +} + +static void rnandc_clear_fifo(struct rnandc *rnandc) +{ + writel_relaxed(FIFO_INIT, rnandc->regs + FIFO_INIT_REG); +} + +static void rnandc_select_target(struct nand_chip *chip, int die_nr) +{ + struct rnand_chip *rnand = to_rnand(chip); + struct rnandc *rnandc = to_rnandc(chip->controller); + unsigned int cs = rnand->sels[die_nr].cs; + + if (chip == rnandc->selected_chip && die_nr == rnand->selected_die) + return; + + rnandc_clear_status(rnandc); + writel_relaxed(MEM_CTRL_CS(cs) | MEM_CTRL_DIS_WP(cs), rnandc->regs + MEM_CTRL_REG); + writel_relaxed(rnand->control, rnandc->regs + CONTROL_REG); + writel_relaxed(rnand->ecc_ctrl, rnandc->regs + ECC_CTRL_REG); + writel_relaxed(rnand->timings_asyn, rnandc->regs + TIMINGS_ASYN_REG); + writel_relaxed(rnand->tim_seq0, rnandc->regs + TIM_SEQ0_REG); + writel_relaxed(rnand->tim_seq1, rnandc->regs + TIM_SEQ1_REG); + writel_relaxed(rnand->tim_gen_seq0, rnandc->regs + TIM_GEN_SEQ0_REG); + writel_relaxed(rnand->tim_gen_seq1, rnandc->regs + TIM_GEN_SEQ1_REG); + writel_relaxed(rnand->tim_gen_seq2, rnandc->regs + TIM_GEN_SEQ2_REG); + writel_relaxed(rnand->tim_gen_seq3, rnandc->regs + TIM_GEN_SEQ3_REG); + + rnandc->selected_chip = chip; + rnand->selected_die = die_nr; +} + +static void rnandc_trigger_op(struct rnandc *rnandc, struct rnandc_op *rop) +{ + writel_relaxed(rop->addr0_col, rnandc->regs + ADDR0_COL_REG); + writel_relaxed(rop->addr0_row, rnandc->regs + ADDR0_ROW_REG); + writel_relaxed(rop->addr1_col, rnandc->regs + ADDR1_COL_REG); + writel_relaxed(rop->addr1_row, rnandc->regs + ADDR1_ROW_REG); + writel_relaxed(rop->ecc_offset, rnandc->regs + ECC_OFFSET_REG); + writel_relaxed(rop->gen_seq_ctrl, rnandc->regs + GEN_SEQ_CTRL_REG); + writel_relaxed(DATA_SIZE(rop->len), rnandc->regs + DATA_SIZE_REG); + writel_relaxed(rop->command, rnandc->regs + COMMAND_REG); +} + +static void rnandc_trigger_dma(struct rnandc *rnandc) +{ + writel_relaxed(DMA_CTRL_INCREMENT_BURST_4 | + DMA_CTRL_REGISTER_MANAGED_MODE | + DMA_CTRL_START, rnandc->regs + DMA_CTRL_REG); +} + +static irqreturn_t rnandc_irq_handler(int irq, void *private) +{ + struct rnandc *rnandc = private; + + rnandc_dis_interrupts(rnandc); + complete(&rnandc->complete); + + return IRQ_HANDLED; +} + +static int rnandc_wait_end_of_op(struct rnandc *rnandc, + struct nand_chip *chip) +{ + struct rnand_chip *rnand = to_rnand(chip); + unsigned int cs = to_rnandc_cs(rnand); + u32 status; + int ret; + + ret = readl_poll_timeout(rnandc->regs + STATUS_REG, status, + MEM_RDY(cs, status) && CTRL_RDY(status), + 1, 100000); + if (ret) + dev_err(rnandc->dev, "Operation timed out, status: 0x%08x\n", + status); + + return ret; +} + +static int rnandc_wait_end_of_io(struct rnandc *rnandc, + struct nand_chip *chip) +{ + int timeout_ms = 1000; + int ret; + + if (rnandc->use_polling) { + struct rnand_chip *rnand = to_rnand(chip); + unsigned int cs = to_rnandc_cs(rnand); + u32 status; + + ret = readl_poll_timeout(rnandc->regs + INT_STATUS_REG, status, + MEM_IS_RDY(cs, status) & + DMA_HAS_ENDED(status), + 0, timeout_ms * 1000); + } else { + ret = wait_for_completion_timeout(&rnandc->complete, + msecs_to_jiffies(timeout_ms)); + if (!ret) + ret = -ETIMEDOUT; + else + ret = 0; + } + + return ret; +} + +static int rnandc_read_page_hw_ecc(struct nand_chip *chip, u8 *buf, + int oob_required, int page) +{ + struct rnandc *rnandc = to_rnandc(chip->controller); + struct mtd_info *mtd = nand_to_mtd(chip); + struct rnand_chip *rnand = to_rnand(chip); + unsigned int cs = to_rnandc_cs(rnand); + struct rnandc_op rop = { + .command = COMMAND_INPUT_SEL_DMA | COMMAND_0(NAND_CMD_READ0) | + COMMAND_2(NAND_CMD_READSTART) | COMMAND_FIFO_SEL | + COMMAND_SEQ_READ_PAGE, + .addr0_row = page, + .len = mtd->writesize, + .ecc_offset = ECC_OFFSET(mtd->writesize + 2), + }; + unsigned int max_bitflips = 0; + dma_addr_t dma_addr; + u32 ecc_stat; + int bf, ret, i; + + /* Prepare controller */ + rnandc_select_target(chip, chip->cur_cs); + rnandc_clear_status(rnandc); + reinit_completion(&rnandc->complete); + rnandc_en_interrupts(rnandc, INT_DMA_ENDED); + rnandc_en_correction(rnandc); + + /* Configure DMA */ + dma_addr = dma_map_single(rnandc->dev, rnandc->buf, mtd->writesize, + DMA_FROM_DEVICE); + writel(dma_addr, rnandc->regs + DMA_ADDR_LOW_REG); + writel(mtd->writesize, rnandc->regs + DMA_CNT_REG); + writel(DMA_TLVL_MAX, rnandc->regs + DMA_TLVL_REG); + + rnandc_trigger_op(rnandc, &rop); + rnandc_trigger_dma(rnandc); + + ret = rnandc_wait_end_of_io(rnandc, chip); + dma_unmap_single(rnandc->dev, dma_addr, mtd->writesize, DMA_FROM_DEVICE); + rnandc_dis_correction(rnandc); + if (ret) { + dev_err(rnandc->dev, "Read page operation never ending\n"); + return ret; + } + + ecc_stat = readl_relaxed(rnandc->regs + ECC_STAT_REG); + + if (oob_required || ECC_STAT_UNCORRECTABLE(cs, ecc_stat)) { + ret = nand_change_read_column_op(chip, mtd->writesize, + chip->oob_poi, mtd->oobsize, + false); + if (ret) + return ret; + } + + if (ECC_STAT_UNCORRECTABLE(cs, ecc_stat)) { + for (i = 0; i < chip->ecc.steps; i++) { + unsigned int off = i * chip->ecc.size; + unsigned int eccoff = i * chip->ecc.bytes; + + bf = nand_check_erased_ecc_chunk(rnandc->buf + off, + chip->ecc.size, + chip->oob_poi + 2 + eccoff, + chip->ecc.bytes, + NULL, 0, + chip->ecc.strength); + if (bf < 0) { + mtd->ecc_stats.failed++; + } else { + mtd->ecc_stats.corrected += bf; + max_bitflips = max_t(unsigned int, max_bitflips, bf); + } + } + } else if (ECC_STAT_CORRECTABLE(cs, ecc_stat)) { + bf = ECC_CNT(cs, readl_relaxed(rnandc->regs + ECC_CNT_REG)); + /* + * The number of bitflips is an approximation given the fact + * that this controller does not provide per-chunk details but + * only gives statistics on the entire page. + */ + mtd->ecc_stats.corrected += bf; + } + + memcpy(buf, rnandc->buf, mtd->writesize); + + return 0; +} + +static int rnandc_read_subpage_hw_ecc(struct nand_chip *chip, u32 req_offset, + u32 req_len, u8 *bufpoi, int page) +{ + struct rnandc *rnandc = to_rnandc(chip->controller); + struct mtd_info *mtd = nand_to_mtd(chip); + struct rnand_chip *rnand = to_rnand(chip); + unsigned int cs = to_rnandc_cs(rnand); + unsigned int page_off = round_down(req_offset, chip->ecc.size); + unsigned int real_len = round_up(req_offset + req_len - page_off, + chip->ecc.size); + unsigned int start_chunk = page_off / chip->ecc.size; + unsigned int nchunks = real_len / chip->ecc.size; + unsigned int ecc_off = 2 + (start_chunk * chip->ecc.bytes); + struct rnandc_op rop = { + .command = COMMAND_INPUT_SEL_AHBS | COMMAND_0(NAND_CMD_READ0) | + COMMAND_2(NAND_CMD_READSTART) | COMMAND_FIFO_SEL | + COMMAND_SEQ_READ_PAGE, + .addr0_row = page, + .addr0_col = page_off, + .len = real_len, + .ecc_offset = ECC_OFFSET(mtd->writesize + ecc_off), + }; + unsigned int max_bitflips = 0, i; + u32 ecc_stat; + int bf, ret; + + /* Prepare controller */ + rnandc_select_target(chip, chip->cur_cs); + rnandc_clear_status(rnandc); + rnandc_en_correction(rnandc); + rnandc_trigger_op(rnandc, &rop); + + while (!FIFO_STATE_C_EMPTY(readl(rnandc->regs + FIFO_STATE_REG))) + cpu_relax(); + + while (FIFO_STATE_R_EMPTY(readl(rnandc->regs + FIFO_STATE_REG))) + cpu_relax(); + + ioread32_rep(rnandc->regs + FIFO_DATA_REG, bufpoi + page_off, + real_len / 4); + + if (!FIFO_STATE_R_EMPTY(readl(rnandc->regs + FIFO_STATE_REG))) { + dev_err(rnandc->dev, "Clearing residual data in the read FIFO\n"); + rnandc_clear_fifo(rnandc); + } + + ret = rnandc_wait_end_of_op(rnandc, chip); + rnandc_dis_correction(rnandc); + if (ret) { + dev_err(rnandc->dev, "Read subpage operation never ending\n"); + return ret; + } + + ecc_stat = readl_relaxed(rnandc->regs + ECC_STAT_REG); + + if (ECC_STAT_UNCORRECTABLE(cs, ecc_stat)) { + ret = nand_change_read_column_op(chip, mtd->writesize, + chip->oob_poi, mtd->oobsize, + false); + if (ret) + return ret; + + for (i = start_chunk; i < nchunks; i++) { + unsigned int dataoff = i * chip->ecc.size; + unsigned int eccoff = 2 + (i * chip->ecc.bytes); + + bf = nand_check_erased_ecc_chunk(bufpoi + dataoff, + chip->ecc.size, + chip->oob_poi + eccoff, + chip->ecc.bytes, + NULL, 0, + chip->ecc.strength); + if (bf < 0) { + mtd->ecc_stats.failed++; + } else { + mtd->ecc_stats.corrected += bf; + max_bitflips = max_t(unsigned int, max_bitflips, bf); + } + } + } else if (ECC_STAT_CORRECTABLE(cs, ecc_stat)) { + bf = ECC_CNT(cs, readl_relaxed(rnandc->regs + ECC_CNT_REG)); + /* + * The number of bitflips is an approximation given the fact + * that this controller does not provide per-chunk details but + * only gives statistics on the entire page. + */ + mtd->ecc_stats.corrected += bf; + } + + return 0; +} + +static int rnandc_write_page_hw_ecc(struct nand_chip *chip, const u8 *buf, + int oob_required, int page) +{ + struct rnandc *rnandc = to_rnandc(chip->controller); + struct mtd_info *mtd = nand_to_mtd(chip); + struct rnand_chip *rnand = to_rnand(chip); + unsigned int cs = to_rnandc_cs(rnand); + struct rnandc_op rop = { + .command = COMMAND_INPUT_SEL_DMA | COMMAND_0(NAND_CMD_SEQIN) | + COMMAND_1(NAND_CMD_PAGEPROG) | COMMAND_FIFO_SEL | + COMMAND_SEQ_WRITE_PAGE, + .addr0_row = page, + .len = mtd->writesize, + .ecc_offset = ECC_OFFSET(mtd->writesize + 2), + }; + dma_addr_t dma_addr; + int ret; + + memcpy(rnandc->buf, buf, mtd->writesize); + + /* Prepare controller */ + rnandc_select_target(chip, chip->cur_cs); + rnandc_clear_status(rnandc); + reinit_completion(&rnandc->complete); + rnandc_en_interrupts(rnandc, INT_MEM_RDY(cs)); + rnandc_en_correction(rnandc); + + /* Configure DMA */ + dma_addr = dma_map_single(rnandc->dev, (void *)rnandc->buf, mtd->writesize, + DMA_TO_DEVICE); + writel(dma_addr, rnandc->regs + DMA_ADDR_LOW_REG); + writel(mtd->writesize, rnandc->regs + DMA_CNT_REG); + writel(DMA_TLVL_MAX, rnandc->regs + DMA_TLVL_REG); + + rnandc_trigger_op(rnandc, &rop); + rnandc_trigger_dma(rnandc); + + ret = rnandc_wait_end_of_io(rnandc, chip); + dma_unmap_single(rnandc->dev, dma_addr, mtd->writesize, DMA_TO_DEVICE); + rnandc_dis_correction(rnandc); + if (ret) { + dev_err(rnandc->dev, "Write page operation never ending\n"); + return ret; + } + + if (!oob_required) + return 0; + + return nand_change_write_column_op(chip, mtd->writesize, chip->oob_poi, + mtd->oobsize, false); +} + +static int rnandc_write_subpage_hw_ecc(struct nand_chip *chip, u32 req_offset, + u32 req_len, const u8 *bufpoi, + int oob_required, int page) +{ + struct rnandc *rnandc = to_rnandc(chip->controller); + struct mtd_info *mtd = nand_to_mtd(chip); + unsigned int page_off = round_down(req_offset, chip->ecc.size); + unsigned int real_len = round_up(req_offset + req_len - page_off, + chip->ecc.size); + unsigned int start_chunk = page_off / chip->ecc.size; + unsigned int ecc_off = 2 + (start_chunk * chip->ecc.bytes); + struct rnandc_op rop = { + .command = COMMAND_INPUT_SEL_AHBS | COMMAND_0(NAND_CMD_SEQIN) | + COMMAND_1(NAND_CMD_PAGEPROG) | COMMAND_FIFO_SEL | + COMMAND_SEQ_WRITE_PAGE, + .addr0_row = page, + .addr0_col = page_off, + .len = real_len, + .ecc_offset = ECC_OFFSET(mtd->writesize + ecc_off), + }; + int ret; + + /* Prepare controller */ + rnandc_select_target(chip, chip->cur_cs); + rnandc_clear_status(rnandc); + rnandc_en_correction(rnandc); + rnandc_trigger_op(rnandc, &rop); + + while (FIFO_STATE_W_FULL(readl(rnandc->regs + FIFO_STATE_REG))) + cpu_relax(); + + iowrite32_rep(rnandc->regs + FIFO_DATA_REG, bufpoi + page_off, + real_len / 4); + + while (!FIFO_STATE_W_EMPTY(readl(rnandc->regs + FIFO_STATE_REG))) + cpu_relax(); + + ret = rnandc_wait_end_of_op(rnandc, chip); + rnandc_dis_correction(rnandc); + if (ret) { + dev_err(rnandc->dev, "Write subpage operation never ending\n"); + return ret; + } + + return 0; +} + +/* + * This controller is simple enough and thus does not need to use the parser + * provided by the core, instead, handle every situation here. + */ +static int rnandc_exec_op(struct nand_chip *chip, + const struct nand_operation *op, bool check_only) +{ + struct rnandc *rnandc = to_rnandc(chip->controller); + const struct nand_op_instr *instr = NULL; + struct rnandc_op rop = { + .command = COMMAND_INPUT_SEL_AHBS, + .gen_seq_ctrl = GEN_SEQ_IMD_SEQ, + }; + unsigned int cmd_phase = 0, addr_phase = 0, data_phase = 0, + delay_phase = 0, delays = 0; + unsigned int op_id, col_addrs, row_addrs, naddrs, remainder, words, i; + const u8 *addrs; + u32 last_bytes; + int ret; + + if (!check_only) + rnandc_select_target(chip, op->cs); + + for (op_id = 0; op_id < op->ninstrs; op_id++) { + instr = &op->instrs[op_id]; + + nand_op_trace(" ", instr); + + switch (instr->type) { + case NAND_OP_CMD_INSTR: + switch (cmd_phase++) { + case 0: + rop.command |= COMMAND_0(instr->ctx.cmd.opcode); + rop.gen_seq_ctrl |= GEN_SEQ_CMD0_EN; + break; + case 1: + rop.gen_seq_ctrl |= GEN_SEQ_COMMAND_3(instr->ctx.cmd.opcode); + rop.gen_seq_ctrl |= GEN_SEQ_CMD3_EN; + if (addr_phase == 0) + addr_phase = 1; + break; + case 2: + rop.command |= COMMAND_2(instr->ctx.cmd.opcode); + rop.gen_seq_ctrl |= GEN_SEQ_CMD2_EN; + if (addr_phase <= 1) + addr_phase = 2; + break; + case 3: + rop.command |= COMMAND_1(instr->ctx.cmd.opcode); + rop.gen_seq_ctrl |= GEN_SEQ_CMD1_EN; + if (addr_phase <= 1) + addr_phase = 2; + if (delay_phase == 0) + delay_phase = 1; + if (data_phase == 0) + data_phase = 1; + break; + default: + return -EOPNOTSUPP; + } + break; + + case NAND_OP_ADDR_INSTR: + addrs = instr->ctx.addr.addrs; + naddrs = instr->ctx.addr.naddrs; + if (naddrs > 5) + return -EOPNOTSUPP; + + col_addrs = min(2U, naddrs); + row_addrs = naddrs > 2 ? naddrs - col_addrs : 0; + + switch (addr_phase++) { + case 0: + for (i = 0; i < col_addrs; i++) + rop.addr0_col |= addrs[i] << (i * 8); + rop.gen_seq_ctrl |= GEN_SEQ_COL_A0(col_addrs); + + for (i = 0; i < row_addrs; i++) + rop.addr0_row |= addrs[2 + i] << (i * 8); + rop.gen_seq_ctrl |= GEN_SEQ_ROW_A0(row_addrs); + + if (cmd_phase == 0) + cmd_phase = 1; + break; + case 1: + for (i = 0; i < col_addrs; i++) + rop.addr1_col |= addrs[i] << (i * 8); + rop.gen_seq_ctrl |= GEN_SEQ_COL_A1(col_addrs); + + for (i = 0; i < row_addrs; i++) + rop.addr1_row |= addrs[2 + i] << (i * 8); + rop.gen_seq_ctrl |= GEN_SEQ_ROW_A1(row_addrs); + + if (cmd_phase <= 1) + cmd_phase = 2; + break; + default: + return -EOPNOTSUPP; + } + break; + + case NAND_OP_DATA_IN_INSTR: + rop.read = true; + fallthrough; + case NAND_OP_DATA_OUT_INSTR: + rop.gen_seq_ctrl |= GEN_SEQ_DATA_EN; + rop.buf = instr->ctx.data.buf.in; + rop.len = instr->ctx.data.len; + rop.command |= COMMAND_FIFO_SEL; + + switch (data_phase++) { + case 0: + if (cmd_phase <= 2) + cmd_phase = 3; + if (addr_phase <= 1) + addr_phase = 2; + if (delay_phase == 0) + delay_phase = 1; + break; + default: + return -EOPNOTSUPP; + } + break; + + case NAND_OP_WAITRDY_INSTR: + switch (delay_phase++) { + case 0: + rop.gen_seq_ctrl |= GEN_SEQ_DELAY0_EN; + + if (cmd_phase <= 2) + cmd_phase = 3; + break; + case 1: + rop.gen_seq_ctrl |= GEN_SEQ_DELAY1_EN; + + if (cmd_phase <= 3) + cmd_phase = 4; + if (data_phase == 0) + data_phase = 1; + break; + default: + return -EOPNOTSUPP; + } + break; + } + } + + /* + * Sequence 19 is generic and dedicated to write operations. + * Sequence 18 is also generic and works for all other operations. + */ + if (rop.buf && !rop.read) + rop.command |= COMMAND_SEQ_GEN_OUT; + else + rop.command |= COMMAND_SEQ_GEN_IN; + + if (delays > 1) { + dev_err(rnandc->dev, "Cannot handle more than one wait delay\n"); + return -EOPNOTSUPP; + } + + if (check_only) + return 0; + + rnandc_trigger_op(rnandc, &rop); + + words = rop.len / sizeof(u32); + remainder = rop.len % sizeof(u32); + if (rop.buf && rop.read) { + while (!FIFO_STATE_C_EMPTY(readl(rnandc->regs + FIFO_STATE_REG))) + cpu_relax(); + + while (FIFO_STATE_R_EMPTY(readl(rnandc->regs + FIFO_STATE_REG))) + cpu_relax(); + + ioread32_rep(rnandc->regs + FIFO_DATA_REG, rop.buf, words); + if (remainder) { + last_bytes = readl_relaxed(rnandc->regs + FIFO_DATA_REG); + memcpy(rop.buf + (words * sizeof(u32)), &last_bytes, + remainder); + } + + if (!FIFO_STATE_R_EMPTY(readl(rnandc->regs + FIFO_STATE_REG))) { + dev_warn(rnandc->dev, + "Clearing residual data in the read FIFO\n"); + rnandc_clear_fifo(rnandc); + } + } else if (rop.len && !rop.read) { + while (FIFO_STATE_W_FULL(readl(rnandc->regs + FIFO_STATE_REG))) + cpu_relax(); + + iowrite32_rep(rnandc->regs + FIFO_DATA_REG, rop.buf, + DIV_ROUND_UP(rop.len, 4)); + + if (remainder) { + last_bytes = 0; + memcpy(&last_bytes, rop.buf + (words * sizeof(u32)), remainder); + writel_relaxed(last_bytes, rnandc->regs + FIFO_DATA_REG); + } + + while (!FIFO_STATE_W_EMPTY(readl(rnandc->regs + FIFO_STATE_REG))) + cpu_relax(); + } + + ret = rnandc_wait_end_of_op(rnandc, chip); + if (ret) + return ret; + + return 0; +} + +static int rnandc_setup_interface(struct nand_chip *chip, int chipnr, + const struct nand_interface_config *conf) +{ + struct rnand_chip *rnand = to_rnand(chip); + struct rnandc *rnandc = to_rnandc(chip->controller); + unsigned int period_ns = 1000000000 / clk_get_rate(rnandc->eclk); + const struct nand_sdr_timings *sdr; + unsigned int cyc, cle, ale, bef_dly, ca_to_data; + + sdr = nand_get_sdr_timings(conf); + if (IS_ERR(sdr)) + return PTR_ERR(sdr); + + if (sdr->tRP_min != sdr->tWP_min || sdr->tREH_min != sdr->tWH_min) { + dev_err(rnandc->dev, "Read and write hold times must be identical\n"); + return -EINVAL; + } + + if (chipnr < 0) + return 0; + + rnand->timings_asyn = + TIMINGS_ASYN_TRWP(TO_CYCLES64(sdr->tRP_min, period_ns)) | + TIMINGS_ASYN_TRWH(TO_CYCLES64(sdr->tREH_min, period_ns)); + rnand->tim_seq0 = + TIM_SEQ0_TCCS(TO_CYCLES64(sdr->tCCS_min, period_ns)) | + TIM_SEQ0_TADL(TO_CYCLES64(sdr->tADL_min, period_ns)) | + TIM_SEQ0_TRHW(TO_CYCLES64(sdr->tRHW_min, period_ns)) | + TIM_SEQ0_TWHR(TO_CYCLES64(sdr->tWHR_min, period_ns)); + rnand->tim_seq1 = + TIM_SEQ1_TWB(TO_CYCLES64(sdr->tWB_max, period_ns)) | + TIM_SEQ1_TRR(TO_CYCLES64(sdr->tRR_min, period_ns)) | + TIM_SEQ1_TWW(TO_CYCLES64(sdr->tWW_min, period_ns)); + + cyc = sdr->tDS_min + sdr->tDH_min; + cle = sdr->tCLH_min + sdr->tCLS_min; + ale = sdr->tALH_min + sdr->tALS_min; + bef_dly = sdr->tWB_max - sdr->tDH_min; + ca_to_data = sdr->tWHR_min + sdr->tREA_max - sdr->tDH_min; + + /* + * D0 = CMD -> ADDR = tCLH + tCLS - 1 cycle + * D1 = CMD -> CMD = tCLH + tCLS - 1 cycle + * D2 = CMD -> DLY = tWB - tDH + * D3 = CMD -> DATA = tWHR + tREA - tDH + */ + rnand->tim_gen_seq0 = + TIM_GEN_SEQ0_D0(TO_CYCLES64(cle - cyc, period_ns)) | + TIM_GEN_SEQ0_D1(TO_CYCLES64(cle - cyc, period_ns)) | + TIM_GEN_SEQ0_D2(TO_CYCLES64(bef_dly, period_ns)) | + TIM_GEN_SEQ0_D3(TO_CYCLES64(ca_to_data, period_ns)); + + /* + * D4 = ADDR -> CMD = tALH + tALS - 1 cyle + * D5 = ADDR -> ADDR = tALH + tALS - 1 cyle + * D6 = ADDR -> DLY = tWB - tDH + * D7 = ADDR -> DATA = tWHR + tREA - tDH + */ + rnand->tim_gen_seq1 = + TIM_GEN_SEQ1_D4(TO_CYCLES64(ale - cyc, period_ns)) | + TIM_GEN_SEQ1_D5(TO_CYCLES64(ale - cyc, period_ns)) | + TIM_GEN_SEQ1_D6(TO_CYCLES64(bef_dly, period_ns)) | + TIM_GEN_SEQ1_D7(TO_CYCLES64(ca_to_data, period_ns)); + + /* + * D8 = DLY -> DATA = tRR + tREA + * D9 = DLY -> CMD = tRR + * D10 = DATA -> CMD = tCLH + tCLS - 1 cycle + * D11 = DATA -> DLY = tWB - tDH + */ + rnand->tim_gen_seq2 = + TIM_GEN_SEQ2_D8(TO_CYCLES64(sdr->tRR_min + sdr->tREA_max, period_ns)) | + TIM_GEN_SEQ2_D9(TO_CYCLES64(sdr->tRR_min, period_ns)) | + TIM_GEN_SEQ2_D10(TO_CYCLES64(cle - cyc, period_ns)) | + TIM_GEN_SEQ2_D11(TO_CYCLES64(bef_dly, period_ns)); + + /* D12 = DATA -> END = tCLH - tDH */ + rnand->tim_gen_seq3 = + TIM_GEN_SEQ3_D12(TO_CYCLES64(sdr->tCLH_min - sdr->tDH_min, period_ns)); + + return 0; +} + +static int rnandc_ooblayout_ecc(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + unsigned int eccbytes = round_up(chip->ecc.bytes, 4) * chip->ecc.steps; + + if (section) + return -ERANGE; + + oobregion->offset = 2; + oobregion->length = eccbytes; + + return 0; +} + +static int rnandc_ooblayout_free(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + unsigned int eccbytes = round_up(chip->ecc.bytes, 4) * chip->ecc.steps; + + if (section) + return -ERANGE; + + oobregion->offset = 2 + eccbytes; + oobregion->length = mtd->oobsize - oobregion->offset; + + return 0; +} + +static const struct mtd_ooblayout_ops rnandc_ooblayout_ops = { + .ecc = rnandc_ooblayout_ecc, + .free = rnandc_ooblayout_free, +}; + +static int rnandc_hw_ecc_controller_init(struct nand_chip *chip) +{ + struct rnand_chip *rnand = to_rnand(chip); + struct mtd_info *mtd = nand_to_mtd(chip); + struct rnandc *rnandc = to_rnandc(chip->controller); + + if (mtd->writesize > SZ_16K) { + dev_err(rnandc->dev, "Unsupported page size\n"); + return -EINVAL; + } + + switch (chip->ecc.size) { + case SZ_256: + rnand->control |= CONTROL_ECC_BLOCK_SIZE_256; + break; + case SZ_512: + rnand->control |= CONTROL_ECC_BLOCK_SIZE_512; + break; + case SZ_1K: + rnand->control |= CONTROL_ECC_BLOCK_SIZE_1024; + break; + default: + dev_err(rnandc->dev, "Unsupported ECC chunk size\n"); + return -EINVAL; + } + + switch (chip->ecc.strength) { + case 2: + chip->ecc.bytes = 4; + rnand->ecc_ctrl |= ECC_CTRL_CAP_2B; + break; + case 4: + chip->ecc.bytes = 7; + rnand->ecc_ctrl |= ECC_CTRL_CAP_4B; + break; + case 8: + chip->ecc.bytes = 14; + rnand->ecc_ctrl |= ECC_CTRL_CAP_8B; + break; + case 16: + chip->ecc.bytes = 28; + rnand->ecc_ctrl |= ECC_CTRL_CAP_16B; + break; + case 24: + chip->ecc.bytes = 42; + rnand->ecc_ctrl |= ECC_CTRL_CAP_24B; + break; + case 32: + chip->ecc.bytes = 56; + rnand->ecc_ctrl |= ECC_CTRL_CAP_32B; + break; + default: + dev_err(rnandc->dev, "Unsupported ECC strength\n"); + return -EINVAL; + } + + rnand->ecc_ctrl |= ECC_CTRL_ERR_THRESHOLD(chip->ecc.strength); + + mtd_set_ooblayout(mtd, &rnandc_ooblayout_ops); + chip->ecc.steps = mtd->writesize / chip->ecc.size; + chip->ecc.read_page = rnandc_read_page_hw_ecc; + chip->ecc.read_subpage = rnandc_read_subpage_hw_ecc; + chip->ecc.write_page = rnandc_write_page_hw_ecc; + chip->ecc.write_subpage = rnandc_write_subpage_hw_ecc; + + return 0; +} + +static int rnandc_ecc_init(struct nand_chip *chip) +{ + struct nand_ecc_ctrl *ecc = &chip->ecc; + const struct nand_ecc_props *requirements = + nanddev_get_ecc_requirements(&chip->base); + struct rnandc *rnandc = to_rnandc(chip->controller); + int ret; + + if (ecc->engine_type != NAND_ECC_ENGINE_TYPE_NONE && + (!ecc->size || !ecc->strength)) { + if (requirements->step_size && requirements->strength) { + ecc->size = requirements->step_size; + ecc->strength = requirements->strength; + } else { + dev_err(rnandc->dev, "No minimum ECC strength\n"); + return -EINVAL; + } + } + + switch (ecc->engine_type) { + case NAND_ECC_ENGINE_TYPE_ON_HOST: + ret = rnandc_hw_ecc_controller_init(chip); + if (ret) + return ret; + break; + case NAND_ECC_ENGINE_TYPE_NONE: + case NAND_ECC_ENGINE_TYPE_SOFT: + case NAND_ECC_ENGINE_TYPE_ON_DIE: + break; + default: + return -EINVAL; + } + + return 0; +} + +static int rnandc_attach_chip(struct nand_chip *chip) +{ + struct rnand_chip *rnand = to_rnand(chip); + struct rnandc *rnandc = to_rnandc(chip->controller); + struct mtd_info *mtd = nand_to_mtd(chip); + struct nand_memory_organization *memorg = nanddev_get_memorg(&chip->base); + int ret; + + /* Do not store BBT bits in the OOB section as it is not protected */ + if (chip->bbt_options & NAND_BBT_USE_FLASH) + chip->bbt_options |= NAND_BBT_NO_OOB; + + if (mtd->writesize <= 512) { + dev_err(rnandc->dev, "Small page devices not supported\n"); + return -EINVAL; + } + + rnand->control |= CONTROL_CHECK_RB_LINE | CONTROL_INT_EN; + + switch (memorg->pages_per_eraseblock) { + case 32: + rnand->control |= CONTROL_BLOCK_SIZE_32P; + break; + case 64: + rnand->control |= CONTROL_BLOCK_SIZE_64P; + break; + case 128: + rnand->control |= CONTROL_BLOCK_SIZE_128P; + break; + case 256: + rnand->control |= CONTROL_BLOCK_SIZE_256P; + break; + default: + dev_err(rnandc->dev, "Unsupported memory organization\n"); + return -EINVAL; + } + + chip->options |= NAND_SUBPAGE_READ; + + ret = rnandc_ecc_init(chip); + if (ret) { + dev_err(rnandc->dev, "ECC initialization failed (%d)\n", ret); + return ret; + } + + /* Force an update of the configuration registers */ + rnand->selected_die = -1; + + return 0; +} + +static const struct nand_controller_ops rnandc_ops = { + .attach_chip = rnandc_attach_chip, + .exec_op = rnandc_exec_op, + .setup_interface = rnandc_setup_interface, +}; + +static int rnandc_alloc_dma_buf(struct rnandc *rnandc, + struct mtd_info *new_mtd) +{ + unsigned int max_len = new_mtd->writesize + new_mtd->oobsize; + struct rnand_chip *entry, *temp; + struct nand_chip *chip; + struct mtd_info *mtd; + + list_for_each_entry_safe(entry, temp, &rnandc->chips, node) { + chip = &entry->chip; + mtd = nand_to_mtd(chip); + max_len = max(max_len, mtd->writesize + mtd->oobsize); + } + + if (rnandc->buf && rnandc->buf_sz < max_len) { + devm_kfree(rnandc->dev, rnandc->buf); + rnandc->buf = NULL; + } + + if (!rnandc->buf) { + rnandc->buf_sz = max_len; + rnandc->buf = devm_kmalloc(rnandc->dev, max_len, + GFP_KERNEL | GFP_DMA); + if (!rnandc->buf) + return -ENOMEM; + } + + return 0; +} + +static int rnandc_chip_init(struct rnandc *rnandc, struct device_node *np) +{ + struct rnand_chip *rnand; + struct mtd_info *mtd; + struct nand_chip *chip; + int nsels, ret, i; + u32 cs; + + nsels = of_property_count_elems_of_size(np, "reg", sizeof(u32)); + if (nsels <= 0) { + ret = (nsels < 0) ? nsels : -EINVAL; + dev_err(rnandc->dev, "Invalid reg property (%d)\n", ret); + return ret; + } + + /* Alloc the driver's NAND chip structure */ + rnand = devm_kzalloc(rnandc->dev, struct_size(rnand, sels, nsels), + GFP_KERNEL); + if (!rnand) + return -ENOMEM; + + rnand->nsels = nsels; + rnand->selected_die = -1; + + for (i = 0; i < nsels; i++) { + ret = of_property_read_u32_index(np, "reg", i, &cs); + if (ret) { + dev_err(rnandc->dev, "Incomplete reg property (%d)\n", ret); + return ret; + } + + if (cs >= RNANDC_CS_NUM) { + dev_err(rnandc->dev, "Invalid reg property (%d)\n", cs); + return -EINVAL; + } + + if (test_and_set_bit(cs, &rnandc->assigned_cs)) { + dev_err(rnandc->dev, "CS %d already assigned\n", cs); + return -EINVAL; + } + + /* + * No need to check for RB or WP properties, there is a 1:1 + * mandatory mapping with the CS. + */ + rnand->sels[i].cs = cs; + } + + chip = &rnand->chip; + chip->controller = &rnandc->controller; + nand_set_flash_node(chip, np); + + mtd = nand_to_mtd(chip); + mtd->dev.parent = rnandc->dev; + if (!mtd->name) { + dev_err(rnandc->dev, "Missing MTD label\n"); + return -EINVAL; + } + + ret = nand_scan(chip, rnand->nsels); + if (ret) { + dev_err(rnandc->dev, "Failed to scan the NAND chip (%d)\n", ret); + return ret; + } + + ret = rnandc_alloc_dma_buf(rnandc, mtd); + if (ret) + goto cleanup_nand; + + ret = mtd_device_register(mtd, NULL, 0); + if (ret) { + dev_err(rnandc->dev, "Failed to register MTD device (%d)\n", ret); + goto cleanup_nand; + } + + list_add_tail(&rnand->node, &rnandc->chips); + + return 0; + +cleanup_nand: + nand_cleanup(chip); + + return ret; +} + +static void rnandc_chips_cleanup(struct rnandc *rnandc) +{ + struct rnand_chip *entry, *temp; + struct nand_chip *chip; + int ret; + + list_for_each_entry_safe(entry, temp, &rnandc->chips, node) { + chip = &entry->chip; + ret = mtd_device_unregister(nand_to_mtd(chip)); + WARN_ON(ret); + nand_cleanup(chip); + list_del(&entry->node); + } +} + +static int rnandc_chips_init(struct rnandc *rnandc) +{ + struct device_node *np; + int ret; + + for_each_child_of_node(rnandc->dev->of_node, np) { + ret = rnandc_chip_init(rnandc, np); + if (ret) { + of_node_put(np); + goto cleanup_chips; + } + } + + return 0; + +cleanup_chips: + rnandc_chips_cleanup(rnandc); + + return ret; +} + +static int rnandc_probe(struct platform_device *pdev) +{ + struct rnandc *rnandc; + int irq, ret; + + rnandc = devm_kzalloc(&pdev->dev, sizeof(*rnandc), GFP_KERNEL); + if (!rnandc) + return -ENOMEM; + + rnandc->dev = &pdev->dev; + nand_controller_init(&rnandc->controller); + rnandc->controller.ops = &rnandc_ops; + INIT_LIST_HEAD(&rnandc->chips); + init_completion(&rnandc->complete); + + rnandc->regs = devm_platform_ioremap_resource(pdev, 0); + if (IS_ERR(rnandc->regs)) + return PTR_ERR(rnandc->regs); + + /* APB clock */ + rnandc->hclk = devm_clk_get(&pdev->dev, "hclk"); + if (IS_ERR(rnandc->hclk)) + return PTR_ERR(rnandc->hclk); + + /* External NAND bus clock */ + rnandc->eclk = devm_clk_get(&pdev->dev, "eclk"); + if (IS_ERR(rnandc->eclk)) + return PTR_ERR(rnandc->eclk); + + ret = clk_prepare_enable(rnandc->hclk); + if (ret) + return ret; + + ret = clk_prepare_enable(rnandc->eclk); + if (ret) + goto disable_hclk; + + rnandc_dis_interrupts(rnandc); + irq = platform_get_irq_optional(pdev, 0); + if (irq == -EPROBE_DEFER) { + ret = irq; + goto disable_eclk; + } else if (irq < 0) { + dev_info(&pdev->dev, "No IRQ found, fallback to polling\n"); + rnandc->use_polling = true; + } else { + ret = devm_request_irq(&pdev->dev, irq, rnandc_irq_handler, 0, + "renesas-nand-controller", rnandc); + if (ret < 0) + goto disable_eclk; + } + + ret = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32)); + if (ret) + goto disable_eclk; + + rnandc_clear_fifo(rnandc); + + platform_set_drvdata(pdev, rnandc); + + ret = rnandc_chips_init(rnandc); + if (ret) + goto disable_eclk; + + return 0; + +disable_eclk: + clk_disable_unprepare(rnandc->eclk); +disable_hclk: + clk_disable_unprepare(rnandc->hclk); + + return ret; +} + +static int rnandc_remove(struct platform_device *pdev) +{ + struct rnandc *rnandc = platform_get_drvdata(pdev); + + rnandc_chips_cleanup(rnandc); + + clk_disable_unprepare(rnandc->eclk); + clk_disable_unprepare(rnandc->hclk); + + return 0; +} + +static const struct of_device_id rnandc_id_table[] = { + { .compatible = "renesas,rcar-gen3-nandc" }, + { .compatible = "renesas,rzn1-nandc" }, + {} /* sentinel */ +}; +MODULE_DEVICE_TABLE(of, rnandc_id_table); + +static struct platform_driver rnandc_driver = { + .driver = { + .name = "renesas-nandc", + .of_match_table = of_match_ptr(rnandc_id_table), + }, + .probe = rnandc_probe, + .remove = rnandc_remove, +}; +module_platform_driver(rnandc_driver); + +MODULE_AUTHOR("Miquel Raynal <miquel.raynal@bootlin.com>"); +MODULE_DESCRIPTION("Renesas R-Car Gen3 & RZ/N1 NAND controller driver"); +MODULE_LICENSE("GPL v2"); |