summaryrefslogtreecommitdiff
path: root/drivers/mtd/nand
diff options
context:
space:
mode:
authorMiquel Raynal <miquel.raynal@bootlin.com>2021-12-31 15:31:23 +0300
committerMiquel Raynal <miquel.raynal@bootlin.com>2021-12-31 15:31:34 +0300
commit9ce47e43a0f088653aa25ca465836a84114e0940 (patch)
treeb7de3c49e9ca311cfe417e513a9b77d656c13b63 /drivers/mtd/nand
parentbee387131abe02f43da0ba784446ed4c0dd06dbb (diff)
parent2997e4871621bc56d3c19b447355091dafb6e505 (diff)
downloadlinux-9ce47e43a0f088653aa25ca465836a84114e0940.tar.xz
Merge tag 'nand/for-5.17' into mtd/next
Raw NAND core: * Export nand_read_page_hwecc_oob_first() GPMC memory controller for OMAP2 NAND controller: * GPMC: - Add support for AM64 SoC and allow build on K3 platforms - Use a compatible match table when checking for NAND controller - Use platform_get_irq() to get the interrupt Raw NAND controller drivers: * OMAP2 NAND controller: - Document the missing 'rb-gpios' DT property - Drop unused variable - Fix force_8bit flag behaviour for DMA mode - Move to exec_op interface - Use platform_get_irq() to get the interrupt * Renesas: - Add new NAND controller driver with its bindings and MAINTAINERS entry * Onenand: - Remove redundant variable ooblen * MPC5121: - Remove unused variable in ads5121_select_chip() * GPMI: - Add ERR007117 protection for nfc_apply_timings - Remove explicit default gpmi clock setting for i.MX6 - Use platform_get_irq_byname() to get the interrupt - Remove unneeded variable * Ingenic: - JZ4740 needs 'oob_first' read page function * Davinci: - Rewrite function description - Avoid duplicated page read - Don't calculate ECC when reading page Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com>
Diffstat (limited to 'drivers/mtd/nand')
-rw-r--r--drivers/mtd/nand/onenand/onenand_bbt.c4
-rw-r--r--drivers/mtd/nand/raw/Kconfig10
-rw-r--r--drivers/mtd/nand/raw/Makefile1
-rw-r--r--drivers/mtd/nand/raw/davinci_nand.c73
-rw-r--r--drivers/mtd/nand/raw/gpmi-nand/gpmi-nand.c53
-rw-r--r--drivers/mtd/nand/raw/ingenic/ingenic_nand_drv.c5
-rw-r--r--drivers/mtd/nand/raw/mpc5121_nfc.c1
-rw-r--r--drivers/mtd/nand/raw/nand_base.c67
-rw-r--r--drivers/mtd/nand/raw/omap2.c507
-rw-r--r--drivers/mtd/nand/raw/omap_elm.c16
-rw-r--r--drivers/mtd/nand/raw/renesas-nand-controller.c1424
11 files changed, 1767 insertions, 394 deletions
diff --git a/drivers/mtd/nand/onenand/onenand_bbt.c b/drivers/mtd/nand/onenand/onenand_bbt.c
index def89f108007..b17315f8e1d4 100644
--- a/drivers/mtd/nand/onenand/onenand_bbt.c
+++ b/drivers/mtd/nand/onenand/onenand_bbt.c
@@ -60,7 +60,7 @@ static int create_bbt(struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr
int i, j, numblocks, len, scanlen;
int startblock;
loff_t from;
- size_t readlen, ooblen;
+ size_t readlen;
struct mtd_oob_ops ops;
int rgn;
@@ -69,7 +69,7 @@ static int create_bbt(struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr
len = 2;
/* We need only read few bytes from the OOB area */
- scanlen = ooblen = 0;
+ scanlen = 0;
readlen = bd->len;
/* chip == -1 case only */
diff --git a/drivers/mtd/nand/raw/Kconfig b/drivers/mtd/nand/raw/Kconfig
index 67b7cb67c030..0cd5ebf0d5d7 100644
--- a/drivers/mtd/nand/raw/Kconfig
+++ b/drivers/mtd/nand/raw/Kconfig
@@ -40,8 +40,9 @@ config MTD_NAND_AMS_DELTA
config MTD_NAND_OMAP2
tristate "OMAP2, OMAP3, OMAP4 and Keystone NAND controller"
- depends on ARCH_OMAP2PLUS || ARCH_KEYSTONE || COMPILE_TEST
+ depends on ARCH_OMAP2PLUS || ARCH_KEYSTONE || ARCH_K3 || COMPILE_TEST
depends on HAS_IOMEM
+ select OMAP_GPMC if ARCH_K3
help
Support for NAND flash on Texas Instruments OMAP2, OMAP3, OMAP4
and Keystone platforms.
@@ -461,6 +462,13 @@ config MTD_NAND_PL35X
Enables support for PrimeCell SMC PL351 and PL353 NAND
controller found on Zynq7000.
+config MTD_NAND_RENESAS
+ tristate "Renesas R-Car Gen3 & RZ/N1 NAND controller"
+ depends on ARCH_RENESAS || COMPILE_TEST
+ help
+ Enables support for the NAND controller found on Renesas R-Car
+ Gen3 and RZ/N1 SoC families.
+
comment "Misc"
config MTD_SM_COMMON
diff --git a/drivers/mtd/nand/raw/Makefile b/drivers/mtd/nand/raw/Makefile
index 2f97958c3a33..88a566513c56 100644
--- a/drivers/mtd/nand/raw/Makefile
+++ b/drivers/mtd/nand/raw/Makefile
@@ -58,6 +58,7 @@ obj-$(CONFIG_MTD_NAND_ARASAN) += arasan-nand-controller.o
obj-$(CONFIG_MTD_NAND_INTEL_LGM) += intel-nand-controller.o
obj-$(CONFIG_MTD_NAND_ROCKCHIP) += rockchip-nand-controller.o
obj-$(CONFIG_MTD_NAND_PL35X) += pl35x-nand-controller.o
+obj-$(CONFIG_MTD_NAND_RENESAS) += renesas-nand-controller.o
nand-objs := nand_base.o nand_legacy.o nand_bbt.o nand_timings.o nand_ids.o
nand-objs += nand_onfi.o
diff --git a/drivers/mtd/nand/raw/davinci_nand.c b/drivers/mtd/nand/raw/davinci_nand.c
index 118da9944e3b..45fec8c192ab 100644
--- a/drivers/mtd/nand/raw/davinci_nand.c
+++ b/drivers/mtd/nand/raw/davinci_nand.c
@@ -371,77 +371,6 @@ correct:
return corrected;
}
-/**
- * nand_read_page_hwecc_oob_first - hw ecc, read oob first
- * @chip: nand chip info structure
- * @buf: buffer to store read data
- * @oob_required: caller requires OOB data read to chip->oob_poi
- * @page: page number to read
- *
- * Hardware ECC for large page chips, require OOB to be read first. For this
- * ECC mode, the write_page method is re-used from ECC_HW. These methods
- * read/write ECC from the OOB area, unlike the ECC_HW_SYNDROME support with
- * multiple ECC steps, follows the "infix ECC" scheme and reads/writes ECC from
- * the data area, by overwriting the NAND manufacturer bad block markings.
- */
-static int nand_davinci_read_page_hwecc_oob_first(struct nand_chip *chip,
- uint8_t *buf,
- int oob_required, int page)
-{
- struct mtd_info *mtd = nand_to_mtd(chip);
- int i, eccsize = chip->ecc.size, ret;
- int eccbytes = chip->ecc.bytes;
- int eccsteps = chip->ecc.steps;
- uint8_t *p = buf;
- uint8_t *ecc_code = chip->ecc.code_buf;
- uint8_t *ecc_calc = chip->ecc.calc_buf;
- unsigned int max_bitflips = 0;
-
- /* Read the OOB area first */
- ret = nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize);
- if (ret)
- return ret;
-
- ret = nand_read_page_op(chip, page, 0, NULL, 0);
- if (ret)
- return ret;
-
- ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
- chip->ecc.total);
- if (ret)
- return ret;
-
- for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
- int stat;
-
- chip->ecc.hwctl(chip, NAND_ECC_READ);
-
- ret = nand_read_data_op(chip, p, eccsize, false, false);
- if (ret)
- return ret;
-
- chip->ecc.calculate(chip, p, &ecc_calc[i]);
-
- stat = chip->ecc.correct(chip, p, &ecc_code[i], NULL);
- if (stat == -EBADMSG &&
- (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
- /* check for empty pages with bitflips */
- stat = nand_check_erased_ecc_chunk(p, eccsize,
- &ecc_code[i],
- eccbytes, NULL, 0,
- chip->ecc.strength);
- }
-
- if (stat < 0) {
- mtd->ecc_stats.failed++;
- } else {
- mtd->ecc_stats.corrected += stat;
- max_bitflips = max_t(unsigned int, max_bitflips, stat);
- }
- }
- return max_bitflips;
-}
-
/*----------------------------------------------------------------------*/
/* An ECC layout for using 4-bit ECC with small-page flash, storing
@@ -651,7 +580,7 @@ static int davinci_nand_attach_chip(struct nand_chip *chip)
} else if (chunks == 4 || chunks == 8) {
mtd_set_ooblayout(mtd,
nand_get_large_page_ooblayout());
- chip->ecc.read_page = nand_davinci_read_page_hwecc_oob_first;
+ chip->ecc.read_page = nand_read_page_hwecc_oob_first;
} else {
return -EIO;
}
diff --git a/drivers/mtd/nand/raw/gpmi-nand/gpmi-nand.c b/drivers/mtd/nand/raw/gpmi-nand/gpmi-nand.c
index 10cc71829dcb..1b64c5a5140d 100644
--- a/drivers/mtd/nand/raw/gpmi-nand/gpmi-nand.c
+++ b/drivers/mtd/nand/raw/gpmi-nand/gpmi-nand.c
@@ -713,14 +713,32 @@ static void gpmi_nfc_compute_timings(struct gpmi_nand_data *this,
(use_half_period ? BM_GPMI_CTRL1_HALF_PERIOD : 0);
}
-static void gpmi_nfc_apply_timings(struct gpmi_nand_data *this)
+static int gpmi_nfc_apply_timings(struct gpmi_nand_data *this)
{
struct gpmi_nfc_hardware_timing *hw = &this->hw;
struct resources *r = &this->resources;
void __iomem *gpmi_regs = r->gpmi_regs;
unsigned int dll_wait_time_us;
+ int ret;
+
+ /* Clock dividers do NOT guarantee a clean clock signal on its output
+ * during the change of the divide factor on i.MX6Q/UL/SX. On i.MX7/8,
+ * all clock dividers provide these guarantee.
+ */
+ if (GPMI_IS_MX6Q(this) || GPMI_IS_MX6SX(this))
+ clk_disable_unprepare(r->clock[0]);
- clk_set_rate(r->clock[0], hw->clk_rate);
+ ret = clk_set_rate(r->clock[0], hw->clk_rate);
+ if (ret) {
+ dev_err(this->dev, "cannot set clock rate to %lu Hz: %d\n", hw->clk_rate, ret);
+ return ret;
+ }
+
+ if (GPMI_IS_MX6Q(this) || GPMI_IS_MX6SX(this)) {
+ ret = clk_prepare_enable(r->clock[0]);
+ if (ret)
+ return ret;
+ }
writel(hw->timing0, gpmi_regs + HW_GPMI_TIMING0);
writel(hw->timing1, gpmi_regs + HW_GPMI_TIMING1);
@@ -739,6 +757,8 @@ static void gpmi_nfc_apply_timings(struct gpmi_nand_data *this)
/* Wait for the DLL to settle. */
udelay(dll_wait_time_us);
+
+ return 0;
}
static int gpmi_setup_interface(struct nand_chip *chip, int chipnr,
@@ -971,16 +991,13 @@ static int acquire_bch_irq(struct gpmi_nand_data *this, irq_handler_t irq_h)
{
struct platform_device *pdev = this->pdev;
const char *res_name = GPMI_NAND_BCH_INTERRUPT_RES_NAME;
- struct resource *r;
int err;
- r = platform_get_resource_byname(pdev, IORESOURCE_IRQ, res_name);
- if (!r) {
- dev_err(this->dev, "Can't get resource for %s\n", res_name);
- return -ENODEV;
- }
+ err = platform_get_irq_byname(pdev, res_name);
+ if (err < 0)
+ return err;
- err = devm_request_irq(this->dev, r->start, irq_h, 0, res_name, this);
+ err = devm_request_irq(this->dev, err, irq_h, 0, res_name, this);
if (err)
dev_err(this->dev, "error requesting BCH IRQ\n");
@@ -1032,15 +1049,6 @@ static int gpmi_get_clks(struct gpmi_nand_data *this)
r->clock[i] = clk;
}
- if (GPMI_IS_MX6(this))
- /*
- * Set the default value for the gpmi clock.
- *
- * If you want to use the ONFI nand which is in the
- * Synchronous Mode, you should change the clock as you need.
- */
- clk_set_rate(r->clock[0], 22000000);
-
return 0;
err_clock:
@@ -1425,7 +1433,6 @@ static int gpmi_ecc_write_page(struct nand_chip *chip, const uint8_t *buf,
struct mtd_info *mtd = nand_to_mtd(chip);
struct gpmi_nand_data *this = nand_get_controller_data(chip);
struct bch_geometry *nfc_geo = &this->bch_geometry;
- int ret;
dev_dbg(this->dev, "ecc write page.\n");
@@ -1445,9 +1452,7 @@ static int gpmi_ecc_write_page(struct nand_chip *chip, const uint8_t *buf,
this->auxiliary_virt);
}
- ret = nand_prog_page_op(chip, page, 0, buf, nfc_geo->page_size);
-
- return ret;
+ return nand_prog_page_op(chip, page, 0, buf, nfc_geo->page_size);
}
/*
@@ -2278,7 +2283,9 @@ static int gpmi_nfc_exec_op(struct nand_chip *chip,
*/
if (this->hw.must_apply_timings) {
this->hw.must_apply_timings = false;
- gpmi_nfc_apply_timings(this);
+ ret = gpmi_nfc_apply_timings(this);
+ if (ret)
+ return ret;
}
dev_dbg(this->dev, "%s: %d instructions\n", __func__, op->ninstrs);
diff --git a/drivers/mtd/nand/raw/ingenic/ingenic_nand_drv.c b/drivers/mtd/nand/raw/ingenic/ingenic_nand_drv.c
index 0e9d426fe4f2..b18861bdcdc8 100644
--- a/drivers/mtd/nand/raw/ingenic/ingenic_nand_drv.c
+++ b/drivers/mtd/nand/raw/ingenic/ingenic_nand_drv.c
@@ -32,6 +32,7 @@ struct jz_soc_info {
unsigned long addr_offset;
unsigned long cmd_offset;
const struct mtd_ooblayout_ops *oob_layout;
+ bool oob_first;
};
struct ingenic_nand_cs {
@@ -240,6 +241,9 @@ static int ingenic_nand_attach_chip(struct nand_chip *chip)
if (chip->bbt_options & NAND_BBT_USE_FLASH)
chip->bbt_options |= NAND_BBT_NO_OOB;
+ if (nfc->soc_info->oob_first)
+ chip->ecc.read_page = nand_read_page_hwecc_oob_first;
+
/* For legacy reasons we use a different layout on the qi,lb60 board. */
if (of_machine_is_compatible("qi,lb60"))
mtd_set_ooblayout(mtd, &qi_lb60_ooblayout_ops);
@@ -534,6 +538,7 @@ static const struct jz_soc_info jz4740_soc_info = {
.data_offset = 0x00000000,
.cmd_offset = 0x00008000,
.addr_offset = 0x00010000,
+ .oob_first = true,
};
static const struct jz_soc_info jz4725b_soc_info = {
diff --git a/drivers/mtd/nand/raw/mpc5121_nfc.c b/drivers/mtd/nand/raw/mpc5121_nfc.c
index cb293c50acb8..5b9271b9c326 100644
--- a/drivers/mtd/nand/raw/mpc5121_nfc.c
+++ b/drivers/mtd/nand/raw/mpc5121_nfc.c
@@ -291,7 +291,6 @@ static int ads5121_chipselect_init(struct mtd_info *mtd)
/* Control chips select signal on ADS5121 board */
static void ads5121_select_chip(struct nand_chip *nand, int chip)
{
- struct mtd_info *mtd = nand_to_mtd(nand);
struct mpc5121_nfc_prv *prv = nand_get_controller_data(nand);
u8 v;
diff --git a/drivers/mtd/nand/raw/nand_base.c b/drivers/mtd/nand/raw/nand_base.c
index b3a9bc08b4bb..9f48b4e71a11 100644
--- a/drivers/mtd/nand/raw/nand_base.c
+++ b/drivers/mtd/nand/raw/nand_base.c
@@ -3164,6 +3164,73 @@ static int nand_read_page_hwecc(struct nand_chip *chip, uint8_t *buf,
}
/**
+ * nand_read_page_hwecc_oob_first - Hardware ECC page read with ECC
+ * data read from OOB area
+ * @chip: nand chip info structure
+ * @buf: buffer to store read data
+ * @oob_required: caller requires OOB data read to chip->oob_poi
+ * @page: page number to read
+ *
+ * Hardware ECC for large page chips, which requires the ECC data to be
+ * extracted from the OOB before the actual data is read.
+ */
+int nand_read_page_hwecc_oob_first(struct nand_chip *chip, uint8_t *buf,
+ int oob_required, int page)
+{
+ struct mtd_info *mtd = nand_to_mtd(chip);
+ int i, eccsize = chip->ecc.size, ret;
+ int eccbytes = chip->ecc.bytes;
+ int eccsteps = chip->ecc.steps;
+ uint8_t *p = buf;
+ uint8_t *ecc_code = chip->ecc.code_buf;
+ unsigned int max_bitflips = 0;
+
+ /* Read the OOB area first */
+ ret = nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize);
+ if (ret)
+ return ret;
+
+ /* Move read cursor to start of page */
+ ret = nand_change_read_column_op(chip, 0, NULL, 0, false);
+ if (ret)
+ return ret;
+
+ ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
+ chip->ecc.total);
+ if (ret)
+ return ret;
+
+ for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
+ int stat;
+
+ chip->ecc.hwctl(chip, NAND_ECC_READ);
+
+ ret = nand_read_data_op(chip, p, eccsize, false, false);
+ if (ret)
+ return ret;
+
+ stat = chip->ecc.correct(chip, p, &ecc_code[i], NULL);
+ if (stat == -EBADMSG &&
+ (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
+ /* check for empty pages with bitflips */
+ stat = nand_check_erased_ecc_chunk(p, eccsize,
+ &ecc_code[i],
+ eccbytes, NULL, 0,
+ chip->ecc.strength);
+ }
+
+ if (stat < 0) {
+ mtd->ecc_stats.failed++;
+ } else {
+ mtd->ecc_stats.corrected += stat;
+ max_bitflips = max_t(unsigned int, max_bitflips, stat);
+ }
+ }
+ return max_bitflips;
+}
+EXPORT_SYMBOL_GPL(nand_read_page_hwecc_oob_first);
+
+/**
* nand_read_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page read
* @chip: nand chip info structure
* @buf: buffer to store read data
diff --git a/drivers/mtd/nand/raw/omap2.c b/drivers/mtd/nand/raw/omap2.c
index b26d4947af02..f0bbbe401e76 100644
--- a/drivers/mtd/nand/raw/omap2.c
+++ b/drivers/mtd/nand/raw/omap2.c
@@ -19,7 +19,7 @@
#include <linux/mtd/rawnand.h>
#include <linux/mtd/partitions.h>
#include <linux/omap-dma.h>
-#include <linux/io.h>
+#include <linux/iopoll.h>
#include <linux/slab.h>
#include <linux/of.h>
#include <linux/of_device.h>
@@ -148,7 +148,6 @@ struct omap_nand_info {
int gpmc_cs;
bool dev_ready;
enum nand_io xfer_type;
- int devsize;
enum omap_ecc ecc_opt;
struct device_node *elm_of_node;
@@ -164,6 +163,7 @@ struct omap_nand_info {
u_char *buf;
int buf_len;
/* Interface to GPMC */
+ void __iomem *fifo;
struct gpmc_nand_regs reg;
struct gpmc_nand_ops *ops;
bool flash_bbt;
@@ -175,6 +175,11 @@ struct omap_nand_info {
unsigned int nsteps_per_eccpg;
unsigned int eccpg_size;
unsigned int eccpg_bytes;
+ void (*data_in)(struct nand_chip *chip, void *buf,
+ unsigned int len, bool force_8bit);
+ void (*data_out)(struct nand_chip *chip,
+ const void *buf, unsigned int len,
+ bool force_8bit);
};
static inline struct omap_nand_info *mtd_to_omap(struct mtd_info *mtd)
@@ -182,6 +187,13 @@ static inline struct omap_nand_info *mtd_to_omap(struct mtd_info *mtd)
return container_of(mtd_to_nand(mtd), struct omap_nand_info, nand);
}
+static void omap_nand_data_in(struct nand_chip *chip, void *buf,
+ unsigned int len, bool force_8bit);
+
+static void omap_nand_data_out(struct nand_chip *chip,
+ const void *buf, unsigned int len,
+ bool force_8bit);
+
/**
* omap_prefetch_enable - configures and starts prefetch transfer
* @cs: cs (chip select) number
@@ -241,169 +253,70 @@ static int omap_prefetch_reset(int cs, struct omap_nand_info *info)
}
/**
- * omap_hwcontrol - hardware specific access to control-lines
- * @chip: NAND chip object
- * @cmd: command to device
- * @ctrl:
- * NAND_NCE: bit 0 -> don't care
- * NAND_CLE: bit 1 -> Command Latch
- * NAND_ALE: bit 2 -> Address Latch
- *
- * NOTE: boards may use different bits for these!!
+ * omap_nand_data_in_pref - NAND data in using prefetch engine
*/
-static void omap_hwcontrol(struct nand_chip *chip, int cmd, unsigned int ctrl)
+static void omap_nand_data_in_pref(struct nand_chip *chip, void *buf,
+ unsigned int len, bool force_8bit)
{
struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
-
- if (cmd != NAND_CMD_NONE) {
- if (ctrl & NAND_CLE)
- writeb(cmd, info->reg.gpmc_nand_command);
-
- else if (ctrl & NAND_ALE)
- writeb(cmd, info->reg.gpmc_nand_address);
-
- else /* NAND_NCE */
- writeb(cmd, info->reg.gpmc_nand_data);
- }
-}
-
-/**
- * omap_read_buf8 - read data from NAND controller into buffer
- * @mtd: MTD device structure
- * @buf: buffer to store date
- * @len: number of bytes to read
- */
-static void omap_read_buf8(struct mtd_info *mtd, u_char *buf, int len)
-{
- struct nand_chip *nand = mtd_to_nand(mtd);
-
- ioread8_rep(nand->legacy.IO_ADDR_R, buf, len);
-}
-
-/**
- * omap_write_buf8 - write buffer to NAND controller
- * @mtd: MTD device structure
- * @buf: data buffer
- * @len: number of bytes to write
- */
-static void omap_write_buf8(struct mtd_info *mtd, const u_char *buf, int len)
-{
- struct omap_nand_info *info = mtd_to_omap(mtd);
- u_char *p = (u_char *)buf;
- bool status;
-
- while (len--) {
- iowrite8(*p++, info->nand.legacy.IO_ADDR_W);
- /* wait until buffer is available for write */
- do {
- status = info->ops->nand_writebuffer_empty();
- } while (!status);
- }
-}
-
-/**
- * omap_read_buf16 - read data from NAND controller into buffer
- * @mtd: MTD device structure
- * @buf: buffer to store date
- * @len: number of bytes to read
- */
-static void omap_read_buf16(struct mtd_info *mtd, u_char *buf, int len)
-{
- struct nand_chip *nand = mtd_to_nand(mtd);
-
- ioread16_rep(nand->legacy.IO_ADDR_R, buf, len / 2);
-}
-
-/**
- * omap_write_buf16 - write buffer to NAND controller
- * @mtd: MTD device structure
- * @buf: data buffer
- * @len: number of bytes to write
- */
-static void omap_write_buf16(struct mtd_info *mtd, const u_char * buf, int len)
-{
- struct omap_nand_info *info = mtd_to_omap(mtd);
- u16 *p = (u16 *) buf;
- bool status;
- /* FIXME try bursts of writesw() or DMA ... */
- len >>= 1;
-
- while (len--) {
- iowrite16(*p++, info->nand.legacy.IO_ADDR_W);
- /* wait until buffer is available for write */
- do {
- status = info->ops->nand_writebuffer_empty();
- } while (!status);
- }
-}
-
-/**
- * omap_read_buf_pref - read data from NAND controller into buffer
- * @chip: NAND chip object
- * @buf: buffer to store date
- * @len: number of bytes to read
- */
-static void omap_read_buf_pref(struct nand_chip *chip, u_char *buf, int len)
-{
- struct mtd_info *mtd = nand_to_mtd(chip);
- struct omap_nand_info *info = mtd_to_omap(mtd);
uint32_t r_count = 0;
int ret = 0;
u32 *p = (u32 *)buf;
+ unsigned int pref_len;
- /* take care of subpage reads */
- if (len % 4) {
- if (info->nand.options & NAND_BUSWIDTH_16)
- omap_read_buf16(mtd, buf, len % 4);
- else
- omap_read_buf8(mtd, buf, len % 4);
- p = (u32 *) (buf + len % 4);
- len -= len % 4;
+ if (force_8bit) {
+ omap_nand_data_in(chip, buf, len, force_8bit);
+ return;
}
+ /* read 32-bit words using prefetch and remaining bytes normally */
+
/* configure and start prefetch transfer */
+ pref_len = len - (len & 3);
ret = omap_prefetch_enable(info->gpmc_cs,
- PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x0, info);
+ PREFETCH_FIFOTHRESHOLD_MAX, 0x0, pref_len, 0x0, info);
if (ret) {
- /* PFPW engine is busy, use cpu copy method */
- if (info->nand.options & NAND_BUSWIDTH_16)
- omap_read_buf16(mtd, (u_char *)p, len);
- else
- omap_read_buf8(mtd, (u_char *)p, len);
+ /* prefetch engine is busy, use CPU copy method */
+ omap_nand_data_in(chip, buf, len, false);
} else {
do {
r_count = readl(info->reg.gpmc_prefetch_status);
r_count = PREFETCH_STATUS_FIFO_CNT(r_count);
r_count = r_count >> 2;
- ioread32_rep(info->nand.legacy.IO_ADDR_R, p, r_count);
+ ioread32_rep(info->fifo, p, r_count);
p += r_count;
- len -= r_count << 2;
- } while (len);
- /* disable and stop the PFPW engine */
+ pref_len -= r_count << 2;
+ } while (pref_len);
+ /* disable and stop the Prefetch engine */
omap_prefetch_reset(info->gpmc_cs, info);
+ /* fetch any remaining bytes */
+ if (len & 3)
+ omap_nand_data_in(chip, p, len & 3, false);
}
}
/**
- * omap_write_buf_pref - write buffer to NAND controller
- * @chip: NAND chip object
- * @buf: data buffer
- * @len: number of bytes to write
+ * omap_nand_data_out_pref - NAND data out using Write Posting engine
*/
-static void omap_write_buf_pref(struct nand_chip *chip, const u_char *buf,
- int len)
+static void omap_nand_data_out_pref(struct nand_chip *chip,
+ const void *buf, unsigned int len,
+ bool force_8bit)
{
- struct mtd_info *mtd = nand_to_mtd(chip);
- struct omap_nand_info *info = mtd_to_omap(mtd);
+ struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
uint32_t w_count = 0;
int i = 0, ret = 0;
u16 *p = (u16 *)buf;
unsigned long tim, limit;
u32 val;
+ if (force_8bit) {
+ omap_nand_data_out(chip, buf, len, force_8bit);
+ return;
+ }
+
/* take care of subpage writes */
if (len % 2 != 0) {
- writeb(*buf, info->nand.legacy.IO_ADDR_W);
+ writeb(*(u8 *)buf, info->fifo);
p = (u16 *)(buf + 1);
len--;
}
@@ -412,18 +325,15 @@ static void omap_write_buf_pref(struct nand_chip *chip, const u_char *buf,
ret = omap_prefetch_enable(info->gpmc_cs,
PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x1, info);
if (ret) {
- /* PFPW engine is busy, use cpu copy method */
- if (info->nand.options & NAND_BUSWIDTH_16)
- omap_write_buf16(mtd, (u_char *)p, len);
- else
- omap_write_buf8(mtd, (u_char *)p, len);
+ /* write posting engine is busy, use CPU copy method */
+ omap_nand_data_out(chip, buf, len, false);
} else {
while (len) {
w_count = readl(info->reg.gpmc_prefetch_status);
w_count = PREFETCH_STATUS_FIFO_CNT(w_count);
w_count = w_count >> 1;
for (i = 0; (i < w_count) && len; i++, len -= 2)
- iowrite16(*p++, info->nand.legacy.IO_ADDR_W);
+ iowrite16(*p++, info->fifo);
}
/* wait for data to flushed-out before reset the prefetch */
tim = 0;
@@ -451,15 +361,16 @@ static void omap_nand_dma_callback(void *data)
/*
* omap_nand_dma_transfer: configure and start dma transfer
- * @mtd: MTD device structure
+ * @chip: nand chip structure
* @addr: virtual address in RAM of source/destination
* @len: number of data bytes to be transferred
* @is_write: flag for read/write operation
*/
-static inline int omap_nand_dma_transfer(struct mtd_info *mtd, void *addr,
- unsigned int len, int is_write)
+static inline int omap_nand_dma_transfer(struct nand_chip *chip,
+ const void *addr, unsigned int len,
+ int is_write)
{
- struct omap_nand_info *info = mtd_to_omap(mtd);
+ struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
struct dma_async_tx_descriptor *tx;
enum dma_data_direction dir = is_write ? DMA_TO_DEVICE :
DMA_FROM_DEVICE;
@@ -521,49 +432,51 @@ static inline int omap_nand_dma_transfer(struct mtd_info *mtd, void *addr,
out_copy_unmap:
dma_unmap_sg(info->dma->device->dev, &sg, 1, dir);
out_copy:
- if (info->nand.options & NAND_BUSWIDTH_16)
- is_write == 0 ? omap_read_buf16(mtd, (u_char *) addr, len)
- : omap_write_buf16(mtd, (u_char *) addr, len);
- else
- is_write == 0 ? omap_read_buf8(mtd, (u_char *) addr, len)
- : omap_write_buf8(mtd, (u_char *) addr, len);
+ is_write == 0 ? omap_nand_data_in(chip, (void *)addr, len, false)
+ : omap_nand_data_out(chip, addr, len, false);
+
return 0;
}
/**
- * omap_read_buf_dma_pref - read data from NAND controller into buffer
- * @chip: NAND chip object
- * @buf: buffer to store date
- * @len: number of bytes to read
+ * omap_nand_data_in_dma_pref - NAND data in using DMA and Prefetch
*/
-static void omap_read_buf_dma_pref(struct nand_chip *chip, u_char *buf,
- int len)
+static void omap_nand_data_in_dma_pref(struct nand_chip *chip, void *buf,
+ unsigned int len, bool force_8bit)
{
struct mtd_info *mtd = nand_to_mtd(chip);
+ if (force_8bit) {
+ omap_nand_data_in(chip, buf, len, force_8bit);
+ return;
+ }
+
if (len <= mtd->oobsize)
- omap_read_buf_pref(chip, buf, len);
+ omap_nand_data_in_pref(chip, buf, len, false);
else
/* start transfer in DMA mode */
- omap_nand_dma_transfer(mtd, buf, len, 0x0);
+ omap_nand_dma_transfer(chip, buf, len, 0x0);
}
/**
- * omap_write_buf_dma_pref - write buffer to NAND controller
- * @chip: NAND chip object
- * @buf: data buffer
- * @len: number of bytes to write
+ * omap_nand_data_out_dma_pref - NAND data out using DMA and write posting
*/
-static void omap_write_buf_dma_pref(struct nand_chip *chip, const u_char *buf,
- int len)
+static void omap_nand_data_out_dma_pref(struct nand_chip *chip,
+ const void *buf, unsigned int len,
+ bool force_8bit)
{
struct mtd_info *mtd = nand_to_mtd(chip);
+ if (force_8bit) {
+ omap_nand_data_out(chip, buf, len, force_8bit);
+ return;
+ }
+
if (len <= mtd->oobsize)
- omap_write_buf_pref(chip, buf, len);
+ omap_nand_data_out_pref(chip, buf, len, false);
else
/* start transfer in DMA mode */
- omap_nand_dma_transfer(mtd, (u_char *)buf, len, 0x1);
+ omap_nand_dma_transfer(chip, buf, len, 0x1);
}
/*
@@ -587,13 +500,13 @@ static irqreturn_t omap_nand_irq(int this_irq, void *dev)
bytes = info->buf_len;
else if (!info->buf_len)
bytes = 0;
- iowrite32_rep(info->nand.legacy.IO_ADDR_W, (u32 *)info->buf,
+ iowrite32_rep(info->fifo, (u32 *)info->buf,
bytes >> 2);
info->buf = info->buf + bytes;
info->buf_len -= bytes;
} else {
- ioread32_rep(info->nand.legacy.IO_ADDR_R, (u32 *)info->buf,
+ ioread32_rep(info->fifo, (u32 *)info->buf,
bytes >> 2);
info->buf = info->buf + bytes;
@@ -613,20 +526,17 @@ done:
}
/*
- * omap_read_buf_irq_pref - read data from NAND controller into buffer
- * @chip: NAND chip object
- * @buf: buffer to store date
- * @len: number of bytes to read
+ * omap_nand_data_in_irq_pref - NAND data in using Prefetch and IRQ
*/
-static void omap_read_buf_irq_pref(struct nand_chip *chip, u_char *buf,
- int len)
+static void omap_nand_data_in_irq_pref(struct nand_chip *chip, void *buf,
+ unsigned int len, bool force_8bit)
{
- struct mtd_info *mtd = nand_to_mtd(chip);
- struct omap_nand_info *info = mtd_to_omap(mtd);
+ struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
+ struct mtd_info *mtd = nand_to_mtd(&info->nand);
int ret = 0;
- if (len <= mtd->oobsize) {
- omap_read_buf_pref(chip, buf, len);
+ if (len <= mtd->oobsize || force_8bit) {
+ omap_nand_data_in(chip, buf, len, force_8bit);
return;
}
@@ -637,9 +547,11 @@ static void omap_read_buf_irq_pref(struct nand_chip *chip, u_char *buf,
/* configure and start prefetch transfer */
ret = omap_prefetch_enable(info->gpmc_cs,
PREFETCH_FIFOTHRESHOLD_MAX/2, 0x0, len, 0x0, info);
- if (ret)
+ if (ret) {
/* PFPW engine is busy, use cpu copy method */
- goto out_copy;
+ omap_nand_data_in(chip, buf, len, false);
+ return;
+ }
info->buf_len = len;
@@ -652,31 +564,23 @@ static void omap_read_buf_irq_pref(struct nand_chip *chip, u_char *buf,
/* disable and stop the PFPW engine */
omap_prefetch_reset(info->gpmc_cs, info);
return;
-
-out_copy:
- if (info->nand.options & NAND_BUSWIDTH_16)
- omap_read_buf16(mtd, buf, len);
- else
- omap_read_buf8(mtd, buf, len);
}
/*
- * omap_write_buf_irq_pref - write buffer to NAND controller
- * @chip: NAND chip object
- * @buf: data buffer
- * @len: number of bytes to write
+ * omap_nand_data_out_irq_pref - NAND out using write posting and IRQ
*/
-static void omap_write_buf_irq_pref(struct nand_chip *chip, const u_char *buf,
- int len)
+static void omap_nand_data_out_irq_pref(struct nand_chip *chip,
+ const void *buf, unsigned int len,
+ bool force_8bit)
{
- struct mtd_info *mtd = nand_to_mtd(chip);
- struct omap_nand_info *info = mtd_to_omap(mtd);
+ struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
+ struct mtd_info *mtd = nand_to_mtd(&info->nand);
int ret = 0;
unsigned long tim, limit;
u32 val;
- if (len <= mtd->oobsize) {
- omap_write_buf_pref(chip, buf, len);
+ if (len <= mtd->oobsize || force_8bit) {
+ omap_nand_data_out(chip, buf, len, force_8bit);
return;
}
@@ -687,9 +591,11 @@ static void omap_write_buf_irq_pref(struct nand_chip *chip, const u_char *buf,
/* configure and start prefetch transfer : size=24 */
ret = omap_prefetch_enable(info->gpmc_cs,
(PREFETCH_FIFOTHRESHOLD_MAX * 3) / 8, 0x0, len, 0x1, info);
- if (ret)
+ if (ret) {
/* PFPW engine is busy, use cpu copy method */
- goto out_copy;
+ omap_nand_data_out(chip, buf, len, false);
+ return;
+ }
info->buf_len = len;
@@ -711,12 +617,6 @@ static void omap_write_buf_irq_pref(struct nand_chip *chip, const u_char *buf,
/* disable and stop the PFPW engine */
omap_prefetch_reset(info->gpmc_cs, info);
return;
-
-out_copy:
- if (info->nand.options & NAND_BUSWIDTH_16)
- omap_write_buf16(mtd, buf, len);
- else
- omap_write_buf8(mtd, buf, len);
}
/**
@@ -982,50 +882,6 @@ static void omap_enable_hwecc(struct nand_chip *chip, int mode)
}
/**
- * omap_wait - wait until the command is done
- * @this: NAND Chip structure
- *
- * Wait function is called during Program and erase operations and
- * the way it is called from MTD layer, we should wait till the NAND
- * chip is ready after the programming/erase operation has completed.
- *
- * Erase can take up to 400ms and program up to 20ms according to
- * general NAND and SmartMedia specs
- */
-static int omap_wait(struct nand_chip *this)
-{
- struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(this));
- unsigned long timeo = jiffies;
- int status;
-
- timeo += msecs_to_jiffies(400);
-
- writeb(NAND_CMD_STATUS & 0xFF, info->reg.gpmc_nand_command);
- while (time_before(jiffies, timeo)) {
- status = readb(info->reg.gpmc_nand_data);
- if (status & NAND_STATUS_READY)
- break;
- cond_resched();
- }
-
- status = readb(info->reg.gpmc_nand_data);
- return status;
-}
-
-/**
- * omap_dev_ready - checks the NAND Ready GPIO line
- * @chip: NAND chip object
- *
- * Returns true if ready and false if busy.
- */
-static int omap_dev_ready(struct nand_chip *chip)
-{
- struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
-
- return gpiod_get_value(info->ready_gpiod);
-}
-
-/**
* omap_enable_hwecc_bch - Program GPMC to perform BCH ECC calculation
* @chip: NAND chip object
* @mode: Read/Write mode
@@ -1543,8 +1399,8 @@ static int omap_write_page_bch(struct nand_chip *chip, const uint8_t *buf,
chip->ecc.hwctl(chip, NAND_ECC_WRITE);
/* Write data */
- chip->legacy.write_buf(chip, buf + (eccpg * info->eccpg_size),
- info->eccpg_size);
+ info->data_out(chip, buf + (eccpg * info->eccpg_size),
+ info->eccpg_size, false);
/* Update ecc vector from GPMC result registers */
ret = omap_calculate_ecc_bch_multi(mtd,
@@ -1562,7 +1418,7 @@ static int omap_write_page_bch(struct nand_chip *chip, const uint8_t *buf,
}
/* Write ecc vector to OOB area */
- chip->legacy.write_buf(chip, chip->oob_poi, mtd->oobsize);
+ info->data_out(chip, chip->oob_poi, mtd->oobsize, false);
return nand_prog_page_end_op(chip);
}
@@ -1607,8 +1463,8 @@ static int omap_write_subpage_bch(struct nand_chip *chip, u32 offset,
chip->ecc.hwctl(chip, NAND_ECC_WRITE);
/* Write data */
- chip->legacy.write_buf(chip, buf + (eccpg * info->eccpg_size),
- info->eccpg_size);
+ info->data_out(chip, buf + (eccpg * info->eccpg_size),
+ info->eccpg_size, false);
for (step = 0; step < info->nsteps_per_eccpg; step++) {
unsigned int base_step = eccpg * info->nsteps_per_eccpg;
@@ -1641,7 +1497,7 @@ static int omap_write_subpage_bch(struct nand_chip *chip, u32 offset,
}
/* write OOB buffer to NAND device */
- chip->legacy.write_buf(chip, chip->oob_poi, mtd->oobsize);
+ info->data_out(chip, chip->oob_poi, mtd->oobsize, false);
return nand_prog_page_end_op(chip);
}
@@ -1984,8 +1840,8 @@ static int omap_nand_attach_chip(struct nand_chip *chip)
/* Re-populate low-level callbacks based on xfer modes */
switch (info->xfer_type) {
case NAND_OMAP_PREFETCH_POLLED:
- chip->legacy.read_buf = omap_read_buf_pref;
- chip->legacy.write_buf = omap_write_buf_pref;
+ info->data_in = omap_nand_data_in_pref;
+ info->data_out = omap_nand_data_out_pref;
break;
case NAND_OMAP_POLLED:
@@ -2017,8 +1873,9 @@ static int omap_nand_attach_chip(struct nand_chip *chip)
err);
return err;
}
- chip->legacy.read_buf = omap_read_buf_dma_pref;
- chip->legacy.write_buf = omap_write_buf_dma_pref;
+
+ info->data_in = omap_nand_data_in_dma_pref;
+ info->data_out = omap_nand_data_out_dma_pref;
}
break;
@@ -2049,9 +1906,8 @@ static int omap_nand_attach_chip(struct nand_chip *chip)
return err;
}
- chip->legacy.read_buf = omap_read_buf_irq_pref;
- chip->legacy.write_buf = omap_write_buf_irq_pref;
-
+ info->data_in = omap_nand_data_in_irq_pref;
+ info->data_out = omap_nand_data_out_irq_pref;
break;
default:
@@ -2217,8 +2073,105 @@ static int omap_nand_attach_chip(struct nand_chip *chip)
return 0;
}
+static void omap_nand_data_in(struct nand_chip *chip, void *buf,
+ unsigned int len, bool force_8bit)
+{
+ struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
+ u32 alignment = ((uintptr_t)buf | len) & 3;
+
+ if (force_8bit || (alignment & 1))
+ ioread8_rep(info->fifo, buf, len);
+ else if (alignment & 3)
+ ioread16_rep(info->fifo, buf, len >> 1);
+ else
+ ioread32_rep(info->fifo, buf, len >> 2);
+}
+
+static void omap_nand_data_out(struct nand_chip *chip,
+ const void *buf, unsigned int len,
+ bool force_8bit)
+{
+ struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
+ u32 alignment = ((uintptr_t)buf | len) & 3;
+
+ if (force_8bit || (alignment & 1))
+ iowrite8_rep(info->fifo, buf, len);
+ else if (alignment & 3)
+ iowrite16_rep(info->fifo, buf, len >> 1);
+ else
+ iowrite32_rep(info->fifo, buf, len >> 2);
+}
+
+static int omap_nand_exec_instr(struct nand_chip *chip,
+ const struct nand_op_instr *instr)
+{
+ struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
+ unsigned int i;
+ int ret;
+
+ switch (instr->type) {
+ case NAND_OP_CMD_INSTR:
+ iowrite8(instr->ctx.cmd.opcode,
+ info->reg.gpmc_nand_command);
+ break;
+
+ case NAND_OP_ADDR_INSTR:
+ for (i = 0; i < instr->ctx.addr.naddrs; i++) {
+ iowrite8(instr->ctx.addr.addrs[i],
+ info->reg.gpmc_nand_address);
+ }
+ break;
+
+ case NAND_OP_DATA_IN_INSTR:
+ info->data_in(chip, instr->ctx.data.buf.in,
+ instr->ctx.data.len,
+ instr->ctx.data.force_8bit);
+ break;
+
+ case NAND_OP_DATA_OUT_INSTR:
+ info->data_out(chip, instr->ctx.data.buf.out,
+ instr->ctx.data.len,
+ instr->ctx.data.force_8bit);
+ break;
+
+ case NAND_OP_WAITRDY_INSTR:
+ ret = info->ready_gpiod ?
+ nand_gpio_waitrdy(chip, info->ready_gpiod, instr->ctx.waitrdy.timeout_ms) :
+ nand_soft_waitrdy(chip, instr->ctx.waitrdy.timeout_ms);
+ if (ret)
+ return ret;
+ break;
+ }
+
+ if (instr->delay_ns)
+ ndelay(instr->delay_ns);
+
+ return 0;
+}
+
+static int omap_nand_exec_op(struct nand_chip *chip,
+ const struct nand_operation *op,
+ bool check_only)
+{
+ unsigned int i;
+
+ if (check_only)
+ return 0;
+
+ for (i = 0; i < op->ninstrs; i++) {
+ int ret;
+
+ ret = omap_nand_exec_instr(chip, &op->instrs[i]);
+ if (ret)
+ return ret;
+ }
+
+ return 0;
+}
+
static const struct nand_controller_ops omap_nand_controller_ops = {
.attach_chip = omap_nand_attach_chip,
+ .exec_op = omap_nand_exec_op,
};
/* Shared among all NAND instances to synchronize access to the ECC Engine */
@@ -2233,6 +2186,7 @@ static int omap_nand_probe(struct platform_device *pdev)
int err;
struct resource *res;
struct device *dev = &pdev->dev;
+ void __iomem *vaddr;
info = devm_kzalloc(&pdev->dev, sizeof(struct omap_nand_info),
GFP_KERNEL);
@@ -2266,10 +2220,11 @@ static int omap_nand_probe(struct platform_device *pdev)
}
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
- nand_chip->legacy.IO_ADDR_R = devm_ioremap_resource(&pdev->dev, res);
- if (IS_ERR(nand_chip->legacy.IO_ADDR_R))
- return PTR_ERR(nand_chip->legacy.IO_ADDR_R);
+ vaddr = devm_ioremap_resource(&pdev->dev, res);
+ if (IS_ERR(vaddr))
+ return PTR_ERR(vaddr);
+ info->fifo = vaddr;
info->phys_base = res->start;
if (!omap_gpmc_controller_initialized) {
@@ -2280,9 +2235,6 @@ static int omap_nand_probe(struct platform_device *pdev)
nand_chip->controller = &omap_gpmc_controller;
- nand_chip->legacy.IO_ADDR_W = nand_chip->legacy.IO_ADDR_R;
- nand_chip->legacy.cmd_ctrl = omap_hwcontrol;
-
info->ready_gpiod = devm_gpiod_get_optional(&pdev->dev, "rb",
GPIOD_IN);
if (IS_ERR(info->ready_gpiod)) {
@@ -2290,26 +2242,12 @@ static int omap_nand_probe(struct platform_device *pdev)
return PTR_ERR(info->ready_gpiod);
}
- /*
- * If RDY/BSY line is connected to OMAP then use the omap ready
- * function and the generic nand_wait function which reads the status
- * register after monitoring the RDY/BSY line. Otherwise use a standard
- * chip delay which is slightly more than tR (AC Timing) of the NAND
- * device and read status register until you get a failure or success
- */
- if (info->ready_gpiod) {
- nand_chip->legacy.dev_ready = omap_dev_ready;
- nand_chip->legacy.chip_delay = 0;
- } else {
- nand_chip->legacy.waitfunc = omap_wait;
- nand_chip->legacy.chip_delay = 50;
- }
-
if (info->flash_bbt)
nand_chip->bbt_options |= NAND_BBT_USE_FLASH;
- /* scan NAND device connected to chip controller */
- nand_chip->options |= info->devsize & NAND_BUSWIDTH_16;
+ /* default operations */
+ info->data_in = omap_nand_data_in;
+ info->data_out = omap_nand_data_out;
err = nand_scan(nand_chip, 1);
if (err)
@@ -2352,10 +2290,7 @@ static int omap_nand_remove(struct platform_device *pdev)
return ret;
}
-static const struct of_device_id omap_nand_ids[] = {
- { .compatible = "ti,omap2-nand", },
- {},
-};
+/* omap_nand_ids defined in linux/platform_data/mtd-nand-omap2.h */
MODULE_DEVICE_TABLE(of, omap_nand_ids);
static struct platform_driver omap_nand_driver = {
diff --git a/drivers/mtd/nand/raw/omap_elm.c b/drivers/mtd/nand/raw/omap_elm.c
index 8bab753211e9..db105d9b560c 100644
--- a/drivers/mtd/nand/raw/omap_elm.c
+++ b/drivers/mtd/nand/raw/omap_elm.c
@@ -384,8 +384,8 @@ static irqreturn_t elm_isr(int this_irq, void *dev_id)
static int elm_probe(struct platform_device *pdev)
{
int ret = 0;
- struct resource *irq;
struct elm_info *info;
+ int irq;
info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL);
if (!info)
@@ -393,20 +393,18 @@ static int elm_probe(struct platform_device *pdev)
info->dev = &pdev->dev;
- irq = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
- if (!irq) {
- dev_err(&pdev->dev, "no irq resource defined\n");
- return -ENODEV;
- }
+ irq = platform_get_irq(pdev, 0);
+ if (irq < 0)
+ return irq;
info->elm_base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(info->elm_base))
return PTR_ERR(info->elm_base);
- ret = devm_request_irq(&pdev->dev, irq->start, elm_isr, 0,
- pdev->name, info);
+ ret = devm_request_irq(&pdev->dev, irq, elm_isr, 0,
+ pdev->name, info);
if (ret) {
- dev_err(&pdev->dev, "failure requesting %pr\n", irq);
+ dev_err(&pdev->dev, "failure requesting %d\n", irq);
return ret;
}
diff --git a/drivers/mtd/nand/raw/renesas-nand-controller.c b/drivers/mtd/nand/raw/renesas-nand-controller.c
new file mode 100644
index 000000000000..428e08362956
--- /dev/null
+++ b/drivers/mtd/nand/raw/renesas-nand-controller.c
@@ -0,0 +1,1424 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Evatronix/Renesas R-Car Gen3, RZ/N1D, RZ/N1S, RZ/N1L NAND controller driver
+ *
+ * Copyright (C) 2021 Schneider Electric
+ * Author: Miquel RAYNAL <miquel.raynal@bootlin.com>
+ */
+
+#include <linux/bitfield.h>
+#include <linux/clk.h>
+#include <linux/dma-mapping.h>
+#include <linux/interrupt.h>
+#include <linux/iopoll.h>
+#include <linux/module.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/rawnand.h>
+#include <linux/of.h>
+#include <linux/platform_device.h>
+#include <linux/slab.h>
+
+#define COMMAND_REG 0x00
+#define COMMAND_SEQ(x) FIELD_PREP(GENMASK(5, 0), (x))
+#define COMMAND_SEQ_10 COMMAND_SEQ(0x2A)
+#define COMMAND_SEQ_12 COMMAND_SEQ(0x0C)
+#define COMMAND_SEQ_18 COMMAND_SEQ(0x32)
+#define COMMAND_SEQ_19 COMMAND_SEQ(0x13)
+#define COMMAND_SEQ_GEN_IN COMMAND_SEQ_18
+#define COMMAND_SEQ_GEN_OUT COMMAND_SEQ_19
+#define COMMAND_SEQ_READ_PAGE COMMAND_SEQ_10
+#define COMMAND_SEQ_WRITE_PAGE COMMAND_SEQ_12
+#define COMMAND_INPUT_SEL_AHBS 0
+#define COMMAND_INPUT_SEL_DMA BIT(6)
+#define COMMAND_FIFO_SEL 0
+#define COMMAND_DATA_SEL BIT(7)
+#define COMMAND_0(x) FIELD_PREP(GENMASK(15, 8), (x))
+#define COMMAND_1(x) FIELD_PREP(GENMASK(23, 16), (x))
+#define COMMAND_2(x) FIELD_PREP(GENMASK(31, 24), (x))
+
+#define CONTROL_REG 0x04
+#define CONTROL_CHECK_RB_LINE 0
+#define CONTROL_ECC_BLOCK_SIZE(x) FIELD_PREP(GENMASK(2, 1), (x))
+#define CONTROL_ECC_BLOCK_SIZE_256 CONTROL_ECC_BLOCK_SIZE(0)
+#define CONTROL_ECC_BLOCK_SIZE_512 CONTROL_ECC_BLOCK_SIZE(1)
+#define CONTROL_ECC_BLOCK_SIZE_1024 CONTROL_ECC_BLOCK_SIZE(2)
+#define CONTROL_INT_EN BIT(4)
+#define CONTROL_ECC_EN BIT(5)
+#define CONTROL_BLOCK_SIZE(x) FIELD_PREP(GENMASK(7, 6), (x))
+#define CONTROL_BLOCK_SIZE_32P CONTROL_BLOCK_SIZE(0)
+#define CONTROL_BLOCK_SIZE_64P CONTROL_BLOCK_SIZE(1)
+#define CONTROL_BLOCK_SIZE_128P CONTROL_BLOCK_SIZE(2)
+#define CONTROL_BLOCK_SIZE_256P CONTROL_BLOCK_SIZE(3)
+
+#define STATUS_REG 0x8
+#define MEM_RDY(cs, reg) (FIELD_GET(GENMASK(3, 0), (reg)) & BIT(cs))
+#define CTRL_RDY(reg) (FIELD_GET(BIT(8), (reg)) == 0)
+
+#define ECC_CTRL_REG 0x18
+#define ECC_CTRL_CAP(x) FIELD_PREP(GENMASK(2, 0), (x))
+#define ECC_CTRL_CAP_2B ECC_CTRL_CAP(0)
+#define ECC_CTRL_CAP_4B ECC_CTRL_CAP(1)
+#define ECC_CTRL_CAP_8B ECC_CTRL_CAP(2)
+#define ECC_CTRL_CAP_16B ECC_CTRL_CAP(3)
+#define ECC_CTRL_CAP_24B ECC_CTRL_CAP(4)
+#define ECC_CTRL_CAP_32B ECC_CTRL_CAP(5)
+#define ECC_CTRL_ERR_THRESHOLD(x) FIELD_PREP(GENMASK(13, 8), (x))
+
+#define INT_MASK_REG 0x10
+#define INT_STATUS_REG 0x14
+#define INT_CMD_END BIT(1)
+#define INT_DMA_END BIT(3)
+#define INT_MEM_RDY(cs) FIELD_PREP(GENMASK(11, 8), BIT(cs))
+#define INT_DMA_ENDED BIT(3)
+#define MEM_IS_RDY(cs, reg) (FIELD_GET(GENMASK(11, 8), (reg)) & BIT(cs))
+#define DMA_HAS_ENDED(reg) FIELD_GET(BIT(3), (reg))
+
+#define ECC_OFFSET_REG 0x1C
+#define ECC_OFFSET(x) FIELD_PREP(GENMASK(15, 0), (x))
+
+#define ECC_STAT_REG 0x20
+#define ECC_STAT_CORRECTABLE(cs, reg) (FIELD_GET(GENMASK(3, 0), (reg)) & BIT(cs))
+#define ECC_STAT_UNCORRECTABLE(cs, reg) (FIELD_GET(GENMASK(11, 8), (reg)) & BIT(cs))
+
+#define ADDR0_COL_REG 0x24
+#define ADDR0_COL(x) FIELD_PREP(GENMASK(15, 0), (x))
+
+#define ADDR0_ROW_REG 0x28
+#define ADDR0_ROW(x) FIELD_PREP(GENMASK(23, 0), (x))
+
+#define ADDR1_COL_REG 0x2C
+#define ADDR1_COL(x) FIELD_PREP(GENMASK(15, 0), (x))
+
+#define ADDR1_ROW_REG 0x30
+#define ADDR1_ROW(x) FIELD_PREP(GENMASK(23, 0), (x))
+
+#define FIFO_DATA_REG 0x38
+
+#define DATA_REG 0x3C
+
+#define DATA_REG_SIZE_REG 0x40
+
+#define DMA_ADDR_LOW_REG 0x64
+
+#define DMA_ADDR_HIGH_REG 0x68
+
+#define DMA_CNT_REG 0x6C
+
+#define DMA_CTRL_REG 0x70
+#define DMA_CTRL_INCREMENT_BURST_4 0
+#define DMA_CTRL_REGISTER_MANAGED_MODE 0
+#define DMA_CTRL_START BIT(7)
+
+#define MEM_CTRL_REG 0x80
+#define MEM_CTRL_CS(cs) FIELD_PREP(GENMASK(1, 0), (cs))
+#define MEM_CTRL_DIS_WP(cs) FIELD_PREP(GENMASK(11, 8), BIT((cs)))
+
+#define DATA_SIZE_REG 0x84
+#define DATA_SIZE(x) FIELD_PREP(GENMASK(14, 0), (x))
+
+#define TIMINGS_ASYN_REG 0x88
+#define TIMINGS_ASYN_TRWP(x) FIELD_PREP(GENMASK(3, 0), max((x), 1U) - 1)
+#define TIMINGS_ASYN_TRWH(x) FIELD_PREP(GENMASK(7, 4), max((x), 1U) - 1)
+
+#define TIM_SEQ0_REG 0x90
+#define TIM_SEQ0_TCCS(x) FIELD_PREP(GENMASK(5, 0), max((x), 1U) - 1)
+#define TIM_SEQ0_TADL(x) FIELD_PREP(GENMASK(13, 8), max((x), 1U) - 1)
+#define TIM_SEQ0_TRHW(x) FIELD_PREP(GENMASK(21, 16), max((x), 1U) - 1)
+#define TIM_SEQ0_TWHR(x) FIELD_PREP(GENMASK(29, 24), max((x), 1U) - 1)
+
+#define TIM_SEQ1_REG 0x94
+#define TIM_SEQ1_TWB(x) FIELD_PREP(GENMASK(5, 0), max((x), 1U) - 1)
+#define TIM_SEQ1_TRR(x) FIELD_PREP(GENMASK(13, 8), max((x), 1U) - 1)
+#define TIM_SEQ1_TWW(x) FIELD_PREP(GENMASK(21, 16), max((x), 1U) - 1)
+
+#define TIM_GEN_SEQ0_REG 0x98
+#define TIM_GEN_SEQ0_D0(x) FIELD_PREP(GENMASK(5, 0), max((x), 1U) - 1)
+#define TIM_GEN_SEQ0_D1(x) FIELD_PREP(GENMASK(13, 8), max((x), 1U) - 1)
+#define TIM_GEN_SEQ0_D2(x) FIELD_PREP(GENMASK(21, 16), max((x), 1U) - 1)
+#define TIM_GEN_SEQ0_D3(x) FIELD_PREP(GENMASK(29, 24), max((x), 1U) - 1)
+
+#define TIM_GEN_SEQ1_REG 0x9c
+#define TIM_GEN_SEQ1_D4(x) FIELD_PREP(GENMASK(5, 0), max((x), 1U) - 1)
+#define TIM_GEN_SEQ1_D5(x) FIELD_PREP(GENMASK(13, 8), max((x), 1U) - 1)
+#define TIM_GEN_SEQ1_D6(x) FIELD_PREP(GENMASK(21, 16), max((x), 1U) - 1)
+#define TIM_GEN_SEQ1_D7(x) FIELD_PREP(GENMASK(29, 24), max((x), 1U) - 1)
+
+#define TIM_GEN_SEQ2_REG 0xA0
+#define TIM_GEN_SEQ2_D8(x) FIELD_PREP(GENMASK(5, 0), max((x), 1U) - 1)
+#define TIM_GEN_SEQ2_D9(x) FIELD_PREP(GENMASK(13, 8), max((x), 1U) - 1)
+#define TIM_GEN_SEQ2_D10(x) FIELD_PREP(GENMASK(21, 16), max((x), 1U) - 1)
+#define TIM_GEN_SEQ2_D11(x) FIELD_PREP(GENMASK(29, 24), max((x), 1U) - 1)
+
+#define FIFO_INIT_REG 0xB4
+#define FIFO_INIT BIT(0)
+
+#define FIFO_STATE_REG 0xB4
+#define FIFO_STATE_R_EMPTY(reg) FIELD_GET(BIT(0), (reg))
+#define FIFO_STATE_W_FULL(reg) FIELD_GET(BIT(1), (reg))
+#define FIFO_STATE_C_EMPTY(reg) FIELD_GET(BIT(2), (reg))
+#define FIFO_STATE_R_FULL(reg) FIELD_GET(BIT(6), (reg))
+#define FIFO_STATE_W_EMPTY(reg) FIELD_GET(BIT(7), (reg))
+
+#define GEN_SEQ_CTRL_REG 0xB8
+#define GEN_SEQ_CMD0_EN BIT(0)
+#define GEN_SEQ_CMD1_EN BIT(1)
+#define GEN_SEQ_CMD2_EN BIT(2)
+#define GEN_SEQ_CMD3_EN BIT(3)
+#define GEN_SEQ_COL_A0(x) FIELD_PREP(GENMASK(5, 4), min((x), 2U))
+#define GEN_SEQ_COL_A1(x) FIELD_PREP(GENMASK(7, 6), min((x), 2U))
+#define GEN_SEQ_ROW_A0(x) FIELD_PREP(GENMASK(9, 8), min((x), 3U))
+#define GEN_SEQ_ROW_A1(x) FIELD_PREP(GENMASK(11, 10), min((x), 3U))
+#define GEN_SEQ_DATA_EN BIT(12)
+#define GEN_SEQ_DELAY_EN(x) FIELD_PREP(GENMASK(14, 13), (x))
+#define GEN_SEQ_DELAY0_EN GEN_SEQ_DELAY_EN(1)
+#define GEN_SEQ_DELAY1_EN GEN_SEQ_DELAY_EN(2)
+#define GEN_SEQ_IMD_SEQ BIT(15)
+#define GEN_SEQ_COMMAND_3(x) FIELD_PREP(GENMASK(26, 16), (x))
+
+#define DMA_TLVL_REG 0x114
+#define DMA_TLVL(x) FIELD_PREP(GENMASK(7, 0), (x))
+#define DMA_TLVL_MAX DMA_TLVL(0xFF)
+
+#define TIM_GEN_SEQ3_REG 0x134
+#define TIM_GEN_SEQ3_D12(x) FIELD_PREP(GENMASK(5, 0), max((x), 1U) - 1)
+
+#define ECC_CNT_REG 0x14C
+#define ECC_CNT(cs, reg) FIELD_GET(GENMASK(5, 0), (reg) >> ((cs) * 8))
+
+#define RNANDC_CS_NUM 4
+
+#define TO_CYCLES64(ps, period_ns) ((unsigned int)DIV_ROUND_UP_ULL(div_u64(ps, 1000), \
+ period_ns))
+
+struct rnand_chip_sel {
+ unsigned int cs;
+};
+
+struct rnand_chip {
+ struct nand_chip chip;
+ struct list_head node;
+ int selected_die;
+ u32 ctrl;
+ unsigned int nsels;
+ u32 control;
+ u32 ecc_ctrl;
+ u32 timings_asyn;
+ u32 tim_seq0;
+ u32 tim_seq1;
+ u32 tim_gen_seq0;
+ u32 tim_gen_seq1;
+ u32 tim_gen_seq2;
+ u32 tim_gen_seq3;
+ struct rnand_chip_sel sels[];
+};
+
+struct rnandc {
+ struct nand_controller controller;
+ struct device *dev;
+ void __iomem *regs;
+ struct clk *hclk;
+ struct clk *eclk;
+ unsigned long assigned_cs;
+ struct list_head chips;
+ struct nand_chip *selected_chip;
+ struct completion complete;
+ bool use_polling;
+ u8 *buf;
+ unsigned int buf_sz;
+};
+
+struct rnandc_op {
+ u32 command;
+ u32 addr0_col;
+ u32 addr0_row;
+ u32 addr1_col;
+ u32 addr1_row;
+ u32 data_size;
+ u32 ecc_offset;
+ u32 gen_seq_ctrl;
+ u8 *buf;
+ bool read;
+ unsigned int len;
+};
+
+static inline struct rnandc *to_rnandc(struct nand_controller *ctrl)
+{
+ return container_of(ctrl, struct rnandc, controller);
+}
+
+static inline struct rnand_chip *to_rnand(struct nand_chip *chip)
+{
+ return container_of(chip, struct rnand_chip, chip);
+}
+
+static inline unsigned int to_rnandc_cs(struct rnand_chip *nand)
+{
+ return nand->sels[nand->selected_die].cs;
+}
+
+static void rnandc_dis_correction(struct rnandc *rnandc)
+{
+ u32 control;
+
+ control = readl_relaxed(rnandc->regs + CONTROL_REG);
+ control &= ~CONTROL_ECC_EN;
+ writel_relaxed(control, rnandc->regs + CONTROL_REG);
+}
+
+static void rnandc_en_correction(struct rnandc *rnandc)
+{
+ u32 control;
+
+ control = readl_relaxed(rnandc->regs + CONTROL_REG);
+ control |= CONTROL_ECC_EN;
+ writel_relaxed(control, rnandc->regs + CONTROL_REG);
+}
+
+static void rnandc_clear_status(struct rnandc *rnandc)
+{
+ writel_relaxed(0, rnandc->regs + INT_STATUS_REG);
+ writel_relaxed(0, rnandc->regs + ECC_STAT_REG);
+ writel_relaxed(0, rnandc->regs + ECC_CNT_REG);
+}
+
+static void rnandc_dis_interrupts(struct rnandc *rnandc)
+{
+ writel_relaxed(0, rnandc->regs + INT_MASK_REG);
+}
+
+static void rnandc_en_interrupts(struct rnandc *rnandc, u32 val)
+{
+ if (!rnandc->use_polling)
+ writel_relaxed(val, rnandc->regs + INT_MASK_REG);
+}
+
+static void rnandc_clear_fifo(struct rnandc *rnandc)
+{
+ writel_relaxed(FIFO_INIT, rnandc->regs + FIFO_INIT_REG);
+}
+
+static void rnandc_select_target(struct nand_chip *chip, int die_nr)
+{
+ struct rnand_chip *rnand = to_rnand(chip);
+ struct rnandc *rnandc = to_rnandc(chip->controller);
+ unsigned int cs = rnand->sels[die_nr].cs;
+
+ if (chip == rnandc->selected_chip && die_nr == rnand->selected_die)
+ return;
+
+ rnandc_clear_status(rnandc);
+ writel_relaxed(MEM_CTRL_CS(cs) | MEM_CTRL_DIS_WP(cs), rnandc->regs + MEM_CTRL_REG);
+ writel_relaxed(rnand->control, rnandc->regs + CONTROL_REG);
+ writel_relaxed(rnand->ecc_ctrl, rnandc->regs + ECC_CTRL_REG);
+ writel_relaxed(rnand->timings_asyn, rnandc->regs + TIMINGS_ASYN_REG);
+ writel_relaxed(rnand->tim_seq0, rnandc->regs + TIM_SEQ0_REG);
+ writel_relaxed(rnand->tim_seq1, rnandc->regs + TIM_SEQ1_REG);
+ writel_relaxed(rnand->tim_gen_seq0, rnandc->regs + TIM_GEN_SEQ0_REG);
+ writel_relaxed(rnand->tim_gen_seq1, rnandc->regs + TIM_GEN_SEQ1_REG);
+ writel_relaxed(rnand->tim_gen_seq2, rnandc->regs + TIM_GEN_SEQ2_REG);
+ writel_relaxed(rnand->tim_gen_seq3, rnandc->regs + TIM_GEN_SEQ3_REG);
+
+ rnandc->selected_chip = chip;
+ rnand->selected_die = die_nr;
+}
+
+static void rnandc_trigger_op(struct rnandc *rnandc, struct rnandc_op *rop)
+{
+ writel_relaxed(rop->addr0_col, rnandc->regs + ADDR0_COL_REG);
+ writel_relaxed(rop->addr0_row, rnandc->regs + ADDR0_ROW_REG);
+ writel_relaxed(rop->addr1_col, rnandc->regs + ADDR1_COL_REG);
+ writel_relaxed(rop->addr1_row, rnandc->regs + ADDR1_ROW_REG);
+ writel_relaxed(rop->ecc_offset, rnandc->regs + ECC_OFFSET_REG);
+ writel_relaxed(rop->gen_seq_ctrl, rnandc->regs + GEN_SEQ_CTRL_REG);
+ writel_relaxed(DATA_SIZE(rop->len), rnandc->regs + DATA_SIZE_REG);
+ writel_relaxed(rop->command, rnandc->regs + COMMAND_REG);
+}
+
+static void rnandc_trigger_dma(struct rnandc *rnandc)
+{
+ writel_relaxed(DMA_CTRL_INCREMENT_BURST_4 |
+ DMA_CTRL_REGISTER_MANAGED_MODE |
+ DMA_CTRL_START, rnandc->regs + DMA_CTRL_REG);
+}
+
+static irqreturn_t rnandc_irq_handler(int irq, void *private)
+{
+ struct rnandc *rnandc = private;
+
+ rnandc_dis_interrupts(rnandc);
+ complete(&rnandc->complete);
+
+ return IRQ_HANDLED;
+}
+
+static int rnandc_wait_end_of_op(struct rnandc *rnandc,
+ struct nand_chip *chip)
+{
+ struct rnand_chip *rnand = to_rnand(chip);
+ unsigned int cs = to_rnandc_cs(rnand);
+ u32 status;
+ int ret;
+
+ ret = readl_poll_timeout(rnandc->regs + STATUS_REG, status,
+ MEM_RDY(cs, status) && CTRL_RDY(status),
+ 1, 100000);
+ if (ret)
+ dev_err(rnandc->dev, "Operation timed out, status: 0x%08x\n",
+ status);
+
+ return ret;
+}
+
+static int rnandc_wait_end_of_io(struct rnandc *rnandc,
+ struct nand_chip *chip)
+{
+ int timeout_ms = 1000;
+ int ret;
+
+ if (rnandc->use_polling) {
+ struct rnand_chip *rnand = to_rnand(chip);
+ unsigned int cs = to_rnandc_cs(rnand);
+ u32 status;
+
+ ret = readl_poll_timeout(rnandc->regs + INT_STATUS_REG, status,
+ MEM_IS_RDY(cs, status) &
+ DMA_HAS_ENDED(status),
+ 0, timeout_ms * 1000);
+ } else {
+ ret = wait_for_completion_timeout(&rnandc->complete,
+ msecs_to_jiffies(timeout_ms));
+ if (!ret)
+ ret = -ETIMEDOUT;
+ else
+ ret = 0;
+ }
+
+ return ret;
+}
+
+static int rnandc_read_page_hw_ecc(struct nand_chip *chip, u8 *buf,
+ int oob_required, int page)
+{
+ struct rnandc *rnandc = to_rnandc(chip->controller);
+ struct mtd_info *mtd = nand_to_mtd(chip);
+ struct rnand_chip *rnand = to_rnand(chip);
+ unsigned int cs = to_rnandc_cs(rnand);
+ struct rnandc_op rop = {
+ .command = COMMAND_INPUT_SEL_DMA | COMMAND_0(NAND_CMD_READ0) |
+ COMMAND_2(NAND_CMD_READSTART) | COMMAND_FIFO_SEL |
+ COMMAND_SEQ_READ_PAGE,
+ .addr0_row = page,
+ .len = mtd->writesize,
+ .ecc_offset = ECC_OFFSET(mtd->writesize + 2),
+ };
+ unsigned int max_bitflips = 0;
+ dma_addr_t dma_addr;
+ u32 ecc_stat;
+ int bf, ret, i;
+
+ /* Prepare controller */
+ rnandc_select_target(chip, chip->cur_cs);
+ rnandc_clear_status(rnandc);
+ reinit_completion(&rnandc->complete);
+ rnandc_en_interrupts(rnandc, INT_DMA_ENDED);
+ rnandc_en_correction(rnandc);
+
+ /* Configure DMA */
+ dma_addr = dma_map_single(rnandc->dev, rnandc->buf, mtd->writesize,
+ DMA_FROM_DEVICE);
+ writel(dma_addr, rnandc->regs + DMA_ADDR_LOW_REG);
+ writel(mtd->writesize, rnandc->regs + DMA_CNT_REG);
+ writel(DMA_TLVL_MAX, rnandc->regs + DMA_TLVL_REG);
+
+ rnandc_trigger_op(rnandc, &rop);
+ rnandc_trigger_dma(rnandc);
+
+ ret = rnandc_wait_end_of_io(rnandc, chip);
+ dma_unmap_single(rnandc->dev, dma_addr, mtd->writesize, DMA_FROM_DEVICE);
+ rnandc_dis_correction(rnandc);
+ if (ret) {
+ dev_err(rnandc->dev, "Read page operation never ending\n");
+ return ret;
+ }
+
+ ecc_stat = readl_relaxed(rnandc->regs + ECC_STAT_REG);
+
+ if (oob_required || ECC_STAT_UNCORRECTABLE(cs, ecc_stat)) {
+ ret = nand_change_read_column_op(chip, mtd->writesize,
+ chip->oob_poi, mtd->oobsize,
+ false);
+ if (ret)
+ return ret;
+ }
+
+ if (ECC_STAT_UNCORRECTABLE(cs, ecc_stat)) {
+ for (i = 0; i < chip->ecc.steps; i++) {
+ unsigned int off = i * chip->ecc.size;
+ unsigned int eccoff = i * chip->ecc.bytes;
+
+ bf = nand_check_erased_ecc_chunk(rnandc->buf + off,
+ chip->ecc.size,
+ chip->oob_poi + 2 + eccoff,
+ chip->ecc.bytes,
+ NULL, 0,
+ chip->ecc.strength);
+ if (bf < 0) {
+ mtd->ecc_stats.failed++;
+ } else {
+ mtd->ecc_stats.corrected += bf;
+ max_bitflips = max_t(unsigned int, max_bitflips, bf);
+ }
+ }
+ } else if (ECC_STAT_CORRECTABLE(cs, ecc_stat)) {
+ bf = ECC_CNT(cs, readl_relaxed(rnandc->regs + ECC_CNT_REG));
+ /*
+ * The number of bitflips is an approximation given the fact
+ * that this controller does not provide per-chunk details but
+ * only gives statistics on the entire page.
+ */
+ mtd->ecc_stats.corrected += bf;
+ }
+
+ memcpy(buf, rnandc->buf, mtd->writesize);
+
+ return 0;
+}
+
+static int rnandc_read_subpage_hw_ecc(struct nand_chip *chip, u32 req_offset,
+ u32 req_len, u8 *bufpoi, int page)
+{
+ struct rnandc *rnandc = to_rnandc(chip->controller);
+ struct mtd_info *mtd = nand_to_mtd(chip);
+ struct rnand_chip *rnand = to_rnand(chip);
+ unsigned int cs = to_rnandc_cs(rnand);
+ unsigned int page_off = round_down(req_offset, chip->ecc.size);
+ unsigned int real_len = round_up(req_offset + req_len - page_off,
+ chip->ecc.size);
+ unsigned int start_chunk = page_off / chip->ecc.size;
+ unsigned int nchunks = real_len / chip->ecc.size;
+ unsigned int ecc_off = 2 + (start_chunk * chip->ecc.bytes);
+ struct rnandc_op rop = {
+ .command = COMMAND_INPUT_SEL_AHBS | COMMAND_0(NAND_CMD_READ0) |
+ COMMAND_2(NAND_CMD_READSTART) | COMMAND_FIFO_SEL |
+ COMMAND_SEQ_READ_PAGE,
+ .addr0_row = page,
+ .addr0_col = page_off,
+ .len = real_len,
+ .ecc_offset = ECC_OFFSET(mtd->writesize + ecc_off),
+ };
+ unsigned int max_bitflips = 0, i;
+ u32 ecc_stat;
+ int bf, ret;
+
+ /* Prepare controller */
+ rnandc_select_target(chip, chip->cur_cs);
+ rnandc_clear_status(rnandc);
+ rnandc_en_correction(rnandc);
+ rnandc_trigger_op(rnandc, &rop);
+
+ while (!FIFO_STATE_C_EMPTY(readl(rnandc->regs + FIFO_STATE_REG)))
+ cpu_relax();
+
+ while (FIFO_STATE_R_EMPTY(readl(rnandc->regs + FIFO_STATE_REG)))
+ cpu_relax();
+
+ ioread32_rep(rnandc->regs + FIFO_DATA_REG, bufpoi + page_off,
+ real_len / 4);
+
+ if (!FIFO_STATE_R_EMPTY(readl(rnandc->regs + FIFO_STATE_REG))) {
+ dev_err(rnandc->dev, "Clearing residual data in the read FIFO\n");
+ rnandc_clear_fifo(rnandc);
+ }
+
+ ret = rnandc_wait_end_of_op(rnandc, chip);
+ rnandc_dis_correction(rnandc);
+ if (ret) {
+ dev_err(rnandc->dev, "Read subpage operation never ending\n");
+ return ret;
+ }
+
+ ecc_stat = readl_relaxed(rnandc->regs + ECC_STAT_REG);
+
+ if (ECC_STAT_UNCORRECTABLE(cs, ecc_stat)) {
+ ret = nand_change_read_column_op(chip, mtd->writesize,
+ chip->oob_poi, mtd->oobsize,
+ false);
+ if (ret)
+ return ret;
+
+ for (i = start_chunk; i < nchunks; i++) {
+ unsigned int dataoff = i * chip->ecc.size;
+ unsigned int eccoff = 2 + (i * chip->ecc.bytes);
+
+ bf = nand_check_erased_ecc_chunk(bufpoi + dataoff,
+ chip->ecc.size,
+ chip->oob_poi + eccoff,
+ chip->ecc.bytes,
+ NULL, 0,
+ chip->ecc.strength);
+ if (bf < 0) {
+ mtd->ecc_stats.failed++;
+ } else {
+ mtd->ecc_stats.corrected += bf;
+ max_bitflips = max_t(unsigned int, max_bitflips, bf);
+ }
+ }
+ } else if (ECC_STAT_CORRECTABLE(cs, ecc_stat)) {
+ bf = ECC_CNT(cs, readl_relaxed(rnandc->regs + ECC_CNT_REG));
+ /*
+ * The number of bitflips is an approximation given the fact
+ * that this controller does not provide per-chunk details but
+ * only gives statistics on the entire page.
+ */
+ mtd->ecc_stats.corrected += bf;
+ }
+
+ return 0;
+}
+
+static int rnandc_write_page_hw_ecc(struct nand_chip *chip, const u8 *buf,
+ int oob_required, int page)
+{
+ struct rnandc *rnandc = to_rnandc(chip->controller);
+ struct mtd_info *mtd = nand_to_mtd(chip);
+ struct rnand_chip *rnand = to_rnand(chip);
+ unsigned int cs = to_rnandc_cs(rnand);
+ struct rnandc_op rop = {
+ .command = COMMAND_INPUT_SEL_DMA | COMMAND_0(NAND_CMD_SEQIN) |
+ COMMAND_1(NAND_CMD_PAGEPROG) | COMMAND_FIFO_SEL |
+ COMMAND_SEQ_WRITE_PAGE,
+ .addr0_row = page,
+ .len = mtd->writesize,
+ .ecc_offset = ECC_OFFSET(mtd->writesize + 2),
+ };
+ dma_addr_t dma_addr;
+ int ret;
+
+ memcpy(rnandc->buf, buf, mtd->writesize);
+
+ /* Prepare controller */
+ rnandc_select_target(chip, chip->cur_cs);
+ rnandc_clear_status(rnandc);
+ reinit_completion(&rnandc->complete);
+ rnandc_en_interrupts(rnandc, INT_MEM_RDY(cs));
+ rnandc_en_correction(rnandc);
+
+ /* Configure DMA */
+ dma_addr = dma_map_single(rnandc->dev, (void *)rnandc->buf, mtd->writesize,
+ DMA_TO_DEVICE);
+ writel(dma_addr, rnandc->regs + DMA_ADDR_LOW_REG);
+ writel(mtd->writesize, rnandc->regs + DMA_CNT_REG);
+ writel(DMA_TLVL_MAX, rnandc->regs + DMA_TLVL_REG);
+
+ rnandc_trigger_op(rnandc, &rop);
+ rnandc_trigger_dma(rnandc);
+
+ ret = rnandc_wait_end_of_io(rnandc, chip);
+ dma_unmap_single(rnandc->dev, dma_addr, mtd->writesize, DMA_TO_DEVICE);
+ rnandc_dis_correction(rnandc);
+ if (ret) {
+ dev_err(rnandc->dev, "Write page operation never ending\n");
+ return ret;
+ }
+
+ if (!oob_required)
+ return 0;
+
+ return nand_change_write_column_op(chip, mtd->writesize, chip->oob_poi,
+ mtd->oobsize, false);
+}
+
+static int rnandc_write_subpage_hw_ecc(struct nand_chip *chip, u32 req_offset,
+ u32 req_len, const u8 *bufpoi,
+ int oob_required, int page)
+{
+ struct rnandc *rnandc = to_rnandc(chip->controller);
+ struct mtd_info *mtd = nand_to_mtd(chip);
+ unsigned int page_off = round_down(req_offset, chip->ecc.size);
+ unsigned int real_len = round_up(req_offset + req_len - page_off,
+ chip->ecc.size);
+ unsigned int start_chunk = page_off / chip->ecc.size;
+ unsigned int ecc_off = 2 + (start_chunk * chip->ecc.bytes);
+ struct rnandc_op rop = {
+ .command = COMMAND_INPUT_SEL_AHBS | COMMAND_0(NAND_CMD_SEQIN) |
+ COMMAND_1(NAND_CMD_PAGEPROG) | COMMAND_FIFO_SEL |
+ COMMAND_SEQ_WRITE_PAGE,
+ .addr0_row = page,
+ .addr0_col = page_off,
+ .len = real_len,
+ .ecc_offset = ECC_OFFSET(mtd->writesize + ecc_off),
+ };
+ int ret;
+
+ /* Prepare controller */
+ rnandc_select_target(chip, chip->cur_cs);
+ rnandc_clear_status(rnandc);
+ rnandc_en_correction(rnandc);
+ rnandc_trigger_op(rnandc, &rop);
+
+ while (FIFO_STATE_W_FULL(readl(rnandc->regs + FIFO_STATE_REG)))
+ cpu_relax();
+
+ iowrite32_rep(rnandc->regs + FIFO_DATA_REG, bufpoi + page_off,
+ real_len / 4);
+
+ while (!FIFO_STATE_W_EMPTY(readl(rnandc->regs + FIFO_STATE_REG)))
+ cpu_relax();
+
+ ret = rnandc_wait_end_of_op(rnandc, chip);
+ rnandc_dis_correction(rnandc);
+ if (ret) {
+ dev_err(rnandc->dev, "Write subpage operation never ending\n");
+ return ret;
+ }
+
+ return 0;
+}
+
+/*
+ * This controller is simple enough and thus does not need to use the parser
+ * provided by the core, instead, handle every situation here.
+ */
+static int rnandc_exec_op(struct nand_chip *chip,
+ const struct nand_operation *op, bool check_only)
+{
+ struct rnandc *rnandc = to_rnandc(chip->controller);
+ const struct nand_op_instr *instr = NULL;
+ struct rnandc_op rop = {
+ .command = COMMAND_INPUT_SEL_AHBS,
+ .gen_seq_ctrl = GEN_SEQ_IMD_SEQ,
+ };
+ unsigned int cmd_phase = 0, addr_phase = 0, data_phase = 0,
+ delay_phase = 0, delays = 0;
+ unsigned int op_id, col_addrs, row_addrs, naddrs, remainder, words, i;
+ const u8 *addrs;
+ u32 last_bytes;
+ int ret;
+
+ if (!check_only)
+ rnandc_select_target(chip, op->cs);
+
+ for (op_id = 0; op_id < op->ninstrs; op_id++) {
+ instr = &op->instrs[op_id];
+
+ nand_op_trace(" ", instr);
+
+ switch (instr->type) {
+ case NAND_OP_CMD_INSTR:
+ switch (cmd_phase++) {
+ case 0:
+ rop.command |= COMMAND_0(instr->ctx.cmd.opcode);
+ rop.gen_seq_ctrl |= GEN_SEQ_CMD0_EN;
+ break;
+ case 1:
+ rop.gen_seq_ctrl |= GEN_SEQ_COMMAND_3(instr->ctx.cmd.opcode);
+ rop.gen_seq_ctrl |= GEN_SEQ_CMD3_EN;
+ if (addr_phase == 0)
+ addr_phase = 1;
+ break;
+ case 2:
+ rop.command |= COMMAND_2(instr->ctx.cmd.opcode);
+ rop.gen_seq_ctrl |= GEN_SEQ_CMD2_EN;
+ if (addr_phase <= 1)
+ addr_phase = 2;
+ break;
+ case 3:
+ rop.command |= COMMAND_1(instr->ctx.cmd.opcode);
+ rop.gen_seq_ctrl |= GEN_SEQ_CMD1_EN;
+ if (addr_phase <= 1)
+ addr_phase = 2;
+ if (delay_phase == 0)
+ delay_phase = 1;
+ if (data_phase == 0)
+ data_phase = 1;
+ break;
+ default:
+ return -EOPNOTSUPP;
+ }
+ break;
+
+ case NAND_OP_ADDR_INSTR:
+ addrs = instr->ctx.addr.addrs;
+ naddrs = instr->ctx.addr.naddrs;
+ if (naddrs > 5)
+ return -EOPNOTSUPP;
+
+ col_addrs = min(2U, naddrs);
+ row_addrs = naddrs > 2 ? naddrs - col_addrs : 0;
+
+ switch (addr_phase++) {
+ case 0:
+ for (i = 0; i < col_addrs; i++)
+ rop.addr0_col |= addrs[i] << (i * 8);
+ rop.gen_seq_ctrl |= GEN_SEQ_COL_A0(col_addrs);
+
+ for (i = 0; i < row_addrs; i++)
+ rop.addr0_row |= addrs[2 + i] << (i * 8);
+ rop.gen_seq_ctrl |= GEN_SEQ_ROW_A0(row_addrs);
+
+ if (cmd_phase == 0)
+ cmd_phase = 1;
+ break;
+ case 1:
+ for (i = 0; i < col_addrs; i++)
+ rop.addr1_col |= addrs[i] << (i * 8);
+ rop.gen_seq_ctrl |= GEN_SEQ_COL_A1(col_addrs);
+
+ for (i = 0; i < row_addrs; i++)
+ rop.addr1_row |= addrs[2 + i] << (i * 8);
+ rop.gen_seq_ctrl |= GEN_SEQ_ROW_A1(row_addrs);
+
+ if (cmd_phase <= 1)
+ cmd_phase = 2;
+ break;
+ default:
+ return -EOPNOTSUPP;
+ }
+ break;
+
+ case NAND_OP_DATA_IN_INSTR:
+ rop.read = true;
+ fallthrough;
+ case NAND_OP_DATA_OUT_INSTR:
+ rop.gen_seq_ctrl |= GEN_SEQ_DATA_EN;
+ rop.buf = instr->ctx.data.buf.in;
+ rop.len = instr->ctx.data.len;
+ rop.command |= COMMAND_FIFO_SEL;
+
+ switch (data_phase++) {
+ case 0:
+ if (cmd_phase <= 2)
+ cmd_phase = 3;
+ if (addr_phase <= 1)
+ addr_phase = 2;
+ if (delay_phase == 0)
+ delay_phase = 1;
+ break;
+ default:
+ return -EOPNOTSUPP;
+ }
+ break;
+
+ case NAND_OP_WAITRDY_INSTR:
+ switch (delay_phase++) {
+ case 0:
+ rop.gen_seq_ctrl |= GEN_SEQ_DELAY0_EN;
+
+ if (cmd_phase <= 2)
+ cmd_phase = 3;
+ break;
+ case 1:
+ rop.gen_seq_ctrl |= GEN_SEQ_DELAY1_EN;
+
+ if (cmd_phase <= 3)
+ cmd_phase = 4;
+ if (data_phase == 0)
+ data_phase = 1;
+ break;
+ default:
+ return -EOPNOTSUPP;
+ }
+ break;
+ }
+ }
+
+ /*
+ * Sequence 19 is generic and dedicated to write operations.
+ * Sequence 18 is also generic and works for all other operations.
+ */
+ if (rop.buf && !rop.read)
+ rop.command |= COMMAND_SEQ_GEN_OUT;
+ else
+ rop.command |= COMMAND_SEQ_GEN_IN;
+
+ if (delays > 1) {
+ dev_err(rnandc->dev, "Cannot handle more than one wait delay\n");
+ return -EOPNOTSUPP;
+ }
+
+ if (check_only)
+ return 0;
+
+ rnandc_trigger_op(rnandc, &rop);
+
+ words = rop.len / sizeof(u32);
+ remainder = rop.len % sizeof(u32);
+ if (rop.buf && rop.read) {
+ while (!FIFO_STATE_C_EMPTY(readl(rnandc->regs + FIFO_STATE_REG)))
+ cpu_relax();
+
+ while (FIFO_STATE_R_EMPTY(readl(rnandc->regs + FIFO_STATE_REG)))
+ cpu_relax();
+
+ ioread32_rep(rnandc->regs + FIFO_DATA_REG, rop.buf, words);
+ if (remainder) {
+ last_bytes = readl_relaxed(rnandc->regs + FIFO_DATA_REG);
+ memcpy(rop.buf + (words * sizeof(u32)), &last_bytes,
+ remainder);
+ }
+
+ if (!FIFO_STATE_R_EMPTY(readl(rnandc->regs + FIFO_STATE_REG))) {
+ dev_warn(rnandc->dev,
+ "Clearing residual data in the read FIFO\n");
+ rnandc_clear_fifo(rnandc);
+ }
+ } else if (rop.len && !rop.read) {
+ while (FIFO_STATE_W_FULL(readl(rnandc->regs + FIFO_STATE_REG)))
+ cpu_relax();
+
+ iowrite32_rep(rnandc->regs + FIFO_DATA_REG, rop.buf,
+ DIV_ROUND_UP(rop.len, 4));
+
+ if (remainder) {
+ last_bytes = 0;
+ memcpy(&last_bytes, rop.buf + (words * sizeof(u32)), remainder);
+ writel_relaxed(last_bytes, rnandc->regs + FIFO_DATA_REG);
+ }
+
+ while (!FIFO_STATE_W_EMPTY(readl(rnandc->regs + FIFO_STATE_REG)))
+ cpu_relax();
+ }
+
+ ret = rnandc_wait_end_of_op(rnandc, chip);
+ if (ret)
+ return ret;
+
+ return 0;
+}
+
+static int rnandc_setup_interface(struct nand_chip *chip, int chipnr,
+ const struct nand_interface_config *conf)
+{
+ struct rnand_chip *rnand = to_rnand(chip);
+ struct rnandc *rnandc = to_rnandc(chip->controller);
+ unsigned int period_ns = 1000000000 / clk_get_rate(rnandc->eclk);
+ const struct nand_sdr_timings *sdr;
+ unsigned int cyc, cle, ale, bef_dly, ca_to_data;
+
+ sdr = nand_get_sdr_timings(conf);
+ if (IS_ERR(sdr))
+ return PTR_ERR(sdr);
+
+ if (sdr->tRP_min != sdr->tWP_min || sdr->tREH_min != sdr->tWH_min) {
+ dev_err(rnandc->dev, "Read and write hold times must be identical\n");
+ return -EINVAL;
+ }
+
+ if (chipnr < 0)
+ return 0;
+
+ rnand->timings_asyn =
+ TIMINGS_ASYN_TRWP(TO_CYCLES64(sdr->tRP_min, period_ns)) |
+ TIMINGS_ASYN_TRWH(TO_CYCLES64(sdr->tREH_min, period_ns));
+ rnand->tim_seq0 =
+ TIM_SEQ0_TCCS(TO_CYCLES64(sdr->tCCS_min, period_ns)) |
+ TIM_SEQ0_TADL(TO_CYCLES64(sdr->tADL_min, period_ns)) |
+ TIM_SEQ0_TRHW(TO_CYCLES64(sdr->tRHW_min, period_ns)) |
+ TIM_SEQ0_TWHR(TO_CYCLES64(sdr->tWHR_min, period_ns));
+ rnand->tim_seq1 =
+ TIM_SEQ1_TWB(TO_CYCLES64(sdr->tWB_max, period_ns)) |
+ TIM_SEQ1_TRR(TO_CYCLES64(sdr->tRR_min, period_ns)) |
+ TIM_SEQ1_TWW(TO_CYCLES64(sdr->tWW_min, period_ns));
+
+ cyc = sdr->tDS_min + sdr->tDH_min;
+ cle = sdr->tCLH_min + sdr->tCLS_min;
+ ale = sdr->tALH_min + sdr->tALS_min;
+ bef_dly = sdr->tWB_max - sdr->tDH_min;
+ ca_to_data = sdr->tWHR_min + sdr->tREA_max - sdr->tDH_min;
+
+ /*
+ * D0 = CMD -> ADDR = tCLH + tCLS - 1 cycle
+ * D1 = CMD -> CMD = tCLH + tCLS - 1 cycle
+ * D2 = CMD -> DLY = tWB - tDH
+ * D3 = CMD -> DATA = tWHR + tREA - tDH
+ */
+ rnand->tim_gen_seq0 =
+ TIM_GEN_SEQ0_D0(TO_CYCLES64(cle - cyc, period_ns)) |
+ TIM_GEN_SEQ0_D1(TO_CYCLES64(cle - cyc, period_ns)) |
+ TIM_GEN_SEQ0_D2(TO_CYCLES64(bef_dly, period_ns)) |
+ TIM_GEN_SEQ0_D3(TO_CYCLES64(ca_to_data, period_ns));
+
+ /*
+ * D4 = ADDR -> CMD = tALH + tALS - 1 cyle
+ * D5 = ADDR -> ADDR = tALH + tALS - 1 cyle
+ * D6 = ADDR -> DLY = tWB - tDH
+ * D7 = ADDR -> DATA = tWHR + tREA - tDH
+ */
+ rnand->tim_gen_seq1 =
+ TIM_GEN_SEQ1_D4(TO_CYCLES64(ale - cyc, period_ns)) |
+ TIM_GEN_SEQ1_D5(TO_CYCLES64(ale - cyc, period_ns)) |
+ TIM_GEN_SEQ1_D6(TO_CYCLES64(bef_dly, period_ns)) |
+ TIM_GEN_SEQ1_D7(TO_CYCLES64(ca_to_data, period_ns));
+
+ /*
+ * D8 = DLY -> DATA = tRR + tREA
+ * D9 = DLY -> CMD = tRR
+ * D10 = DATA -> CMD = tCLH + tCLS - 1 cycle
+ * D11 = DATA -> DLY = tWB - tDH
+ */
+ rnand->tim_gen_seq2 =
+ TIM_GEN_SEQ2_D8(TO_CYCLES64(sdr->tRR_min + sdr->tREA_max, period_ns)) |
+ TIM_GEN_SEQ2_D9(TO_CYCLES64(sdr->tRR_min, period_ns)) |
+ TIM_GEN_SEQ2_D10(TO_CYCLES64(cle - cyc, period_ns)) |
+ TIM_GEN_SEQ2_D11(TO_CYCLES64(bef_dly, period_ns));
+
+ /* D12 = DATA -> END = tCLH - tDH */
+ rnand->tim_gen_seq3 =
+ TIM_GEN_SEQ3_D12(TO_CYCLES64(sdr->tCLH_min - sdr->tDH_min, period_ns));
+
+ return 0;
+}
+
+static int rnandc_ooblayout_ecc(struct mtd_info *mtd, int section,
+ struct mtd_oob_region *oobregion)
+{
+ struct nand_chip *chip = mtd_to_nand(mtd);
+ unsigned int eccbytes = round_up(chip->ecc.bytes, 4) * chip->ecc.steps;
+
+ if (section)
+ return -ERANGE;
+
+ oobregion->offset = 2;
+ oobregion->length = eccbytes;
+
+ return 0;
+}
+
+static int rnandc_ooblayout_free(struct mtd_info *mtd, int section,
+ struct mtd_oob_region *oobregion)
+{
+ struct nand_chip *chip = mtd_to_nand(mtd);
+ unsigned int eccbytes = round_up(chip->ecc.bytes, 4) * chip->ecc.steps;
+
+ if (section)
+ return -ERANGE;
+
+ oobregion->offset = 2 + eccbytes;
+ oobregion->length = mtd->oobsize - oobregion->offset;
+
+ return 0;
+}
+
+static const struct mtd_ooblayout_ops rnandc_ooblayout_ops = {
+ .ecc = rnandc_ooblayout_ecc,
+ .free = rnandc_ooblayout_free,
+};
+
+static int rnandc_hw_ecc_controller_init(struct nand_chip *chip)
+{
+ struct rnand_chip *rnand = to_rnand(chip);
+ struct mtd_info *mtd = nand_to_mtd(chip);
+ struct rnandc *rnandc = to_rnandc(chip->controller);
+
+ if (mtd->writesize > SZ_16K) {
+ dev_err(rnandc->dev, "Unsupported page size\n");
+ return -EINVAL;
+ }
+
+ switch (chip->ecc.size) {
+ case SZ_256:
+ rnand->control |= CONTROL_ECC_BLOCK_SIZE_256;
+ break;
+ case SZ_512:
+ rnand->control |= CONTROL_ECC_BLOCK_SIZE_512;
+ break;
+ case SZ_1K:
+ rnand->control |= CONTROL_ECC_BLOCK_SIZE_1024;
+ break;
+ default:
+ dev_err(rnandc->dev, "Unsupported ECC chunk size\n");
+ return -EINVAL;
+ }
+
+ switch (chip->ecc.strength) {
+ case 2:
+ chip->ecc.bytes = 4;
+ rnand->ecc_ctrl |= ECC_CTRL_CAP_2B;
+ break;
+ case 4:
+ chip->ecc.bytes = 7;
+ rnand->ecc_ctrl |= ECC_CTRL_CAP_4B;
+ break;
+ case 8:
+ chip->ecc.bytes = 14;
+ rnand->ecc_ctrl |= ECC_CTRL_CAP_8B;
+ break;
+ case 16:
+ chip->ecc.bytes = 28;
+ rnand->ecc_ctrl |= ECC_CTRL_CAP_16B;
+ break;
+ case 24:
+ chip->ecc.bytes = 42;
+ rnand->ecc_ctrl |= ECC_CTRL_CAP_24B;
+ break;
+ case 32:
+ chip->ecc.bytes = 56;
+ rnand->ecc_ctrl |= ECC_CTRL_CAP_32B;
+ break;
+ default:
+ dev_err(rnandc->dev, "Unsupported ECC strength\n");
+ return -EINVAL;
+ }
+
+ rnand->ecc_ctrl |= ECC_CTRL_ERR_THRESHOLD(chip->ecc.strength);
+
+ mtd_set_ooblayout(mtd, &rnandc_ooblayout_ops);
+ chip->ecc.steps = mtd->writesize / chip->ecc.size;
+ chip->ecc.read_page = rnandc_read_page_hw_ecc;
+ chip->ecc.read_subpage = rnandc_read_subpage_hw_ecc;
+ chip->ecc.write_page = rnandc_write_page_hw_ecc;
+ chip->ecc.write_subpage = rnandc_write_subpage_hw_ecc;
+
+ return 0;
+}
+
+static int rnandc_ecc_init(struct nand_chip *chip)
+{
+ struct nand_ecc_ctrl *ecc = &chip->ecc;
+ const struct nand_ecc_props *requirements =
+ nanddev_get_ecc_requirements(&chip->base);
+ struct rnandc *rnandc = to_rnandc(chip->controller);
+ int ret;
+
+ if (ecc->engine_type != NAND_ECC_ENGINE_TYPE_NONE &&
+ (!ecc->size || !ecc->strength)) {
+ if (requirements->step_size && requirements->strength) {
+ ecc->size = requirements->step_size;
+ ecc->strength = requirements->strength;
+ } else {
+ dev_err(rnandc->dev, "No minimum ECC strength\n");
+ return -EINVAL;
+ }
+ }
+
+ switch (ecc->engine_type) {
+ case NAND_ECC_ENGINE_TYPE_ON_HOST:
+ ret = rnandc_hw_ecc_controller_init(chip);
+ if (ret)
+ return ret;
+ break;
+ case NAND_ECC_ENGINE_TYPE_NONE:
+ case NAND_ECC_ENGINE_TYPE_SOFT:
+ case NAND_ECC_ENGINE_TYPE_ON_DIE:
+ break;
+ default:
+ return -EINVAL;
+ }
+
+ return 0;
+}
+
+static int rnandc_attach_chip(struct nand_chip *chip)
+{
+ struct rnand_chip *rnand = to_rnand(chip);
+ struct rnandc *rnandc = to_rnandc(chip->controller);
+ struct mtd_info *mtd = nand_to_mtd(chip);
+ struct nand_memory_organization *memorg = nanddev_get_memorg(&chip->base);
+ int ret;
+
+ /* Do not store BBT bits in the OOB section as it is not protected */
+ if (chip->bbt_options & NAND_BBT_USE_FLASH)
+ chip->bbt_options |= NAND_BBT_NO_OOB;
+
+ if (mtd->writesize <= 512) {
+ dev_err(rnandc->dev, "Small page devices not supported\n");
+ return -EINVAL;
+ }
+
+ rnand->control |= CONTROL_CHECK_RB_LINE | CONTROL_INT_EN;
+
+ switch (memorg->pages_per_eraseblock) {
+ case 32:
+ rnand->control |= CONTROL_BLOCK_SIZE_32P;
+ break;
+ case 64:
+ rnand->control |= CONTROL_BLOCK_SIZE_64P;
+ break;
+ case 128:
+ rnand->control |= CONTROL_BLOCK_SIZE_128P;
+ break;
+ case 256:
+ rnand->control |= CONTROL_BLOCK_SIZE_256P;
+ break;
+ default:
+ dev_err(rnandc->dev, "Unsupported memory organization\n");
+ return -EINVAL;
+ }
+
+ chip->options |= NAND_SUBPAGE_READ;
+
+ ret = rnandc_ecc_init(chip);
+ if (ret) {
+ dev_err(rnandc->dev, "ECC initialization failed (%d)\n", ret);
+ return ret;
+ }
+
+ /* Force an update of the configuration registers */
+ rnand->selected_die = -1;
+
+ return 0;
+}
+
+static const struct nand_controller_ops rnandc_ops = {
+ .attach_chip = rnandc_attach_chip,
+ .exec_op = rnandc_exec_op,
+ .setup_interface = rnandc_setup_interface,
+};
+
+static int rnandc_alloc_dma_buf(struct rnandc *rnandc,
+ struct mtd_info *new_mtd)
+{
+ unsigned int max_len = new_mtd->writesize + new_mtd->oobsize;
+ struct rnand_chip *entry, *temp;
+ struct nand_chip *chip;
+ struct mtd_info *mtd;
+
+ list_for_each_entry_safe(entry, temp, &rnandc->chips, node) {
+ chip = &entry->chip;
+ mtd = nand_to_mtd(chip);
+ max_len = max(max_len, mtd->writesize + mtd->oobsize);
+ }
+
+ if (rnandc->buf && rnandc->buf_sz < max_len) {
+ devm_kfree(rnandc->dev, rnandc->buf);
+ rnandc->buf = NULL;
+ }
+
+ if (!rnandc->buf) {
+ rnandc->buf_sz = max_len;
+ rnandc->buf = devm_kmalloc(rnandc->dev, max_len,
+ GFP_KERNEL | GFP_DMA);
+ if (!rnandc->buf)
+ return -ENOMEM;
+ }
+
+ return 0;
+}
+
+static int rnandc_chip_init(struct rnandc *rnandc, struct device_node *np)
+{
+ struct rnand_chip *rnand;
+ struct mtd_info *mtd;
+ struct nand_chip *chip;
+ int nsels, ret, i;
+ u32 cs;
+
+ nsels = of_property_count_elems_of_size(np, "reg", sizeof(u32));
+ if (nsels <= 0) {
+ ret = (nsels < 0) ? nsels : -EINVAL;
+ dev_err(rnandc->dev, "Invalid reg property (%d)\n", ret);
+ return ret;
+ }
+
+ /* Alloc the driver's NAND chip structure */
+ rnand = devm_kzalloc(rnandc->dev, struct_size(rnand, sels, nsels),
+ GFP_KERNEL);
+ if (!rnand)
+ return -ENOMEM;
+
+ rnand->nsels = nsels;
+ rnand->selected_die = -1;
+
+ for (i = 0; i < nsels; i++) {
+ ret = of_property_read_u32_index(np, "reg", i, &cs);
+ if (ret) {
+ dev_err(rnandc->dev, "Incomplete reg property (%d)\n", ret);
+ return ret;
+ }
+
+ if (cs >= RNANDC_CS_NUM) {
+ dev_err(rnandc->dev, "Invalid reg property (%d)\n", cs);
+ return -EINVAL;
+ }
+
+ if (test_and_set_bit(cs, &rnandc->assigned_cs)) {
+ dev_err(rnandc->dev, "CS %d already assigned\n", cs);
+ return -EINVAL;
+ }
+
+ /*
+ * No need to check for RB or WP properties, there is a 1:1
+ * mandatory mapping with the CS.
+ */
+ rnand->sels[i].cs = cs;
+ }
+
+ chip = &rnand->chip;
+ chip->controller = &rnandc->controller;
+ nand_set_flash_node(chip, np);
+
+ mtd = nand_to_mtd(chip);
+ mtd->dev.parent = rnandc->dev;
+ if (!mtd->name) {
+ dev_err(rnandc->dev, "Missing MTD label\n");
+ return -EINVAL;
+ }
+
+ ret = nand_scan(chip, rnand->nsels);
+ if (ret) {
+ dev_err(rnandc->dev, "Failed to scan the NAND chip (%d)\n", ret);
+ return ret;
+ }
+
+ ret = rnandc_alloc_dma_buf(rnandc, mtd);
+ if (ret)
+ goto cleanup_nand;
+
+ ret = mtd_device_register(mtd, NULL, 0);
+ if (ret) {
+ dev_err(rnandc->dev, "Failed to register MTD device (%d)\n", ret);
+ goto cleanup_nand;
+ }
+
+ list_add_tail(&rnand->node, &rnandc->chips);
+
+ return 0;
+
+cleanup_nand:
+ nand_cleanup(chip);
+
+ return ret;
+}
+
+static void rnandc_chips_cleanup(struct rnandc *rnandc)
+{
+ struct rnand_chip *entry, *temp;
+ struct nand_chip *chip;
+ int ret;
+
+ list_for_each_entry_safe(entry, temp, &rnandc->chips, node) {
+ chip = &entry->chip;
+ ret = mtd_device_unregister(nand_to_mtd(chip));
+ WARN_ON(ret);
+ nand_cleanup(chip);
+ list_del(&entry->node);
+ }
+}
+
+static int rnandc_chips_init(struct rnandc *rnandc)
+{
+ struct device_node *np;
+ int ret;
+
+ for_each_child_of_node(rnandc->dev->of_node, np) {
+ ret = rnandc_chip_init(rnandc, np);
+ if (ret) {
+ of_node_put(np);
+ goto cleanup_chips;
+ }
+ }
+
+ return 0;
+
+cleanup_chips:
+ rnandc_chips_cleanup(rnandc);
+
+ return ret;
+}
+
+static int rnandc_probe(struct platform_device *pdev)
+{
+ struct rnandc *rnandc;
+ int irq, ret;
+
+ rnandc = devm_kzalloc(&pdev->dev, sizeof(*rnandc), GFP_KERNEL);
+ if (!rnandc)
+ return -ENOMEM;
+
+ rnandc->dev = &pdev->dev;
+ nand_controller_init(&rnandc->controller);
+ rnandc->controller.ops = &rnandc_ops;
+ INIT_LIST_HEAD(&rnandc->chips);
+ init_completion(&rnandc->complete);
+
+ rnandc->regs = devm_platform_ioremap_resource(pdev, 0);
+ if (IS_ERR(rnandc->regs))
+ return PTR_ERR(rnandc->regs);
+
+ /* APB clock */
+ rnandc->hclk = devm_clk_get(&pdev->dev, "hclk");
+ if (IS_ERR(rnandc->hclk))
+ return PTR_ERR(rnandc->hclk);
+
+ /* External NAND bus clock */
+ rnandc->eclk = devm_clk_get(&pdev->dev, "eclk");
+ if (IS_ERR(rnandc->eclk))
+ return PTR_ERR(rnandc->eclk);
+
+ ret = clk_prepare_enable(rnandc->hclk);
+ if (ret)
+ return ret;
+
+ ret = clk_prepare_enable(rnandc->eclk);
+ if (ret)
+ goto disable_hclk;
+
+ rnandc_dis_interrupts(rnandc);
+ irq = platform_get_irq_optional(pdev, 0);
+ if (irq == -EPROBE_DEFER) {
+ ret = irq;
+ goto disable_eclk;
+ } else if (irq < 0) {
+ dev_info(&pdev->dev, "No IRQ found, fallback to polling\n");
+ rnandc->use_polling = true;
+ } else {
+ ret = devm_request_irq(&pdev->dev, irq, rnandc_irq_handler, 0,
+ "renesas-nand-controller", rnandc);
+ if (ret < 0)
+ goto disable_eclk;
+ }
+
+ ret = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
+ if (ret)
+ goto disable_eclk;
+
+ rnandc_clear_fifo(rnandc);
+
+ platform_set_drvdata(pdev, rnandc);
+
+ ret = rnandc_chips_init(rnandc);
+ if (ret)
+ goto disable_eclk;
+
+ return 0;
+
+disable_eclk:
+ clk_disable_unprepare(rnandc->eclk);
+disable_hclk:
+ clk_disable_unprepare(rnandc->hclk);
+
+ return ret;
+}
+
+static int rnandc_remove(struct platform_device *pdev)
+{
+ struct rnandc *rnandc = platform_get_drvdata(pdev);
+
+ rnandc_chips_cleanup(rnandc);
+
+ clk_disable_unprepare(rnandc->eclk);
+ clk_disable_unprepare(rnandc->hclk);
+
+ return 0;
+}
+
+static const struct of_device_id rnandc_id_table[] = {
+ { .compatible = "renesas,rcar-gen3-nandc" },
+ { .compatible = "renesas,rzn1-nandc" },
+ {} /* sentinel */
+};
+MODULE_DEVICE_TABLE(of, rnandc_id_table);
+
+static struct platform_driver rnandc_driver = {
+ .driver = {
+ .name = "renesas-nandc",
+ .of_match_table = of_match_ptr(rnandc_id_table),
+ },
+ .probe = rnandc_probe,
+ .remove = rnandc_remove,
+};
+module_platform_driver(rnandc_driver);
+
+MODULE_AUTHOR("Miquel Raynal <miquel.raynal@bootlin.com>");
+MODULE_DESCRIPTION("Renesas R-Car Gen3 & RZ/N1 NAND controller driver");
+MODULE_LICENSE("GPL v2");