diff options
author | Boris Brezillon <boris.brezillon@bootlin.com> | 2018-02-06 01:02:04 +0300 |
---|---|---|
committer | Boris Brezillon <boris.brezillon@bootlin.com> | 2018-02-16 12:09:34 +0300 |
commit | 93db446a424cee9387b532995e6b516667079555 (patch) | |
tree | 39c7900ae38d890fb971ea5fc6f194f7e66fa797 /drivers/mtd/nand/fsmc_nand.c | |
parent | 7b6afee7291802aa8c02aa918782033992caf641 (diff) | |
download | linux-93db446a424cee9387b532995e6b516667079555.tar.xz |
mtd: nand: move raw NAND related code to the raw/ subdir
As part of the process of sharing more code between different NAND
based devices, we need to move all raw NAND related code to the raw/
subdirectory.
Signed-off-by: Boris Brezillon <boris.brezillon@bootlin.com>
Diffstat (limited to 'drivers/mtd/nand/fsmc_nand.c')
-rw-r--r-- | drivers/mtd/nand/fsmc_nand.c | 1175 |
1 files changed, 0 insertions, 1175 deletions
diff --git a/drivers/mtd/nand/fsmc_nand.c b/drivers/mtd/nand/fsmc_nand.c deleted file mode 100644 index 7e66268f8154..000000000000 --- a/drivers/mtd/nand/fsmc_nand.c +++ /dev/null @@ -1,1175 +0,0 @@ -/* - * ST Microelectronics - * Flexible Static Memory Controller (FSMC) - * Driver for NAND portions - * - * Copyright © 2010 ST Microelectronics - * Vipin Kumar <vipin.kumar@st.com> - * Ashish Priyadarshi - * - * Based on drivers/mtd/nand/nomadik_nand.c (removed in v3.8) - * Copyright © 2007 STMicroelectronics Pvt. Ltd. - * Copyright © 2009 Alessandro Rubini - * - * This file is licensed under the terms of the GNU General Public - * License version 2. This program is licensed "as is" without any - * warranty of any kind, whether express or implied. - */ - -#include <linux/clk.h> -#include <linux/completion.h> -#include <linux/dmaengine.h> -#include <linux/dma-direction.h> -#include <linux/dma-mapping.h> -#include <linux/err.h> -#include <linux/init.h> -#include <linux/module.h> -#include <linux/resource.h> -#include <linux/sched.h> -#include <linux/types.h> -#include <linux/mtd/mtd.h> -#include <linux/mtd/rawnand.h> -#include <linux/mtd/nand_ecc.h> -#include <linux/platform_device.h> -#include <linux/of.h> -#include <linux/mtd/partitions.h> -#include <linux/io.h> -#include <linux/slab.h> -#include <linux/amba/bus.h> -#include <mtd/mtd-abi.h> - -/* fsmc controller registers for NOR flash */ -#define CTRL 0x0 - /* ctrl register definitions */ - #define BANK_ENABLE (1 << 0) - #define MUXED (1 << 1) - #define NOR_DEV (2 << 2) - #define WIDTH_8 (0 << 4) - #define WIDTH_16 (1 << 4) - #define RSTPWRDWN (1 << 6) - #define WPROT (1 << 7) - #define WRT_ENABLE (1 << 12) - #define WAIT_ENB (1 << 13) - -#define CTRL_TIM 0x4 - /* ctrl_tim register definitions */ - -#define FSMC_NOR_BANK_SZ 0x8 -#define FSMC_NOR_REG_SIZE 0x40 - -#define FSMC_NOR_REG(base, bank, reg) (base + \ - FSMC_NOR_BANK_SZ * (bank) + \ - reg) - -/* fsmc controller registers for NAND flash */ -#define PC 0x00 - /* pc register definitions */ - #define FSMC_RESET (1 << 0) - #define FSMC_WAITON (1 << 1) - #define FSMC_ENABLE (1 << 2) - #define FSMC_DEVTYPE_NAND (1 << 3) - #define FSMC_DEVWID_8 (0 << 4) - #define FSMC_DEVWID_16 (1 << 4) - #define FSMC_ECCEN (1 << 6) - #define FSMC_ECCPLEN_512 (0 << 7) - #define FSMC_ECCPLEN_256 (1 << 7) - #define FSMC_TCLR_1 (1) - #define FSMC_TCLR_SHIFT (9) - #define FSMC_TCLR_MASK (0xF) - #define FSMC_TAR_1 (1) - #define FSMC_TAR_SHIFT (13) - #define FSMC_TAR_MASK (0xF) -#define STS 0x04 - /* sts register definitions */ - #define FSMC_CODE_RDY (1 << 15) -#define COMM 0x08 - /* comm register definitions */ - #define FSMC_TSET_0 0 - #define FSMC_TSET_SHIFT 0 - #define FSMC_TSET_MASK 0xFF - #define FSMC_TWAIT_6 6 - #define FSMC_TWAIT_SHIFT 8 - #define FSMC_TWAIT_MASK 0xFF - #define FSMC_THOLD_4 4 - #define FSMC_THOLD_SHIFT 16 - #define FSMC_THOLD_MASK 0xFF - #define FSMC_THIZ_1 1 - #define FSMC_THIZ_SHIFT 24 - #define FSMC_THIZ_MASK 0xFF -#define ATTRIB 0x0C -#define IOATA 0x10 -#define ECC1 0x14 -#define ECC2 0x18 -#define ECC3 0x1C -#define FSMC_NAND_BANK_SZ 0x20 - -#define FSMC_NAND_REG(base, bank, reg) (base + FSMC_NOR_REG_SIZE + \ - (FSMC_NAND_BANK_SZ * (bank)) + \ - reg) - -#define FSMC_BUSY_WAIT_TIMEOUT (1 * HZ) - -struct fsmc_nand_timings { - uint8_t tclr; - uint8_t tar; - uint8_t thiz; - uint8_t thold; - uint8_t twait; - uint8_t tset; -}; - -enum access_mode { - USE_DMA_ACCESS = 1, - USE_WORD_ACCESS, -}; - -/** - * struct fsmc_nand_data - structure for FSMC NAND device state - * - * @pid: Part ID on the AMBA PrimeCell format - * @mtd: MTD info for a NAND flash. - * @nand: Chip related info for a NAND flash. - * @partitions: Partition info for a NAND Flash. - * @nr_partitions: Total number of partition of a NAND flash. - * - * @bank: Bank number for probed device. - * @clk: Clock structure for FSMC. - * - * @read_dma_chan: DMA channel for read access - * @write_dma_chan: DMA channel for write access to NAND - * @dma_access_complete: Completion structure - * - * @data_pa: NAND Physical port for Data. - * @data_va: NAND port for Data. - * @cmd_va: NAND port for Command. - * @addr_va: NAND port for Address. - * @regs_va: FSMC regs base address. - */ -struct fsmc_nand_data { - u32 pid; - struct nand_chip nand; - - unsigned int bank; - struct device *dev; - enum access_mode mode; - struct clk *clk; - - /* DMA related objects */ - struct dma_chan *read_dma_chan; - struct dma_chan *write_dma_chan; - struct completion dma_access_complete; - - struct fsmc_nand_timings *dev_timings; - - dma_addr_t data_pa; - void __iomem *data_va; - void __iomem *cmd_va; - void __iomem *addr_va; - void __iomem *regs_va; -}; - -static int fsmc_ecc1_ooblayout_ecc(struct mtd_info *mtd, int section, - struct mtd_oob_region *oobregion) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - - if (section >= chip->ecc.steps) - return -ERANGE; - - oobregion->offset = (section * 16) + 2; - oobregion->length = 3; - - return 0; -} - -static int fsmc_ecc1_ooblayout_free(struct mtd_info *mtd, int section, - struct mtd_oob_region *oobregion) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - - if (section >= chip->ecc.steps) - return -ERANGE; - - oobregion->offset = (section * 16) + 8; - - if (section < chip->ecc.steps - 1) - oobregion->length = 8; - else - oobregion->length = mtd->oobsize - oobregion->offset; - - return 0; -} - -static const struct mtd_ooblayout_ops fsmc_ecc1_ooblayout_ops = { - .ecc = fsmc_ecc1_ooblayout_ecc, - .free = fsmc_ecc1_ooblayout_free, -}; - -/* - * ECC placement definitions in oobfree type format. - * There are 13 bytes of ecc for every 512 byte block and it has to be read - * consecutively and immediately after the 512 byte data block for hardware to - * generate the error bit offsets in 512 byte data. - */ -static int fsmc_ecc4_ooblayout_ecc(struct mtd_info *mtd, int section, - struct mtd_oob_region *oobregion) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - - if (section >= chip->ecc.steps) - return -ERANGE; - - oobregion->length = chip->ecc.bytes; - - if (!section && mtd->writesize <= 512) - oobregion->offset = 0; - else - oobregion->offset = (section * 16) + 2; - - return 0; -} - -static int fsmc_ecc4_ooblayout_free(struct mtd_info *mtd, int section, - struct mtd_oob_region *oobregion) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - - if (section >= chip->ecc.steps) - return -ERANGE; - - oobregion->offset = (section * 16) + 15; - - if (section < chip->ecc.steps - 1) - oobregion->length = 3; - else - oobregion->length = mtd->oobsize - oobregion->offset; - - return 0; -} - -static const struct mtd_ooblayout_ops fsmc_ecc4_ooblayout_ops = { - .ecc = fsmc_ecc4_ooblayout_ecc, - .free = fsmc_ecc4_ooblayout_free, -}; - -static inline struct fsmc_nand_data *mtd_to_fsmc(struct mtd_info *mtd) -{ - return container_of(mtd_to_nand(mtd), struct fsmc_nand_data, nand); -} - -/* - * fsmc_cmd_ctrl - For facilitaing Hardware access - * This routine allows hardware specific access to control-lines(ALE,CLE) - */ -static void fsmc_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl) -{ - struct nand_chip *this = mtd_to_nand(mtd); - struct fsmc_nand_data *host = mtd_to_fsmc(mtd); - void __iomem *regs = host->regs_va; - unsigned int bank = host->bank; - - if (ctrl & NAND_CTRL_CHANGE) { - u32 pc; - - if (ctrl & NAND_CLE) { - this->IO_ADDR_R = host->cmd_va; - this->IO_ADDR_W = host->cmd_va; - } else if (ctrl & NAND_ALE) { - this->IO_ADDR_R = host->addr_va; - this->IO_ADDR_W = host->addr_va; - } else { - this->IO_ADDR_R = host->data_va; - this->IO_ADDR_W = host->data_va; - } - - pc = readl(FSMC_NAND_REG(regs, bank, PC)); - if (ctrl & NAND_NCE) - pc |= FSMC_ENABLE; - else - pc &= ~FSMC_ENABLE; - writel_relaxed(pc, FSMC_NAND_REG(regs, bank, PC)); - } - - mb(); - - if (cmd != NAND_CMD_NONE) - writeb_relaxed(cmd, this->IO_ADDR_W); -} - -/* - * fsmc_nand_setup - FSMC (Flexible Static Memory Controller) init routine - * - * This routine initializes timing parameters related to NAND memory access in - * FSMC registers - */ -static void fsmc_nand_setup(struct fsmc_nand_data *host, - struct fsmc_nand_timings *tims) -{ - uint32_t value = FSMC_DEVTYPE_NAND | FSMC_ENABLE | FSMC_WAITON; - uint32_t tclr, tar, thiz, thold, twait, tset; - unsigned int bank = host->bank; - void __iomem *regs = host->regs_va; - - tclr = (tims->tclr & FSMC_TCLR_MASK) << FSMC_TCLR_SHIFT; - tar = (tims->tar & FSMC_TAR_MASK) << FSMC_TAR_SHIFT; - thiz = (tims->thiz & FSMC_THIZ_MASK) << FSMC_THIZ_SHIFT; - thold = (tims->thold & FSMC_THOLD_MASK) << FSMC_THOLD_SHIFT; - twait = (tims->twait & FSMC_TWAIT_MASK) << FSMC_TWAIT_SHIFT; - tset = (tims->tset & FSMC_TSET_MASK) << FSMC_TSET_SHIFT; - - if (host->nand.options & NAND_BUSWIDTH_16) - writel_relaxed(value | FSMC_DEVWID_16, - FSMC_NAND_REG(regs, bank, PC)); - else - writel_relaxed(value | FSMC_DEVWID_8, - FSMC_NAND_REG(regs, bank, PC)); - - writel_relaxed(readl(FSMC_NAND_REG(regs, bank, PC)) | tclr | tar, - FSMC_NAND_REG(regs, bank, PC)); - writel_relaxed(thiz | thold | twait | tset, - FSMC_NAND_REG(regs, bank, COMM)); - writel_relaxed(thiz | thold | twait | tset, - FSMC_NAND_REG(regs, bank, ATTRIB)); -} - -static int fsmc_calc_timings(struct fsmc_nand_data *host, - const struct nand_sdr_timings *sdrt, - struct fsmc_nand_timings *tims) -{ - unsigned long hclk = clk_get_rate(host->clk); - unsigned long hclkn = NSEC_PER_SEC / hclk; - uint32_t thiz, thold, twait, tset; - - if (sdrt->tRC_min < 30000) - return -EOPNOTSUPP; - - tims->tar = DIV_ROUND_UP(sdrt->tAR_min / 1000, hclkn) - 1; - if (tims->tar > FSMC_TAR_MASK) - tims->tar = FSMC_TAR_MASK; - tims->tclr = DIV_ROUND_UP(sdrt->tCLR_min / 1000, hclkn) - 1; - if (tims->tclr > FSMC_TCLR_MASK) - tims->tclr = FSMC_TCLR_MASK; - - thiz = sdrt->tCS_min - sdrt->tWP_min; - tims->thiz = DIV_ROUND_UP(thiz / 1000, hclkn); - - thold = sdrt->tDH_min; - if (thold < sdrt->tCH_min) - thold = sdrt->tCH_min; - if (thold < sdrt->tCLH_min) - thold = sdrt->tCLH_min; - if (thold < sdrt->tWH_min) - thold = sdrt->tWH_min; - if (thold < sdrt->tALH_min) - thold = sdrt->tALH_min; - if (thold < sdrt->tREH_min) - thold = sdrt->tREH_min; - tims->thold = DIV_ROUND_UP(thold / 1000, hclkn); - if (tims->thold == 0) - tims->thold = 1; - else if (tims->thold > FSMC_THOLD_MASK) - tims->thold = FSMC_THOLD_MASK; - - twait = max(sdrt->tRP_min, sdrt->tWP_min); - tims->twait = DIV_ROUND_UP(twait / 1000, hclkn) - 1; - if (tims->twait == 0) - tims->twait = 1; - else if (tims->twait > FSMC_TWAIT_MASK) - tims->twait = FSMC_TWAIT_MASK; - - tset = max(sdrt->tCS_min - sdrt->tWP_min, - sdrt->tCEA_max - sdrt->tREA_max); - tims->tset = DIV_ROUND_UP(tset / 1000, hclkn) - 1; - if (tims->tset == 0) - tims->tset = 1; - else if (tims->tset > FSMC_TSET_MASK) - tims->tset = FSMC_TSET_MASK; - - return 0; -} - -static int fsmc_setup_data_interface(struct mtd_info *mtd, int csline, - const struct nand_data_interface *conf) -{ - struct nand_chip *nand = mtd_to_nand(mtd); - struct fsmc_nand_data *host = nand_get_controller_data(nand); - struct fsmc_nand_timings tims; - const struct nand_sdr_timings *sdrt; - int ret; - - sdrt = nand_get_sdr_timings(conf); - if (IS_ERR(sdrt)) - return PTR_ERR(sdrt); - - ret = fsmc_calc_timings(host, sdrt, &tims); - if (ret) - return ret; - - if (csline == NAND_DATA_IFACE_CHECK_ONLY) - return 0; - - fsmc_nand_setup(host, &tims); - - return 0; -} - -/* - * fsmc_enable_hwecc - Enables Hardware ECC through FSMC registers - */ -static void fsmc_enable_hwecc(struct mtd_info *mtd, int mode) -{ - struct fsmc_nand_data *host = mtd_to_fsmc(mtd); - void __iomem *regs = host->regs_va; - uint32_t bank = host->bank; - - writel_relaxed(readl(FSMC_NAND_REG(regs, bank, PC)) & ~FSMC_ECCPLEN_256, - FSMC_NAND_REG(regs, bank, PC)); - writel_relaxed(readl(FSMC_NAND_REG(regs, bank, PC)) & ~FSMC_ECCEN, - FSMC_NAND_REG(regs, bank, PC)); - writel_relaxed(readl(FSMC_NAND_REG(regs, bank, PC)) | FSMC_ECCEN, - FSMC_NAND_REG(regs, bank, PC)); -} - -/* - * fsmc_read_hwecc_ecc4 - Hardware ECC calculator for ecc4 option supported by - * FSMC. ECC is 13 bytes for 512 bytes of data (supports error correction up to - * max of 8-bits) - */ -static int fsmc_read_hwecc_ecc4(struct mtd_info *mtd, const uint8_t *data, - uint8_t *ecc) -{ - struct fsmc_nand_data *host = mtd_to_fsmc(mtd); - void __iomem *regs = host->regs_va; - uint32_t bank = host->bank; - uint32_t ecc_tmp; - unsigned long deadline = jiffies + FSMC_BUSY_WAIT_TIMEOUT; - - do { - if (readl_relaxed(FSMC_NAND_REG(regs, bank, STS)) & FSMC_CODE_RDY) - break; - else - cond_resched(); - } while (!time_after_eq(jiffies, deadline)); - - if (time_after_eq(jiffies, deadline)) { - dev_err(host->dev, "calculate ecc timed out\n"); - return -ETIMEDOUT; - } - - ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC1)); - ecc[0] = (uint8_t) (ecc_tmp >> 0); - ecc[1] = (uint8_t) (ecc_tmp >> 8); - ecc[2] = (uint8_t) (ecc_tmp >> 16); - ecc[3] = (uint8_t) (ecc_tmp >> 24); - - ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC2)); - ecc[4] = (uint8_t) (ecc_tmp >> 0); - ecc[5] = (uint8_t) (ecc_tmp >> 8); - ecc[6] = (uint8_t) (ecc_tmp >> 16); - ecc[7] = (uint8_t) (ecc_tmp >> 24); - - ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC3)); - ecc[8] = (uint8_t) (ecc_tmp >> 0); - ecc[9] = (uint8_t) (ecc_tmp >> 8); - ecc[10] = (uint8_t) (ecc_tmp >> 16); - ecc[11] = (uint8_t) (ecc_tmp >> 24); - - ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, STS)); - ecc[12] = (uint8_t) (ecc_tmp >> 16); - - return 0; -} - -/* - * fsmc_read_hwecc_ecc1 - Hardware ECC calculator for ecc1 option supported by - * FSMC. ECC is 3 bytes for 512 bytes of data (supports error correction up to - * max of 1-bit) - */ -static int fsmc_read_hwecc_ecc1(struct mtd_info *mtd, const uint8_t *data, - uint8_t *ecc) -{ - struct fsmc_nand_data *host = mtd_to_fsmc(mtd); - void __iomem *regs = host->regs_va; - uint32_t bank = host->bank; - uint32_t ecc_tmp; - - ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC1)); - ecc[0] = (uint8_t) (ecc_tmp >> 0); - ecc[1] = (uint8_t) (ecc_tmp >> 8); - ecc[2] = (uint8_t) (ecc_tmp >> 16); - - return 0; -} - -/* Count the number of 0's in buff upto a max of max_bits */ -static int count_written_bits(uint8_t *buff, int size, int max_bits) -{ - int k, written_bits = 0; - - for (k = 0; k < size; k++) { - written_bits += hweight8(~buff[k]); - if (written_bits > max_bits) - break; - } - - return written_bits; -} - -static void dma_complete(void *param) -{ - struct fsmc_nand_data *host = param; - - complete(&host->dma_access_complete); -} - -static int dma_xfer(struct fsmc_nand_data *host, void *buffer, int len, - enum dma_data_direction direction) -{ - struct dma_chan *chan; - struct dma_device *dma_dev; - struct dma_async_tx_descriptor *tx; - dma_addr_t dma_dst, dma_src, dma_addr; - dma_cookie_t cookie; - unsigned long flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT; - int ret; - unsigned long time_left; - - if (direction == DMA_TO_DEVICE) - chan = host->write_dma_chan; - else if (direction == DMA_FROM_DEVICE) - chan = host->read_dma_chan; - else - return -EINVAL; - - dma_dev = chan->device; - dma_addr = dma_map_single(dma_dev->dev, buffer, len, direction); - - if (direction == DMA_TO_DEVICE) { - dma_src = dma_addr; - dma_dst = host->data_pa; - } else { - dma_src = host->data_pa; - dma_dst = dma_addr; - } - - tx = dma_dev->device_prep_dma_memcpy(chan, dma_dst, dma_src, - len, flags); - if (!tx) { - dev_err(host->dev, "device_prep_dma_memcpy error\n"); - ret = -EIO; - goto unmap_dma; - } - - tx->callback = dma_complete; - tx->callback_param = host; - cookie = tx->tx_submit(tx); - - ret = dma_submit_error(cookie); - if (ret) { - dev_err(host->dev, "dma_submit_error %d\n", cookie); - goto unmap_dma; - } - - dma_async_issue_pending(chan); - - time_left = - wait_for_completion_timeout(&host->dma_access_complete, - msecs_to_jiffies(3000)); - if (time_left == 0) { - dmaengine_terminate_all(chan); - dev_err(host->dev, "wait_for_completion_timeout\n"); - ret = -ETIMEDOUT; - goto unmap_dma; - } - - ret = 0; - -unmap_dma: - dma_unmap_single(dma_dev->dev, dma_addr, len, direction); - - return ret; -} - -/* - * fsmc_write_buf - write buffer to chip - * @mtd: MTD device structure - * @buf: data buffer - * @len: number of bytes to write - */ -static void fsmc_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len) -{ - int i; - struct nand_chip *chip = mtd_to_nand(mtd); - - if (IS_ALIGNED((uint32_t)buf, sizeof(uint32_t)) && - IS_ALIGNED(len, sizeof(uint32_t))) { - uint32_t *p = (uint32_t *)buf; - len = len >> 2; - for (i = 0; i < len; i++) - writel_relaxed(p[i], chip->IO_ADDR_W); - } else { - for (i = 0; i < len; i++) - writeb_relaxed(buf[i], chip->IO_ADDR_W); - } -} - -/* - * fsmc_read_buf - read chip data into buffer - * @mtd: MTD device structure - * @buf: buffer to store date - * @len: number of bytes to read - */ -static void fsmc_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) -{ - int i; - struct nand_chip *chip = mtd_to_nand(mtd); - - if (IS_ALIGNED((uint32_t)buf, sizeof(uint32_t)) && - IS_ALIGNED(len, sizeof(uint32_t))) { - uint32_t *p = (uint32_t *)buf; - len = len >> 2; - for (i = 0; i < len; i++) - p[i] = readl_relaxed(chip->IO_ADDR_R); - } else { - for (i = 0; i < len; i++) - buf[i] = readb_relaxed(chip->IO_ADDR_R); - } -} - -/* - * fsmc_read_buf_dma - read chip data into buffer - * @mtd: MTD device structure - * @buf: buffer to store date - * @len: number of bytes to read - */ -static void fsmc_read_buf_dma(struct mtd_info *mtd, uint8_t *buf, int len) -{ - struct fsmc_nand_data *host = mtd_to_fsmc(mtd); - - dma_xfer(host, buf, len, DMA_FROM_DEVICE); -} - -/* - * fsmc_write_buf_dma - write buffer to chip - * @mtd: MTD device structure - * @buf: data buffer - * @len: number of bytes to write - */ -static void fsmc_write_buf_dma(struct mtd_info *mtd, const uint8_t *buf, - int len) -{ - struct fsmc_nand_data *host = mtd_to_fsmc(mtd); - - dma_xfer(host, (void *)buf, len, DMA_TO_DEVICE); -} - -/* - * fsmc_read_page_hwecc - * @mtd: mtd info structure - * @chip: nand chip info structure - * @buf: buffer to store read data - * @oob_required: caller expects OOB data read to chip->oob_poi - * @page: page number to read - * - * This routine is needed for fsmc version 8 as reading from NAND chip has to be - * performed in a strict sequence as follows: - * data(512 byte) -> ecc(13 byte) - * After this read, fsmc hardware generates and reports error data bits(up to a - * max of 8 bits) - */ -static int fsmc_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip, - uint8_t *buf, int oob_required, int page) -{ - int i, j, s, stat, eccsize = chip->ecc.size; - int eccbytes = chip->ecc.bytes; - int eccsteps = chip->ecc.steps; - uint8_t *p = buf; - uint8_t *ecc_calc = chip->ecc.calc_buf; - uint8_t *ecc_code = chip->ecc.code_buf; - int off, len, group = 0; - /* - * ecc_oob is intentionally taken as uint16_t. In 16bit devices, we - * end up reading 14 bytes (7 words) from oob. The local array is - * to maintain word alignment - */ - uint16_t ecc_oob[7]; - uint8_t *oob = (uint8_t *)&ecc_oob[0]; - unsigned int max_bitflips = 0; - - for (i = 0, s = 0; s < eccsteps; s++, i += eccbytes, p += eccsize) { - nand_read_page_op(chip, page, s * eccsize, NULL, 0); - chip->ecc.hwctl(mtd, NAND_ECC_READ); - chip->read_buf(mtd, p, eccsize); - - for (j = 0; j < eccbytes;) { - struct mtd_oob_region oobregion; - int ret; - - ret = mtd_ooblayout_ecc(mtd, group++, &oobregion); - if (ret) - return ret; - - off = oobregion.offset; - len = oobregion.length; - - /* - * length is intentionally kept a higher multiple of 2 - * to read at least 13 bytes even in case of 16 bit NAND - * devices - */ - if (chip->options & NAND_BUSWIDTH_16) - len = roundup(len, 2); - - nand_read_oob_op(chip, page, off, oob + j, len); - j += len; - } - - memcpy(&ecc_code[i], oob, chip->ecc.bytes); - chip->ecc.calculate(mtd, p, &ecc_calc[i]); - - stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]); - if (stat < 0) { - mtd->ecc_stats.failed++; - } else { - mtd->ecc_stats.corrected += stat; - max_bitflips = max_t(unsigned int, max_bitflips, stat); - } - } - - return max_bitflips; -} - -/* - * fsmc_bch8_correct_data - * @mtd: mtd info structure - * @dat: buffer of read data - * @read_ecc: ecc read from device spare area - * @calc_ecc: ecc calculated from read data - * - * calc_ecc is a 104 bit information containing maximum of 8 error - * offset informations of 13 bits each in 512 bytes of read data. - */ -static int fsmc_bch8_correct_data(struct mtd_info *mtd, uint8_t *dat, - uint8_t *read_ecc, uint8_t *calc_ecc) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct fsmc_nand_data *host = mtd_to_fsmc(mtd); - void __iomem *regs = host->regs_va; - unsigned int bank = host->bank; - uint32_t err_idx[8]; - uint32_t num_err, i; - uint32_t ecc1, ecc2, ecc3, ecc4; - - num_err = (readl_relaxed(FSMC_NAND_REG(regs, bank, STS)) >> 10) & 0xF; - - /* no bit flipping */ - if (likely(num_err == 0)) - return 0; - - /* too many errors */ - if (unlikely(num_err > 8)) { - /* - * This is a temporary erase check. A newly erased page read - * would result in an ecc error because the oob data is also - * erased to FF and the calculated ecc for an FF data is not - * FF..FF. - * This is a workaround to skip performing correction in case - * data is FF..FF - * - * Logic: - * For every page, each bit written as 0 is counted until these - * number of bits are greater than 8 (the maximum correction - * capability of FSMC for each 512 + 13 bytes) - */ - - int bits_ecc = count_written_bits(read_ecc, chip->ecc.bytes, 8); - int bits_data = count_written_bits(dat, chip->ecc.size, 8); - - if ((bits_ecc + bits_data) <= 8) { - if (bits_data) - memset(dat, 0xff, chip->ecc.size); - return bits_data; - } - - return -EBADMSG; - } - - /* - * ------------------- calc_ecc[] bit wise -----------|--13 bits--| - * |---idx[7]--|--.....-----|---idx[2]--||---idx[1]--||---idx[0]--| - * - * calc_ecc is a 104 bit information containing maximum of 8 error - * offset informations of 13 bits each. calc_ecc is copied into a - * uint64_t array and error offset indexes are populated in err_idx - * array - */ - ecc1 = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC1)); - ecc2 = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC2)); - ecc3 = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC3)); - ecc4 = readl_relaxed(FSMC_NAND_REG(regs, bank, STS)); - - err_idx[0] = (ecc1 >> 0) & 0x1FFF; - err_idx[1] = (ecc1 >> 13) & 0x1FFF; - err_idx[2] = (((ecc2 >> 0) & 0x7F) << 6) | ((ecc1 >> 26) & 0x3F); - err_idx[3] = (ecc2 >> 7) & 0x1FFF; - err_idx[4] = (((ecc3 >> 0) & 0x1) << 12) | ((ecc2 >> 20) & 0xFFF); - err_idx[5] = (ecc3 >> 1) & 0x1FFF; - err_idx[6] = (ecc3 >> 14) & 0x1FFF; - err_idx[7] = (((ecc4 >> 16) & 0xFF) << 5) | ((ecc3 >> 27) & 0x1F); - - i = 0; - while (num_err--) { - change_bit(0, (unsigned long *)&err_idx[i]); - change_bit(1, (unsigned long *)&err_idx[i]); - - if (err_idx[i] < chip->ecc.size * 8) { - change_bit(err_idx[i], (unsigned long *)dat); - i++; - } - } - return i; -} - -static bool filter(struct dma_chan *chan, void *slave) -{ - chan->private = slave; - return true; -} - -static int fsmc_nand_probe_config_dt(struct platform_device *pdev, - struct fsmc_nand_data *host, - struct nand_chip *nand) -{ - struct device_node *np = pdev->dev.of_node; - u32 val; - int ret; - - nand->options = 0; - - if (!of_property_read_u32(np, "bank-width", &val)) { - if (val == 2) { - nand->options |= NAND_BUSWIDTH_16; - } else if (val != 1) { - dev_err(&pdev->dev, "invalid bank-width %u\n", val); - return -EINVAL; - } - } - - if (of_get_property(np, "nand-skip-bbtscan", NULL)) - nand->options |= NAND_SKIP_BBTSCAN; - - host->dev_timings = devm_kzalloc(&pdev->dev, - sizeof(*host->dev_timings), GFP_KERNEL); - if (!host->dev_timings) - return -ENOMEM; - ret = of_property_read_u8_array(np, "timings", (u8 *)host->dev_timings, - sizeof(*host->dev_timings)); - if (ret) - host->dev_timings = NULL; - - /* Set default NAND bank to 0 */ - host->bank = 0; - if (!of_property_read_u32(np, "bank", &val)) { - if (val > 3) { - dev_err(&pdev->dev, "invalid bank %u\n", val); - return -EINVAL; - } - host->bank = val; - } - return 0; -} - -/* - * fsmc_nand_probe - Probe function - * @pdev: platform device structure - */ -static int __init fsmc_nand_probe(struct platform_device *pdev) -{ - struct fsmc_nand_data *host; - struct mtd_info *mtd; - struct nand_chip *nand; - struct resource *res; - dma_cap_mask_t mask; - int ret = 0; - u32 pid; - int i; - - /* Allocate memory for the device structure (and zero it) */ - host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL); - if (!host) - return -ENOMEM; - - nand = &host->nand; - - ret = fsmc_nand_probe_config_dt(pdev, host, nand); - if (ret) - return ret; - - res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_data"); - host->data_va = devm_ioremap_resource(&pdev->dev, res); - if (IS_ERR(host->data_va)) - return PTR_ERR(host->data_va); - - host->data_pa = (dma_addr_t)res->start; - - res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_addr"); - host->addr_va = devm_ioremap_resource(&pdev->dev, res); - if (IS_ERR(host->addr_va)) - return PTR_ERR(host->addr_va); - - res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_cmd"); - host->cmd_va = devm_ioremap_resource(&pdev->dev, res); - if (IS_ERR(host->cmd_va)) - return PTR_ERR(host->cmd_va); - - res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "fsmc_regs"); - host->regs_va = devm_ioremap_resource(&pdev->dev, res); - if (IS_ERR(host->regs_va)) - return PTR_ERR(host->regs_va); - - host->clk = devm_clk_get(&pdev->dev, NULL); - if (IS_ERR(host->clk)) { - dev_err(&pdev->dev, "failed to fetch block clock\n"); - return PTR_ERR(host->clk); - } - - ret = clk_prepare_enable(host->clk); - if (ret) - return ret; - - /* - * This device ID is actually a common AMBA ID as used on the - * AMBA PrimeCell bus. However it is not a PrimeCell. - */ - for (pid = 0, i = 0; i < 4; i++) - pid |= (readl(host->regs_va + resource_size(res) - 0x20 + 4 * i) & 255) << (i * 8); - host->pid = pid; - dev_info(&pdev->dev, "FSMC device partno %03x, manufacturer %02x, " - "revision %02x, config %02x\n", - AMBA_PART_BITS(pid), AMBA_MANF_BITS(pid), - AMBA_REV_BITS(pid), AMBA_CONFIG_BITS(pid)); - - host->dev = &pdev->dev; - - if (host->mode == USE_DMA_ACCESS) - init_completion(&host->dma_access_complete); - - /* Link all private pointers */ - mtd = nand_to_mtd(&host->nand); - nand_set_controller_data(nand, host); - nand_set_flash_node(nand, pdev->dev.of_node); - - mtd->dev.parent = &pdev->dev; - nand->IO_ADDR_R = host->data_va; - nand->IO_ADDR_W = host->data_va; - nand->cmd_ctrl = fsmc_cmd_ctrl; - nand->chip_delay = 30; - - /* - * Setup default ECC mode. nand_dt_init() called from nand_scan_ident() - * can overwrite this value if the DT provides a different value. - */ - nand->ecc.mode = NAND_ECC_HW; - nand->ecc.hwctl = fsmc_enable_hwecc; - nand->ecc.size = 512; - nand->badblockbits = 7; - - switch (host->mode) { - case USE_DMA_ACCESS: - dma_cap_zero(mask); - dma_cap_set(DMA_MEMCPY, mask); - host->read_dma_chan = dma_request_channel(mask, filter, NULL); - if (!host->read_dma_chan) { - dev_err(&pdev->dev, "Unable to get read dma channel\n"); - goto err_req_read_chnl; - } - host->write_dma_chan = dma_request_channel(mask, filter, NULL); - if (!host->write_dma_chan) { - dev_err(&pdev->dev, "Unable to get write dma channel\n"); - goto err_req_write_chnl; - } - nand->read_buf = fsmc_read_buf_dma; - nand->write_buf = fsmc_write_buf_dma; - break; - - default: - case USE_WORD_ACCESS: - nand->read_buf = fsmc_read_buf; - nand->write_buf = fsmc_write_buf; - break; - } - - if (host->dev_timings) - fsmc_nand_setup(host, host->dev_timings); - else - nand->setup_data_interface = fsmc_setup_data_interface; - - if (AMBA_REV_BITS(host->pid) >= 8) { - nand->ecc.read_page = fsmc_read_page_hwecc; - nand->ecc.calculate = fsmc_read_hwecc_ecc4; - nand->ecc.correct = fsmc_bch8_correct_data; - nand->ecc.bytes = 13; - nand->ecc.strength = 8; - } - - /* - * Scan to find existence of the device - */ - ret = nand_scan_ident(mtd, 1, NULL); - if (ret) { - dev_err(&pdev->dev, "No NAND Device found!\n"); - goto err_scan_ident; - } - - if (AMBA_REV_BITS(host->pid) >= 8) { - switch (mtd->oobsize) { - case 16: - case 64: - case 128: - case 224: - case 256: - break; - default: - dev_warn(&pdev->dev, "No oob scheme defined for oobsize %d\n", - mtd->oobsize); - ret = -EINVAL; - goto err_probe; - } - - mtd_set_ooblayout(mtd, &fsmc_ecc4_ooblayout_ops); - } else { - switch (nand->ecc.mode) { - case NAND_ECC_HW: - dev_info(&pdev->dev, "Using 1-bit HW ECC scheme\n"); - nand->ecc.calculate = fsmc_read_hwecc_ecc1; - nand->ecc.correct = nand_correct_data; - nand->ecc.bytes = 3; - nand->ecc.strength = 1; - break; - - case NAND_ECC_SOFT: - if (nand->ecc.algo == NAND_ECC_BCH) { - dev_info(&pdev->dev, "Using 4-bit SW BCH ECC scheme\n"); - break; - } - - case NAND_ECC_ON_DIE: - break; - - default: - dev_err(&pdev->dev, "Unsupported ECC mode!\n"); - goto err_probe; - } - - /* - * Don't set layout for BCH4 SW ECC. This will be - * generated later in nand_bch_init() later. - */ - if (nand->ecc.mode == NAND_ECC_HW) { - switch (mtd->oobsize) { - case 16: - case 64: - case 128: - mtd_set_ooblayout(mtd, - &fsmc_ecc1_ooblayout_ops); - break; - default: - dev_warn(&pdev->dev, - "No oob scheme defined for oobsize %d\n", - mtd->oobsize); - ret = -EINVAL; - goto err_probe; - } - } - } - - /* Second stage of scan to fill MTD data-structures */ - ret = nand_scan_tail(mtd); - if (ret) - goto err_probe; - - mtd->name = "nand"; - ret = mtd_device_register(mtd, NULL, 0); - if (ret) - goto err_probe; - - platform_set_drvdata(pdev, host); - dev_info(&pdev->dev, "FSMC NAND driver registration successful\n"); - return 0; - -err_probe: -err_scan_ident: - if (host->mode == USE_DMA_ACCESS) - dma_release_channel(host->write_dma_chan); -err_req_write_chnl: - if (host->mode == USE_DMA_ACCESS) - dma_release_channel(host->read_dma_chan); -err_req_read_chnl: - clk_disable_unprepare(host->clk); - return ret; -} - -/* - * Clean up routine - */ -static int fsmc_nand_remove(struct platform_device *pdev) -{ - struct fsmc_nand_data *host = platform_get_drvdata(pdev); - - if (host) { - nand_release(nand_to_mtd(&host->nand)); - - if (host->mode == USE_DMA_ACCESS) { - dma_release_channel(host->write_dma_chan); - dma_release_channel(host->read_dma_chan); - } - clk_disable_unprepare(host->clk); - } - - return 0; -} - -#ifdef CONFIG_PM_SLEEP -static int fsmc_nand_suspend(struct device *dev) -{ - struct fsmc_nand_data *host = dev_get_drvdata(dev); - if (host) - clk_disable_unprepare(host->clk); - return 0; -} - -static int fsmc_nand_resume(struct device *dev) -{ - struct fsmc_nand_data *host = dev_get_drvdata(dev); - if (host) { - clk_prepare_enable(host->clk); - if (host->dev_timings) - fsmc_nand_setup(host, host->dev_timings); - } - return 0; -} -#endif - -static SIMPLE_DEV_PM_OPS(fsmc_nand_pm_ops, fsmc_nand_suspend, fsmc_nand_resume); - -static const struct of_device_id fsmc_nand_id_table[] = { - { .compatible = "st,spear600-fsmc-nand" }, - { .compatible = "stericsson,fsmc-nand" }, - {} -}; -MODULE_DEVICE_TABLE(of, fsmc_nand_id_table); - -static struct platform_driver fsmc_nand_driver = { - .remove = fsmc_nand_remove, - .driver = { - .name = "fsmc-nand", - .of_match_table = fsmc_nand_id_table, - .pm = &fsmc_nand_pm_ops, - }, -}; - -module_platform_driver_probe(fsmc_nand_driver, fsmc_nand_probe); - -MODULE_LICENSE("GPL"); -MODULE_AUTHOR("Vipin Kumar <vipin.kumar@st.com>, Ashish Priyadarshi"); -MODULE_DESCRIPTION("NAND driver for SPEAr Platforms"); |