summaryrefslogtreecommitdiff
path: root/drivers/media/platform
diff options
context:
space:
mode:
authorKieran Bingham <kieran+renesas@bingham.xyz>2016-06-30 16:41:23 +0300
committerMauro Carvalho Chehab <mchehab@s-opensource.com>2016-11-16 21:21:54 +0300
commit4710b752e029f3f82dd4a84d9dc61fe72c97bf82 (patch)
tree362820c35d0319ab5edf351377fdb6df3d951d24 /drivers/media/platform
parent3547d32be04506ad23346eca6ce8b745ef146fab (diff)
downloadlinux-4710b752e029f3f82dd4a84d9dc61fe72c97bf82.tar.xz
[media] v4l: Add Renesas R-Car FDP1 Driver
The FDP1 driver performs advanced de-interlacing on a memory 2 memory based video stream, and supports conversion from YCbCr/YUV to RGB pixel formats Signed-off-by: Kieran Bingham <kieran+renesas@bingham.xyz> Reviewed-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com> Signed-off-by: Laurent Pinchart <laurent.pinchart+renesas@ideasonboard.com> Signed-off-by: Mauro Carvalho Chehab <mchehab@s-opensource.com>
Diffstat (limited to 'drivers/media/platform')
-rw-r--r--drivers/media/platform/Kconfig13
-rw-r--r--drivers/media/platform/Makefile1
-rw-r--r--drivers/media/platform/rcar_fdp1.c2445
3 files changed, 2459 insertions, 0 deletions
diff --git a/drivers/media/platform/Kconfig b/drivers/media/platform/Kconfig
index 754edbf1a326..84f44098dc99 100644
--- a/drivers/media/platform/Kconfig
+++ b/drivers/media/platform/Kconfig
@@ -307,6 +307,19 @@ config VIDEO_SH_VEU
Support for the Video Engine Unit (VEU) on SuperH and
SH-Mobile SoCs.
+config VIDEO_RENESAS_FDP1
+ tristate "Renesas Fine Display Processor"
+ depends on VIDEO_DEV && VIDEO_V4L2 && HAS_DMA
+ depends on ARCH_SHMOBILE || COMPILE_TEST
+ select VIDEOBUF2_DMA_CONTIG
+ select V4L2_MEM2MEM_DEV
+ ---help---
+ This is a V4L2 driver for the Renesas Fine Display Processor
+ providing colour space conversion, and de-interlacing features.
+
+ To compile this driver as a module, choose M here: the module
+ will be called rcar_fdp1.
+
config VIDEO_RENESAS_JPU
tristate "Renesas JPEG Processing Unit"
depends on VIDEO_DEV && VIDEO_V4L2 && HAS_DMA
diff --git a/drivers/media/platform/Makefile b/drivers/media/platform/Makefile
index f842933d17de..5b3cb271d2b8 100644
--- a/drivers/media/platform/Makefile
+++ b/drivers/media/platform/Makefile
@@ -48,6 +48,7 @@ obj-$(CONFIG_VIDEO_SH_VOU) += sh_vou.o
obj-$(CONFIG_SOC_CAMERA) += soc_camera/
obj-$(CONFIG_VIDEO_RENESAS_FCP) += rcar-fcp.o
+obj-$(CONFIG_VIDEO_RENESAS_FDP1) += rcar_fdp1.o
obj-$(CONFIG_VIDEO_RENESAS_JPU) += rcar_jpu.o
obj-$(CONFIG_VIDEO_RENESAS_VSP1) += vsp1/
diff --git a/drivers/media/platform/rcar_fdp1.c b/drivers/media/platform/rcar_fdp1.c
new file mode 100644
index 000000000000..dd1a6ea17f22
--- /dev/null
+++ b/drivers/media/platform/rcar_fdp1.c
@@ -0,0 +1,2445 @@
+/*
+ * Renesas RCar Fine Display Processor
+ *
+ * Video format converter and frame deinterlacer device.
+ *
+ * Author: Kieran Bingham, <kieran@bingham.xyz>
+ * Copyright (c) 2016 Renesas Electronics Corporation.
+ *
+ * This code is developed and inspired from the vim2m, rcar_jpu,
+ * m2m-deinterlace, and vsp1 drivers.
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by the
+ * Free Software Foundation; either version 2 of the
+ * License, or (at your option) any later version
+ */
+
+#include <linux/clk.h>
+#include <linux/delay.h>
+#include <linux/dma-mapping.h>
+#include <linux/fs.h>
+#include <linux/interrupt.h>
+#include <linux/module.h>
+#include <linux/of.h>
+#include <linux/of_device.h>
+#include <linux/platform_device.h>
+#include <linux/pm_runtime.h>
+#include <linux/sched.h>
+#include <linux/slab.h>
+#include <linux/timer.h>
+#include <media/rcar-fcp.h>
+#include <media/v4l2-ctrls.h>
+#include <media/v4l2-device.h>
+#include <media/v4l2-event.h>
+#include <media/v4l2-ioctl.h>
+#include <media/v4l2-mem2mem.h>
+#include <media/videobuf2-dma-contig.h>
+
+static unsigned int debug;
+module_param(debug, uint, 0644);
+MODULE_PARM_DESC(debug, "activate debug info");
+
+/* Minimum and maximum frame width/height */
+#define FDP1_MIN_W 80U
+#define FDP1_MIN_H 80U
+
+#define FDP1_MAX_W 3840U
+#define FDP1_MAX_H 2160U
+
+#define FDP1_MAX_PLANES 3U
+#define FDP1_MAX_STRIDE 8190U
+
+/* Flags that indicate a format can be used for capture/output */
+#define FDP1_CAPTURE BIT(0)
+#define FDP1_OUTPUT BIT(1)
+
+#define DRIVER_NAME "rcar_fdp1"
+
+/* Number of Job's to have available on the processing queue */
+#define FDP1_NUMBER_JOBS 8
+
+#define dprintk(fdp1, fmt, arg...) \
+ v4l2_dbg(1, debug, &fdp1->v4l2_dev, "%s: " fmt, __func__, ## arg)
+
+/*
+ * FDP1 registers and bits
+ */
+
+/* FDP1 start register - Imm */
+#define FD1_CTL_CMD 0x0000
+#define FD1_CTL_CMD_STRCMD BIT(0)
+
+/* Sync generator register - Imm */
+#define FD1_CTL_SGCMD 0x0004
+#define FD1_CTL_SGCMD_SGEN BIT(0)
+
+/* Register set end register - Imm */
+#define FD1_CTL_REGEND 0x0008
+#define FD1_CTL_REGEND_REGEND BIT(0)
+
+/* Channel activation register - Vupdt */
+#define FD1_CTL_CHACT 0x000c
+#define FD1_CTL_CHACT_SMW BIT(9)
+#define FD1_CTL_CHACT_WR BIT(8)
+#define FD1_CTL_CHACT_SMR BIT(3)
+#define FD1_CTL_CHACT_RD2 BIT(2)
+#define FD1_CTL_CHACT_RD1 BIT(1)
+#define FD1_CTL_CHACT_RD0 BIT(0)
+
+/* Operation Mode Register - Vupdt */
+#define FD1_CTL_OPMODE 0x0010
+#define FD1_CTL_OPMODE_PRG BIT(4)
+#define FD1_CTL_OPMODE_VIMD_INTERRUPT (0 << 0)
+#define FD1_CTL_OPMODE_VIMD_BESTEFFORT (1 << 0)
+#define FD1_CTL_OPMODE_VIMD_NOINTERRUPT (2 << 0)
+
+#define FD1_CTL_VPERIOD 0x0014
+#define FD1_CTL_CLKCTRL 0x0018
+#define FD1_CTL_CLKCTRL_CSTP_N BIT(0)
+
+/* Software reset register */
+#define FD1_CTL_SRESET 0x001c
+#define FD1_CTL_SRESET_SRST BIT(0)
+
+/* Control status register (V-update-status) */
+#define FD1_CTL_STATUS 0x0024
+#define FD1_CTL_STATUS_VINT_CNT_MASK GENMASK(31, 16)
+#define FD1_CTL_STATUS_VINT_CNT_SHIFT 16
+#define FD1_CTL_STATUS_SGREGSET BIT(10)
+#define FD1_CTL_STATUS_SGVERR BIT(9)
+#define FD1_CTL_STATUS_SGFREND BIT(8)
+#define FD1_CTL_STATUS_BSY BIT(0)
+
+#define FD1_CTL_VCYCLE_STAT 0x0028
+
+/* Interrupt enable register */
+#define FD1_CTL_IRQENB 0x0038
+/* Interrupt status register */
+#define FD1_CTL_IRQSTA 0x003c
+/* Interrupt control register */
+#define FD1_CTL_IRQFSET 0x0040
+
+/* Common IRQ Bit settings */
+#define FD1_CTL_IRQ_VERE BIT(16)
+#define FD1_CTL_IRQ_VINTE BIT(4)
+#define FD1_CTL_IRQ_FREE BIT(0)
+#define FD1_CTL_IRQ_MASK (FD1_CTL_IRQ_VERE | \
+ FD1_CTL_IRQ_VINTE | \
+ FD1_CTL_IRQ_FREE)
+
+/* RPF */
+#define FD1_RPF_SIZE 0x0060
+#define FD1_RPF_SIZE_MASK GENMASK(12, 0)
+#define FD1_RPF_SIZE_H_SHIFT 16
+#define FD1_RPF_SIZE_V_SHIFT 0
+
+#define FD1_RPF_FORMAT 0x0064
+#define FD1_RPF_FORMAT_CIPM BIT(16)
+#define FD1_RPF_FORMAT_RSPYCS BIT(13)
+#define FD1_RPF_FORMAT_RSPUVS BIT(12)
+#define FD1_RPF_FORMAT_CF BIT(8)
+
+#define FD1_RPF_PSTRIDE 0x0068
+#define FD1_RPF_PSTRIDE_Y_SHIFT 16
+#define FD1_RPF_PSTRIDE_C_SHIFT 0
+
+/* RPF0 Source Component Y Address register */
+#define FD1_RPF0_ADDR_Y 0x006c
+
+/* RPF1 Current Picture Registers */
+#define FD1_RPF1_ADDR_Y 0x0078
+#define FD1_RPF1_ADDR_C0 0x007c
+#define FD1_RPF1_ADDR_C1 0x0080
+
+/* RPF2 next picture register */
+#define FD1_RPF2_ADDR_Y 0x0084
+
+#define FD1_RPF_SMSK_ADDR 0x0090
+#define FD1_RPF_SWAP 0x0094
+
+/* WPF */
+#define FD1_WPF_FORMAT 0x00c0
+#define FD1_WPF_FORMAT_PDV_SHIFT 24
+#define FD1_WPF_FORMAT_FCNL BIT(20)
+#define FD1_WPF_FORMAT_WSPYCS BIT(15)
+#define FD1_WPF_FORMAT_WSPUVS BIT(14)
+#define FD1_WPF_FORMAT_WRTM_601_16 (0 << 9)
+#define FD1_WPF_FORMAT_WRTM_601_0 (1 << 9)
+#define FD1_WPF_FORMAT_WRTM_709_16 (2 << 9)
+#define FD1_WPF_FORMAT_CSC BIT(8)
+
+#define FD1_WPF_RNDCTL 0x00c4
+#define FD1_WPF_RNDCTL_CBRM BIT(28)
+#define FD1_WPF_RNDCTL_CLMD_NOCLIP (0 << 12)
+#define FD1_WPF_RNDCTL_CLMD_CLIP_16_235 (1 << 12)
+#define FD1_WPF_RNDCTL_CLMD_CLIP_1_254 (2 << 12)
+
+#define FD1_WPF_PSTRIDE 0x00c8
+#define FD1_WPF_PSTRIDE_Y_SHIFT 16
+#define FD1_WPF_PSTRIDE_C_SHIFT 0
+
+/* WPF Destination picture */
+#define FD1_WPF_ADDR_Y 0x00cc
+#define FD1_WPF_ADDR_C0 0x00d0
+#define FD1_WPF_ADDR_C1 0x00d4
+#define FD1_WPF_SWAP 0x00d8
+#define FD1_WPF_SWAP_OSWAP_SHIFT 0
+#define FD1_WPF_SWAP_SSWAP_SHIFT 4
+
+/* WPF/RPF Common */
+#define FD1_RWPF_SWAP_BYTE BIT(0)
+#define FD1_RWPF_SWAP_WORD BIT(1)
+#define FD1_RWPF_SWAP_LWRD BIT(2)
+#define FD1_RWPF_SWAP_LLWD BIT(3)
+
+/* IPC */
+#define FD1_IPC_MODE 0x0100
+#define FD1_IPC_MODE_DLI BIT(8)
+#define FD1_IPC_MODE_DIM_ADAPT2D3D (0 << 0)
+#define FD1_IPC_MODE_DIM_FIXED2D (1 << 0)
+#define FD1_IPC_MODE_DIM_FIXED3D (2 << 0)
+#define FD1_IPC_MODE_DIM_PREVFIELD (3 << 0)
+#define FD1_IPC_MODE_DIM_NEXTFIELD (4 << 0)
+
+#define FD1_IPC_SMSK_THRESH 0x0104
+#define FD1_IPC_SMSK_THRESH_CONST 0x00010002
+
+#define FD1_IPC_COMB_DET 0x0108
+#define FD1_IPC_COMB_DET_CONST 0x00200040
+
+#define FD1_IPC_MOTDEC 0x010c
+#define FD1_IPC_MOTDEC_CONST 0x00008020
+
+/* DLI registers */
+#define FD1_IPC_DLI_BLEND 0x0120
+#define FD1_IPC_DLI_BLEND_CONST 0x0080ff02
+
+#define FD1_IPC_DLI_HGAIN 0x0124
+#define FD1_IPC_DLI_HGAIN_CONST 0x001000ff
+
+#define FD1_IPC_DLI_SPRS 0x0128
+#define FD1_IPC_DLI_SPRS_CONST 0x009004ff
+
+#define FD1_IPC_DLI_ANGLE 0x012c
+#define FD1_IPC_DLI_ANGLE_CONST 0x0004080c
+
+#define FD1_IPC_DLI_ISOPIX0 0x0130
+#define FD1_IPC_DLI_ISOPIX0_CONST 0xff10ff10
+
+#define FD1_IPC_DLI_ISOPIX1 0x0134
+#define FD1_IPC_DLI_ISOPIX1_CONST 0x0000ff10
+
+/* Sensor registers */
+#define FD1_IPC_SENSOR_TH0 0x0140
+#define FD1_IPC_SENSOR_TH0_CONST 0x20208080
+
+#define FD1_IPC_SENSOR_TH1 0x0144
+#define FD1_IPC_SENSOR_TH1_CONST 0
+
+#define FD1_IPC_SENSOR_CTL0 0x0170
+#define FD1_IPC_SENSOR_CTL0_CONST 0x00002201
+
+#define FD1_IPC_SENSOR_CTL1 0x0174
+#define FD1_IPC_SENSOR_CTL1_CONST 0
+
+#define FD1_IPC_SENSOR_CTL2 0x0178
+#define FD1_IPC_SENSOR_CTL2_X_SHIFT 16
+#define FD1_IPC_SENSOR_CTL2_Y_SHIFT 0
+
+#define FD1_IPC_SENSOR_CTL3 0x017c
+#define FD1_IPC_SENSOR_CTL3_0_SHIFT 16
+#define FD1_IPC_SENSOR_CTL3_1_SHIFT 0
+
+/* Line memory pixel number register */
+#define FD1_IPC_LMEM 0x01e0
+#define FD1_IPC_LMEM_LINEAR 1024
+#define FD1_IPC_LMEM_TILE 960
+
+/* Internal Data (HW Version) */
+#define FD1_IP_INTDATA 0x0800
+#define FD1_IP_H3 0x02010101
+#define FD1_IP_M3W 0x02010202
+
+/* LUTs */
+#define FD1_LUT_DIF_ADJ 0x1000
+#define FD1_LUT_SAD_ADJ 0x1400
+#define FD1_LUT_BLD_GAIN 0x1800
+#define FD1_LUT_DIF_GAIN 0x1c00
+#define FD1_LUT_MDET 0x2000
+
+/**
+ * struct fdp1_fmt - The FDP1 internal format data
+ * @fourcc: the fourcc code, to match the V4L2 API
+ * @bpp: bits per pixel per plane
+ * @num_planes: number of planes
+ * @hsub: horizontal subsampling factor
+ * @vsub: vertical subsampling factor
+ * @fmt: 7-bit format code for the fdp1 hardware
+ * @swap_yc: the Y and C components are swapped (Y comes before C)
+ * @swap_uv: the U and V components are swapped (V comes before U)
+ * @swap: swap register control
+ * @types: types of queue this format is applicable to
+ */
+struct fdp1_fmt {
+ u32 fourcc;
+ u8 bpp[3];
+ u8 num_planes;
+ u8 hsub;
+ u8 vsub;
+ u8 fmt;
+ bool swap_yc;
+ bool swap_uv;
+ u8 swap;
+ u8 types;
+};
+
+static const struct fdp1_fmt fdp1_formats[] = {
+ /* RGB formats are only supported by the Write Pixel Formatter */
+
+ { V4L2_PIX_FMT_RGB332, { 8, 0, 0 }, 1, 1, 1, 0x00, false, false,
+ FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
+ FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
+ FDP1_CAPTURE },
+ { V4L2_PIX_FMT_XRGB444, { 16, 0, 0 }, 1, 1, 1, 0x01, false, false,
+ FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
+ FD1_RWPF_SWAP_WORD,
+ FDP1_CAPTURE },
+ { V4L2_PIX_FMT_XRGB555, { 16, 0, 0 }, 1, 1, 1, 0x04, false, false,
+ FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
+ FD1_RWPF_SWAP_WORD,
+ FDP1_CAPTURE },
+ { V4L2_PIX_FMT_RGB565, { 16, 0, 0 }, 1, 1, 1, 0x06, false, false,
+ FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
+ FD1_RWPF_SWAP_WORD,
+ FDP1_CAPTURE },
+ { V4L2_PIX_FMT_ABGR32, { 32, 0, 0 }, 1, 1, 1, 0x13, false, false,
+ FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD,
+ FDP1_CAPTURE },
+ { V4L2_PIX_FMT_XBGR32, { 32, 0, 0 }, 1, 1, 1, 0x13, false, false,
+ FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD,
+ FDP1_CAPTURE },
+ { V4L2_PIX_FMT_ARGB32, { 32, 0, 0 }, 1, 1, 1, 0x13, false, false,
+ FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
+ FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
+ FDP1_CAPTURE },
+ { V4L2_PIX_FMT_XRGB32, { 32, 0, 0 }, 1, 1, 1, 0x13, false, false,
+ FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
+ FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
+ FDP1_CAPTURE },
+ { V4L2_PIX_FMT_RGB24, { 24, 0, 0 }, 1, 1, 1, 0x15, false, false,
+ FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
+ FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
+ FDP1_CAPTURE },
+ { V4L2_PIX_FMT_BGR24, { 24, 0, 0 }, 1, 1, 1, 0x18, false, false,
+ FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
+ FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
+ FDP1_CAPTURE },
+ { V4L2_PIX_FMT_ARGB444, { 16, 0, 0 }, 1, 1, 1, 0x19, false, false,
+ FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
+ FD1_RWPF_SWAP_WORD,
+ FDP1_CAPTURE },
+ { V4L2_PIX_FMT_ARGB555, { 16, 0, 0 }, 1, 1, 1, 0x1b, false, false,
+ FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
+ FD1_RWPF_SWAP_WORD,
+ FDP1_CAPTURE },
+
+ /* YUV Formats are supported by Read and Write Pixel Formatters */
+
+ { V4L2_PIX_FMT_NV16M, { 8, 16, 0 }, 2, 2, 1, 0x41, false, false,
+ FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
+ FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
+ FDP1_CAPTURE | FDP1_OUTPUT },
+ { V4L2_PIX_FMT_NV61M, { 8, 16, 0 }, 2, 2, 1, 0x41, false, true,
+ FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
+ FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
+ FDP1_CAPTURE | FDP1_OUTPUT },
+ { V4L2_PIX_FMT_NV12M, { 8, 16, 0 }, 2, 2, 2, 0x42, false, false,
+ FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
+ FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
+ FDP1_CAPTURE | FDP1_OUTPUT },
+ { V4L2_PIX_FMT_NV21M, { 8, 16, 0 }, 2, 2, 2, 0x42, false, true,
+ FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
+ FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
+ FDP1_CAPTURE | FDP1_OUTPUT },
+ { V4L2_PIX_FMT_UYVY, { 16, 0, 0 }, 1, 2, 1, 0x47, false, false,
+ FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
+ FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
+ FDP1_CAPTURE | FDP1_OUTPUT },
+ { V4L2_PIX_FMT_VYUY, { 16, 0, 0 }, 1, 2, 1, 0x47, false, true,
+ FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
+ FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
+ FDP1_CAPTURE | FDP1_OUTPUT },
+ { V4L2_PIX_FMT_YUYV, { 16, 0, 0 }, 1, 2, 1, 0x47, true, false,
+ FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
+ FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
+ FDP1_CAPTURE | FDP1_OUTPUT },
+ { V4L2_PIX_FMT_YVYU, { 16, 0, 0 }, 1, 2, 1, 0x47, true, true,
+ FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
+ FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
+ FDP1_CAPTURE | FDP1_OUTPUT },
+ { V4L2_PIX_FMT_YUV444M, { 8, 8, 8 }, 3, 1, 1, 0x4a, false, false,
+ FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
+ FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
+ FDP1_CAPTURE | FDP1_OUTPUT },
+ { V4L2_PIX_FMT_YVU444M, { 8, 8, 8 }, 3, 1, 1, 0x4a, false, true,
+ FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
+ FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
+ FDP1_CAPTURE | FDP1_OUTPUT },
+ { V4L2_PIX_FMT_YUV422M, { 8, 8, 8 }, 3, 2, 1, 0x4b, false, false,
+ FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
+ FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
+ FDP1_CAPTURE | FDP1_OUTPUT },
+ { V4L2_PIX_FMT_YVU422M, { 8, 8, 8 }, 3, 2, 1, 0x4b, false, true,
+ FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
+ FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
+ FDP1_CAPTURE | FDP1_OUTPUT },
+ { V4L2_PIX_FMT_YUV420M, { 8, 8, 8 }, 3, 2, 2, 0x4c, false, false,
+ FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
+ FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
+ FDP1_CAPTURE | FDP1_OUTPUT },
+ { V4L2_PIX_FMT_YVU420M, { 8, 8, 8 }, 3, 2, 2, 0x4c, false, true,
+ FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
+ FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
+ FDP1_CAPTURE | FDP1_OUTPUT },
+};
+
+static int fdp1_fmt_is_rgb(const struct fdp1_fmt *fmt)
+{
+ return fmt->fmt <= 0x1b; /* Last RGB code */
+}
+
+/*
+ * FDP1 Lookup tables range from 0...255 only
+ *
+ * Each table must be less than 256 entries, and all tables
+ * are padded out to 256 entries by duplicating the last value.
+ */
+static const u8 fdp1_diff_adj[] = {
+ 0x00, 0x24, 0x43, 0x5e, 0x76, 0x8c, 0x9e, 0xaf,
+ 0xbd, 0xc9, 0xd4, 0xdd, 0xe4, 0xea, 0xef, 0xf3,
+ 0xf6, 0xf9, 0xfb, 0xfc, 0xfd, 0xfe, 0xfe, 0xff,
+};
+
+static const u8 fdp1_sad_adj[] = {
+ 0x00, 0x24, 0x43, 0x5e, 0x76, 0x8c, 0x9e, 0xaf,
+ 0xbd, 0xc9, 0xd4, 0xdd, 0xe4, 0xea, 0xef, 0xf3,
+ 0xf6, 0xf9, 0xfb, 0xfc, 0xfd, 0xfe, 0xfe, 0xff,
+};
+
+static const u8 fdp1_bld_gain[] = {
+ 0x80,
+};
+
+static const u8 fdp1_dif_gain[] = {
+ 0x80,
+};
+
+static const u8 fdp1_mdet[] = {
+ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
+ 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
+ 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
+ 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
+ 0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27,
+ 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f,
+ 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37,
+ 0x38, 0x39, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f,
+ 0x40, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47,
+ 0x48, 0x49, 0x4a, 0x4b, 0x4c, 0x4d, 0x4e, 0x4f,
+ 0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57,
+ 0x58, 0x59, 0x5a, 0x5b, 0x5c, 0x5d, 0x5e, 0x5f,
+ 0x60, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67,
+ 0x68, 0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f,
+ 0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77,
+ 0x78, 0x79, 0x7a, 0x7b, 0x7c, 0x7d, 0x7e, 0x7f,
+ 0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,
+ 0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f,
+ 0x90, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97,
+ 0x98, 0x99, 0x9a, 0x9b, 0x9c, 0x9d, 0x9e, 0x9f,
+ 0xa0, 0xa1, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7,
+ 0xa8, 0xa9, 0xaa, 0xab, 0xac, 0xad, 0xae, 0xaf,
+ 0xb0, 0xb1, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6, 0xb7,
+ 0xb8, 0xb9, 0xba, 0xbb, 0xbc, 0xbd, 0xbe, 0xbf,
+ 0xc0, 0xc1, 0xc2, 0xc3, 0xc4, 0xc5, 0xc6, 0xc7,
+ 0xc8, 0xc9, 0xca, 0xcb, 0xcc, 0xcd, 0xce, 0xcf,
+ 0xd0, 0xd1, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6, 0xd7,
+ 0xd8, 0xd9, 0xda, 0xdb, 0xdc, 0xdd, 0xde, 0xdf,
+ 0xe0, 0xe1, 0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7,
+ 0xe8, 0xe9, 0xea, 0xeb, 0xec, 0xed, 0xee, 0xef,
+ 0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7,
+ 0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xfe, 0xff
+};
+
+/* Per-queue, driver-specific private data */
+struct fdp1_q_data {
+ const struct fdp1_fmt *fmt;
+ struct v4l2_pix_format_mplane format;
+
+ unsigned int vsize;
+ unsigned int stride_y;
+ unsigned int stride_c;
+};
+
+static const struct fdp1_fmt *fdp1_find_format(u32 pixelformat)
+{
+ const struct fdp1_fmt *fmt;
+ unsigned int i;
+
+ for (i = 0; i < ARRAY_SIZE(fdp1_formats); i++) {
+ fmt = &fdp1_formats[i];
+ if (fmt->fourcc == pixelformat)
+ return fmt;
+ }
+
+ return NULL;
+}
+
+enum fdp1_deint_mode {
+ FDP1_PROGRESSIVE = 0, /* Must be zero when !deinterlacing */
+ FDP1_ADAPT2D3D,
+ FDP1_FIXED2D,
+ FDP1_FIXED3D,
+ FDP1_PREVFIELD,
+ FDP1_NEXTFIELD,
+};
+
+#define FDP1_DEINT_MODE_USES_NEXT(mode) \
+ (mode == FDP1_ADAPT2D3D || \
+ mode == FDP1_FIXED3D || \
+ mode == FDP1_NEXTFIELD)
+
+#define FDP1_DEINT_MODE_USES_PREV(mode) \
+ (mode == FDP1_ADAPT2D3D || \
+ mode == FDP1_FIXED3D || \
+ mode == FDP1_PREVFIELD)
+
+/*
+ * FDP1 operates on potentially 3 fields, which are tracked
+ * from the VB buffers using this context structure.
+ * Will always be a field or a full frame, never two fields.
+ */
+struct fdp1_field_buffer {
+ struct vb2_v4l2_buffer *vb;
+ dma_addr_t addrs[3];
+
+ /* Should be NONE:TOP:BOTTOM only */
+ enum v4l2_field field;
+
+ /* Flag to indicate this is the last field in the vb */
+ bool last_field;
+
+ /* Buffer queue lists */
+ struct list_head list;
+};
+
+struct fdp1_buffer {
+ struct v4l2_m2m_buffer m2m_buf;
+ struct fdp1_field_buffer fields[2];
+ unsigned int num_fields;
+};
+
+static inline struct fdp1_buffer *to_fdp1_buffer(struct vb2_v4l2_buffer *vb)
+{
+ return container_of(vb, struct fdp1_buffer, m2m_buf.vb);
+}
+
+struct fdp1_job {
+ struct fdp1_field_buffer *previous;
+ struct fdp1_field_buffer *active;
+ struct fdp1_field_buffer *next;
+ struct fdp1_field_buffer *dst;
+
+ /* A job can only be on one list at a time */
+ struct list_head list;
+};
+
+struct fdp1_dev {
+ struct v4l2_device v4l2_dev;
+ struct video_device vfd;
+
+ struct mutex dev_mutex;
+ spinlock_t irqlock;
+ spinlock_t device_process_lock;
+
+ void __iomem *regs;
+ unsigned int irq;
+ struct device *dev;
+
+ /* Job Queues */
+ struct fdp1_job jobs[FDP1_NUMBER_JOBS];
+ struct list_head free_job_list;
+ struct list_head queued_job_list;
+ struct list_head hw_job_list;
+
+ unsigned int clk_rate;
+
+ struct rcar_fcp_device *fcp;
+ struct v4l2_m2m_dev *m2m_dev;
+};
+
+struct fdp1_ctx {
+ struct v4l2_fh fh;
+ struct fdp1_dev *fdp1;
+
+ struct v4l2_ctrl_handler hdl;
+ unsigned int sequence;
+
+ /* Processed buffers in this transaction */
+ u8 num_processed;
+
+ /* Transaction length (i.e. how many buffers per transaction) */
+ u32 translen;
+
+ /* Abort requested by m2m */
+ int aborting;
+
+ /* Deinterlace processing mode */
+ enum fdp1_deint_mode deint_mode;
+
+ /*
+ * Adaptive 2D/3D mode uses a shared mask
+ * This is allocated at streamon, if the ADAPT2D3D mode
+ * is requested
+ */
+ unsigned int smsk_size;
+ dma_addr_t smsk_addr[2];
+ void *smsk_cpu;
+
+ /* Capture pipeline, can specify an alpha value
+ * for supported formats. 0-255 only
+ */
+ unsigned char alpha;
+
+ /* Source and destination queue data */
+ struct fdp1_q_data out_q; /* HW Source */
+ struct fdp1_q_data cap_q; /* HW Destination */
+
+ /*
+ * Field Queues
+ * Interlaced fields are used on 3 occasions, and tracked in this list.
+ *
+ * V4L2 Buffers are tracked inside the fdp1_buffer
+ * and released when the last 'field' completes
+ */
+ struct list_head fields_queue;
+ unsigned int buffers_queued;
+
+ /*
+ * For de-interlacing we need to track our previous buffer
+ * while preparing our job lists.
+ */
+ struct fdp1_field_buffer *previous;
+};
+
+static inline struct fdp1_ctx *fh_to_ctx(struct v4l2_fh *fh)
+{
+ return container_of(fh, struct fdp1_ctx, fh);
+}
+
+static struct fdp1_q_data *get_q_data(struct fdp1_ctx *ctx,
+ enum v4l2_buf_type type)
+{
+ if (V4L2_TYPE_IS_OUTPUT(type))
+ return &ctx->out_q;
+ else
+ return &ctx->cap_q;
+}
+
+/*
+ * list_remove_job: Take the first item off the specified job list
+ *
+ * Returns: pointer to a job, or NULL if the list is empty.
+ */
+static struct fdp1_job *list_remove_job(struct fdp1_dev *fdp1,
+ struct list_head *list)
+{
+ struct fdp1_job *job;
+ unsigned long flags;
+
+ spin_lock_irqsave(&fdp1->irqlock, flags);
+ job = list_first_entry_or_null(list, struct fdp1_job, list);
+ if (job)
+ list_del(&job->list);
+ spin_unlock_irqrestore(&fdp1->irqlock, flags);
+
+ return job;
+}
+
+/*
+ * list_add_job: Add a job to the specified job list
+ *
+ * Returns: void - always succeeds
+ */
+static void list_add_job(struct fdp1_dev *fdp1,
+ struct list_head *list,
+ struct fdp1_job *job)
+{
+ unsigned long flags;
+
+ spin_lock_irqsave(&fdp1->irqlock, flags);
+ list_add_tail(&job->list, list);
+ spin_unlock_irqrestore(&fdp1->irqlock, flags);
+}
+
+static struct fdp1_job *fdp1_job_alloc(struct fdp1_dev *fdp1)
+{
+ return list_remove_job(fdp1, &fdp1->free_job_list);
+}
+
+static void fdp1_job_free(struct fdp1_dev *fdp1, struct fdp1_job *job)
+{
+ /* Ensure that all residue from previous jobs is gone */
+ memset(job, 0, sizeof(struct fdp1_job));
+
+ list_add_job(fdp1, &fdp1->free_job_list, job);
+}
+
+static void queue_job(struct fdp1_dev *fdp1, struct fdp1_job *job)
+{
+ list_add_job(fdp1, &fdp1->queued_job_list, job);
+}
+
+static struct fdp1_job *get_queued_job(struct fdp1_dev *fdp1)
+{
+ return list_remove_job(fdp1, &fdp1->queued_job_list);
+}
+
+static void queue_hw_job(struct fdp1_dev *fdp1, struct fdp1_job *job)
+{
+ list_add_job(fdp1, &fdp1->hw_job_list, job);
+}
+
+static struct fdp1_job *get_hw_queued_job(struct fdp1_dev *fdp1)
+{
+ return list_remove_job(fdp1, &fdp1->hw_job_list);
+}
+
+/*
+ * Buffer lists handling
+ */
+static void fdp1_field_complete(struct fdp1_ctx *ctx,
+ struct fdp1_field_buffer *fbuf)
+{
+ /* job->previous may be on the first field */
+ if (!fbuf)
+ return;
+
+ if (fbuf->last_field)
+ v4l2_m2m_buf_done(fbuf->vb, VB2_BUF_STATE_DONE);
+}
+
+static void fdp1_queue_field(struct fdp1_ctx *ctx,
+ struct fdp1_field_buffer *fbuf)
+{
+ unsigned long flags;
+
+ spin_lock_irqsave(&ctx->fdp1->irqlock, flags);
+ list_add_tail(&fbuf->list, &ctx->fields_queue);
+ spin_unlock_irqrestore(&ctx->fdp1->irqlock, flags);
+
+ ctx->buffers_queued++;
+}
+
+static struct fdp1_field_buffer *fdp1_dequeue_field(struct fdp1_ctx *ctx)
+{
+ struct fdp1_field_buffer *fbuf;
+ unsigned long flags;
+
+ ctx->buffers_queued--;
+
+ spin_lock_irqsave(&ctx->fdp1->irqlock, flags);
+ fbuf = list_first_entry_or_null(&ctx->fields_queue,
+ struct fdp1_field_buffer, list);
+ if (fbuf)
+ list_del(&fbuf->list);
+ spin_unlock_irqrestore(&ctx->fdp1->irqlock, flags);
+
+ return fbuf;
+}
+
+/*
+ * Return the next field in the queue - or NULL,
+ * without removing the item from the list
+ */
+static struct fdp1_field_buffer *fdp1_peek_queued_field(struct fdp1_ctx *ctx)
+{
+ struct fdp1_field_buffer *fbuf;
+ unsigned long flags;
+
+ spin_lock_irqsave(&ctx->fdp1->irqlock, flags);
+ fbuf = list_first_entry_or_null(&ctx->fields_queue,
+ struct fdp1_field_buffer, list);
+ spin_unlock_irqrestore(&ctx->fdp1->irqlock, flags);
+
+ return fbuf;
+}
+
+static u32 fdp1_read(struct fdp1_dev *fdp1, unsigned int reg)
+{
+ u32 value = ioread32(fdp1->regs + reg);
+
+ if (debug >= 2)
+ dprintk(fdp1, "Read 0x%08x from 0x%04x\n", value, reg);
+
+ return value;
+}
+
+static void fdp1_write(struct fdp1_dev *fdp1, u32 val, unsigned int reg)
+{
+ if (debug >= 2)
+ dprintk(fdp1, "Write 0x%08x to 0x%04x\n", val, reg);
+
+ iowrite32(val, fdp1->regs + reg);
+}
+
+/* IPC registers are to be programmed with constant values */
+static void fdp1_set_ipc_dli(struct fdp1_ctx *ctx)
+{
+ struct fdp1_dev *fdp1 = ctx->fdp1;
+
+ fdp1_write(fdp1, FD1_IPC_SMSK_THRESH_CONST, FD1_IPC_SMSK_THRESH);
+ fdp1_write(fdp1, FD1_IPC_COMB_DET_CONST, FD1_IPC_COMB_DET);
+ fdp1_write(fdp1, FD1_IPC_MOTDEC_CONST, FD1_IPC_MOTDEC);
+
+ fdp1_write(fdp1, FD1_IPC_DLI_BLEND_CONST, FD1_IPC_DLI_BLEND);
+ fdp1_write(fdp1, FD1_IPC_DLI_HGAIN_CONST, FD1_IPC_DLI_HGAIN);
+ fdp1_write(fdp1, FD1_IPC_DLI_SPRS_CONST, FD1_IPC_DLI_SPRS);
+ fdp1_write(fdp1, FD1_IPC_DLI_ANGLE_CONST, FD1_IPC_DLI_ANGLE);
+ fdp1_write(fdp1, FD1_IPC_DLI_ISOPIX0_CONST, FD1_IPC_DLI_ISOPIX0);
+ fdp1_write(fdp1, FD1_IPC_DLI_ISOPIX1_CONST, FD1_IPC_DLI_ISOPIX1);
+}
+
+
+static void fdp1_set_ipc_sensor(struct fdp1_ctx *ctx)
+{
+ struct fdp1_dev *fdp1 = ctx->fdp1;
+ struct fdp1_q_data *src_q_data = &ctx->out_q;
+ unsigned int x0, x1;
+ unsigned int hsize = src_q_data->format.width;
+ unsigned int vsize = src_q_data->format.height;
+
+ x0 = hsize / 3;
+ x1 = 2 * hsize / 3;
+
+ fdp1_write(fdp1, FD1_IPC_SENSOR_TH0_CONST, FD1_IPC_SENSOR_TH0);
+ fdp1_write(fdp1, FD1_IPC_SENSOR_TH1_CONST, FD1_IPC_SENSOR_TH1);
+ fdp1_write(fdp1, FD1_IPC_SENSOR_CTL0_CONST, FD1_IPC_SENSOR_CTL0);
+ fdp1_write(fdp1, FD1_IPC_SENSOR_CTL1_CONST, FD1_IPC_SENSOR_CTL1);
+
+ fdp1_write(fdp1, ((hsize - 1) << FD1_IPC_SENSOR_CTL2_X_SHIFT) |
+ ((vsize - 1) << FD1_IPC_SENSOR_CTL2_Y_SHIFT),
+ FD1_IPC_SENSOR_CTL2);
+
+ fdp1_write(fdp1, (x0 << FD1_IPC_SENSOR_CTL3_0_SHIFT) |
+ (x1 << FD1_IPC_SENSOR_CTL3_1_SHIFT),
+ FD1_IPC_SENSOR_CTL3);
+}
+
+/*
+ * fdp1_write_lut: Write a padded LUT to the hw
+ *
+ * FDP1 uses constant data for de-interlacing processing,
+ * with large tables. These hardware tables are all 256 bytes
+ * long, however they often contain repeated data at the end.
+ *
+ * The last byte of the table is written to all remaining entries.
+ */
+static void fdp1_write_lut(struct fdp1_dev *fdp1, const u8 *lut,
+ unsigned int len, unsigned int base)
+{
+ unsigned int i;
+ u8 pad;
+
+ /* Tables larger than the hw are clipped */
+ len = min(len, 256u);
+
+ for (i = 0; i < len; i++)
+ fdp1_write(fdp1, lut[i], base + (i*4));
+
+ /* Tables are padded with the last entry */
+ pad = lut[i-1];
+
+ for (; i < 256; i++)
+ fdp1_write(fdp1, pad, base + (i*4));
+}
+
+static void fdp1_set_lut(struct fdp1_dev *fdp1)
+{
+ fdp1_write_lut(fdp1, fdp1_diff_adj, ARRAY_SIZE(fdp1_diff_adj),
+ FD1_LUT_DIF_ADJ);
+ fdp1_write_lut(fdp1, fdp1_sad_adj, ARRAY_SIZE(fdp1_sad_adj),
+ FD1_LUT_SAD_ADJ);
+ fdp1_write_lut(fdp1, fdp1_bld_gain, ARRAY_SIZE(fdp1_bld_gain),
+ FD1_LUT_BLD_GAIN);
+ fdp1_write_lut(fdp1, fdp1_dif_gain, ARRAY_SIZE(fdp1_dif_gain),
+ FD1_LUT_DIF_GAIN);
+ fdp1_write_lut(fdp1, fdp1_mdet, ARRAY_SIZE(fdp1_mdet),
+ FD1_LUT_MDET);
+}
+
+static void fdp1_configure_rpf(struct fdp1_ctx *ctx,
+ struct fdp1_job *job)
+{
+ struct fdp1_dev *fdp1 = ctx->fdp1;
+ u32 picture_size;
+ u32 pstride;
+ u32 format;
+ u32 smsk_addr;
+
+ struct fdp1_q_data *q_data = &ctx->out_q;
+
+ /* Picture size is common to Source and Destination frames */
+ picture_size = (q_data->format.width << FD1_RPF_SIZE_H_SHIFT)
+ | (q_data->vsize << FD1_RPF_SIZE_V_SHIFT);
+
+ /* Strides */
+ pstride = q_data->stride_y << FD1_RPF_PSTRIDE_Y_SHIFT;
+ if (q_data->format.num_planes > 1)
+ pstride |= q_data->stride_c << FD1_RPF_PSTRIDE_C_SHIFT;
+
+ /* Format control */
+ format = q_data->fmt->fmt;
+ if (q_data->fmt->swap_yc)
+ format |= FD1_RPF_FORMAT_RSPYCS;
+
+ if (q_data->fmt->swap_uv)
+ format |= FD1_RPF_FORMAT_RSPUVS;
+
+ if (job->active->field == V4L2_FIELD_BOTTOM) {
+ format |= FD1_RPF_FORMAT_CF; /* Set for Bottom field */
+ smsk_addr = ctx->smsk_addr[0];
+ } else {
+ smsk_addr = ctx->smsk_addr[1];
+ }
+
+ /* Deint mode is non-zero when deinterlacing */
+ if (ctx->deint_mode)
+ format |= FD1_RPF_FORMAT_CIPM;
+
+ fdp1_write(fdp1, format, FD1_RPF_FORMAT);
+ fdp1_write(fdp1, q_data->fmt->swap, FD1_RPF_SWAP);
+ fdp1_write(fdp1, picture_size, FD1_RPF_SIZE);
+ fdp1_write(fdp1, pstride, FD1_RPF_PSTRIDE);
+ fdp1_write(fdp1, smsk_addr, FD1_RPF_SMSK_ADDR);
+
+ /* Previous Field Channel (CH0) */
+ if (job->previous)
+ fdp1_write(fdp1, job->previous->addrs[0], FD1_RPF0_ADDR_Y);
+
+ /* Current Field Channel (CH1) */
+ fdp1_write(fdp1, job->active->addrs[0], FD1_RPF1_ADDR_Y);
+ fdp1_write(fdp1, job->active->addrs[1], FD1_RPF1_ADDR_C0);
+ fdp1_write(fdp1, job->active->addrs[2], FD1_RPF1_ADDR_C1);
+
+ /* Next Field Channel (CH2) */
+ if (job->next)
+ fdp1_write(fdp1, job->next->addrs[0], FD1_RPF2_ADDR_Y);
+}
+
+static void fdp1_configure_wpf(struct fdp1_ctx *ctx,
+ struct fdp1_job *job)
+{
+ struct fdp1_dev *fdp1 = ctx->fdp1;
+ struct fdp1_q_data *src_q_data = &ctx->out_q;
+ struct fdp1_q_data *q_data = &ctx->cap_q;
+ u32 pstride;
+ u32 format;
+ u32 swap;
+ u32 rndctl;
+
+ pstride = q_data->format.plane_fmt[0].bytesperline
+ << FD1_WPF_PSTRIDE_Y_SHIFT;
+
+ if (q_data->format.num_planes > 1)
+ pstride |= q_data->format.plane_fmt[1].bytesperline
+ << FD1_WPF_PSTRIDE_C_SHIFT;
+
+ format = q_data->fmt->fmt; /* Output Format Code */
+
+ if (q_data->fmt->swap_yc)
+ format |= FD1_WPF_FORMAT_WSPYCS;
+
+ if (q_data->fmt->swap_uv)
+ format |= FD1_WPF_FORMAT_WSPUVS;
+
+ if (fdp1_fmt_is_rgb(q_data->fmt)) {
+ /* Enable Colour Space conversion */
+ format |= FD1_WPF_FORMAT_CSC;
+
+ /* Set WRTM */
+ if (src_q_data->format.ycbcr_enc == V4L2_YCBCR_ENC_709)
+ format |= FD1_WPF_FORMAT_WRTM_709_16;
+ else if (src_q_data->format.quantization ==
+ V4L2_QUANTIZATION_FULL_RANGE)
+ format |= FD1_WPF_FORMAT_WRTM_601_0;
+ else
+ format |= FD1_WPF_FORMAT_WRTM_601_16;
+ }
+
+ /* Set an alpha value into the Pad Value */
+ format |= ctx->alpha << FD1_WPF_FORMAT_PDV_SHIFT;
+
+ /* Determine picture rounding and clipping */
+ rndctl = FD1_WPF_RNDCTL_CBRM; /* Rounding Off */
+ rndctl |= FD1_WPF_RNDCTL_CLMD_NOCLIP;
+
+ /* WPF Swap needs both ISWAP and OSWAP setting */
+ swap = q_data->fmt->swap << FD1_WPF_SWAP_OSWAP_SHIFT;
+ swap |= src_q_data->fmt->swap << FD1_WPF_SWAP_SSWAP_SHIFT;
+
+ fdp1_write(fdp1, format, FD1_WPF_FORMAT);
+ fdp1_write(fdp1, rndctl, FD1_WPF_RNDCTL);
+ fdp1_write(fdp1, swap, FD1_WPF_SWAP);
+ fdp1_write(fdp1, pstride, FD1_WPF_PSTRIDE);
+
+ fdp1_write(fdp1, job->dst->addrs[0], FD1_WPF_ADDR_Y);
+ fdp1_write(fdp1, job->dst->addrs[1], FD1_WPF_ADDR_C0);
+ fdp1_write(fdp1, job->dst->addrs[2], FD1_WPF_ADDR_C1);
+}
+
+static void fdp1_configure_deint_mode(struct fdp1_ctx *ctx,
+ struct fdp1_job *job)
+{
+ struct fdp1_dev *fdp1 = ctx->fdp1;
+ u32 opmode = FD1_CTL_OPMODE_VIMD_NOINTERRUPT;
+ u32 ipcmode = FD1_IPC_MODE_DLI; /* Always set */
+ u32 channels = FD1_CTL_CHACT_WR | FD1_CTL_CHACT_RD1; /* Always on */
+
+ /* De-interlacing Mode */
+ switch (ctx->deint_mode) {
+ default:
+ case FDP1_PROGRESSIVE:
+ dprintk(fdp1, "Progressive Mode\n");
+ opmode |= FD1_CTL_OPMODE_PRG;
+ ipcmode |= FD1_IPC_MODE_DIM_FIXED2D;
+ break;
+ case FDP1_ADAPT2D3D:
+ dprintk(fdp1, "Adapt2D3D Mode\n");
+ if (ctx->sequence == 0 || ctx->aborting)
+ ipcmode |= FD1_IPC_MODE_DIM_FIXED2D;
+ else
+ ipcmode |= FD1_IPC_MODE_DIM_ADAPT2D3D;
+
+ if (ctx->sequence > 1) {
+ channels |= FD1_CTL_CHACT_SMW;
+ channels |= FD1_CTL_CHACT_RD0 | FD1_CTL_CHACT_RD2;
+ }
+
+ if (ctx->sequence > 2)
+ channels |= FD1_CTL_CHACT_SMR;
+
+ break;
+ case FDP1_FIXED3D:
+ dprintk(fdp1, "Fixed 3D Mode\n");
+ ipcmode |= FD1_IPC_MODE_DIM_FIXED3D;
+ /* Except for first and last frame, enable all channels */
+ if (!(ctx->sequence == 0 || ctx->aborting))
+ channels |= FD1_CTL_CHACT_RD0 | FD1_CTL_CHACT_RD2;
+ break;
+ case FDP1_FIXED2D:
+ dprintk(fdp1, "Fixed 2D Mode\n");
+ ipcmode |= FD1_IPC_MODE_DIM_FIXED2D;
+ /* No extra channels enabled */
+ break;
+ case FDP1_PREVFIELD:
+ dprintk(fdp1, "Previous Field Mode\n");
+ ipcmode |= FD1_IPC_MODE_DIM_PREVFIELD;
+ channels |= FD1_CTL_CHACT_RD0; /* Previous */
+ break;
+ case FDP1_NEXTFIELD:
+ dprintk(fdp1, "Next Field Mode\n");
+ ipcmode |= FD1_IPC_MODE_DIM_NEXTFIELD;
+ channels |= FD1_CTL_CHACT_RD2; /* Next */
+ break;
+ }
+
+ fdp1_write(fdp1, channels, FD1_CTL_CHACT);
+ fdp1_write(fdp1, opmode, FD1_CTL_OPMODE);
+ fdp1_write(fdp1, ipcmode, FD1_IPC_MODE);
+}
+
+/*
+ * fdp1_device_process() - Run the hardware
+ *
+ * Configure and start the hardware to generate a single frame
+ * of output given our input parameters.
+ */
+static int fdp1_device_process(struct fdp1_ctx *ctx)
+
+{
+ struct fdp1_dev *fdp1 = ctx->fdp1;
+ struct fdp1_job *job;
+ unsigned long flags;
+
+ spin_lock_irqsave(&fdp1->device_process_lock, flags);
+
+ /* Get a job to process */
+ job = get_queued_job(fdp1);
+ if (!job) {
+ /*
+ * VINT can call us to see if we can queue another job.
+ * If we have no work to do, we simply return.
+ */
+ spin_unlock_irqrestore(&fdp1->device_process_lock, flags);
+ return 0;
+ }
+
+ /* First Frame only? ... */
+ fdp1_write(fdp1, FD1_CTL_CLKCTRL_CSTP_N, FD1_CTL_CLKCTRL);
+
+ /* Set the mode, and configuration */
+ fdp1_configure_deint_mode(ctx, job);
+
+ /* DLI Static Configuration */
+ fdp1_set_ipc_dli(ctx);
+
+ /* Sensor Configuration */
+ fdp1_set_ipc_sensor(ctx);
+
+ /* Setup the source picture */
+ fdp1_configure_rpf(ctx, job);
+
+ /* Setup the destination picture */
+ fdp1_configure_wpf(ctx, job);
+
+ /* Line Memory Pixel Number Register for linear access */
+ fdp1_write(fdp1, FD1_IPC_LMEM_LINEAR, FD1_IPC_LMEM);
+
+ /* Enable Interrupts */
+ fdp1_write(fdp1, FD1_CTL_IRQ_MASK, FD1_CTL_IRQENB);
+
+ /* Finally, the Immediate Registers */
+
+ /* This job is now in the HW queue */
+ queue_hw_job(fdp1, job);
+
+ /* Start the command */
+ fdp1_write(fdp1, FD1_CTL_CMD_STRCMD, FD1_CTL_CMD);
+
+ /* Registers will update to HW at next VINT */
+ fdp1_write(fdp1, FD1_CTL_REGEND_REGEND, FD1_CTL_REGEND);
+
+ /* Enable VINT Generator */
+ fdp1_write(fdp1, FD1_CTL_SGCMD_SGEN, FD1_CTL_SGCMD);
+
+ spin_unlock_irqrestore(&fdp1->device_process_lock, flags);
+
+ return 0;
+}
+
+/*
+ * mem2mem callbacks
+ */
+
+/**
+ * job_ready() - check whether an instance is ready to be scheduled to run
+ */
+static int fdp1_m2m_job_ready(void *priv)
+{
+ struct fdp1_ctx *ctx = priv;
+ struct fdp1_q_data *src_q_data = &ctx->out_q;
+ int srcbufs = 1;
+ int dstbufs = 1;
+
+ dprintk(ctx->fdp1, "+ Src: %d : Dst: %d\n",
+ v4l2_m2m_num_src_bufs_ready(ctx->fh.m2m_ctx),
+ v4l2_m2m_num_dst_bufs_ready(ctx->fh.m2m_ctx));
+
+ /* One output buffer is required for each field */
+ if (V4L2_FIELD_HAS_BOTH(src_q_data->format.field))
+ dstbufs = 2;
+
+ if (v4l2_m2m_num_src_bufs_ready(ctx->fh.m2m_ctx) < srcbufs
+ || v4l2_m2m_num_dst_bufs_ready(ctx->fh.m2m_ctx) < dstbufs) {
+ dprintk(ctx->fdp1, "Not enough buffers available\n");
+ return 0;
+ }
+
+ return 1;
+}
+
+static void fdp1_m2m_job_abort(void *priv)
+{
+ struct fdp1_ctx *ctx = priv;
+
+ dprintk(ctx->fdp1, "+\n");
+
+ /* Will cancel the transaction in the next interrupt handler */
+ ctx->aborting = 1;
+
+ /* Immediate abort sequence */
+ fdp1_write(ctx->fdp1, 0, FD1_CTL_SGCMD);
+ fdp1_write(ctx->fdp1, FD1_CTL_SRESET_SRST, FD1_CTL_SRESET);
+}
+
+/*
+ * fdp1_prepare_job: Prepare and queue a new job for a single action of work
+ *
+ * Prepare the next field, (or frame in progressive) and an output
+ * buffer for the hardware to perform a single operation.
+ */
+static struct fdp1_job *fdp1_prepare_job(struct fdp1_ctx *ctx)
+{
+ struct vb2_v4l2_buffer *vbuf;
+ struct fdp1_buffer *fbuf;
+ struct fdp1_dev *fdp1 = ctx->fdp1;
+ struct fdp1_job *job;
+ unsigned int buffers_required = 1;
+
+ dprintk(fdp1, "+\n");
+
+ if (FDP1_DEINT_MODE_USES_NEXT(ctx->deint_mode))
+ buffers_required = 2;
+
+ if (ctx->buffers_queued < buffers_required)
+ return NULL;
+
+ job = fdp1_job_alloc(fdp1);
+ if (!job) {
+ dprintk(fdp1, "No free jobs currently available\n");
+ return NULL;
+ }
+
+ job->active = fdp1_dequeue_field(ctx);
+ if (!job->active) {
+ /* Buffer check should prevent this ever happening */
+ dprintk(fdp1, "No input buffers currently available\n");
+
+ fdp1_job_free(fdp1, job);
+ return NULL;
+ }
+
+ dprintk(fdp1, "+ Buffer en-route...\n");
+
+ /* Source buffers have been prepared on our buffer_queue
+ * Prepare our Output buffer
+ */
+ vbuf = v4l2_m2m_dst_buf_remove(ctx->fh.m2m_ctx);
+ fbuf = to_fdp1_buffer(vbuf);
+ job->dst = &fbuf->fields[0];
+
+ job->active->vb->sequence = ctx->sequence;
+ job->dst->vb->sequence = ctx->sequence;
+ ctx->sequence++;
+
+ if (FDP1_DEINT_MODE_USES_PREV(ctx->deint_mode)) {
+ job->previous = ctx->previous;
+
+ /* Active buffer becomes the next job's previous buffer */
+ ctx->previous = job->active;
+ }
+
+ if (FDP1_DEINT_MODE_USES_NEXT(ctx->deint_mode)) {
+ /* Must be called after 'active' is dequeued */
+ job->next = fdp1_peek_queued_field(ctx);
+ }
+
+ /* Transfer timestamps and flags from src->dst */
+
+ job->dst->vb->vb2_buf.timestamp = job->active->vb->vb2_buf.timestamp;
+
+ job->dst->vb->flags = job->active->vb->flags &
+ V4L2_BUF_FLAG_TSTAMP_SRC_MASK;
+
+ /* Ideally, the frame-end function will just 'check' to see
+ * if there are more jobs instead
+ */
+ ctx->translen++;
+
+ /* Finally, Put this job on the processing queue */
+ queue_job(fdp1, job);
+
+ dprintk(fdp1, "Job Queued translen = %d\n", ctx->translen);
+
+ return job;
+}
+
+/* fdp1_m2m_device_run() - prepares and starts the device for an M2M task
+ *
+ * A single input buffer is taken and serialised into our fdp1_buffer
+ * queue. The queue is then processed to create as many jobs as possible
+ * from our available input.
+ */
+static void fdp1_m2m_device_run(void *priv)
+{
+ struct fdp1_ctx *ctx = priv;
+ struct fdp1_dev *fdp1 = ctx->fdp1;
+ struct vb2_v4l2_buffer *src_vb;
+ struct fdp1_buffer *buf;
+ unsigned int i;
+
+ dprintk(fdp1, "+\n");
+
+ ctx->translen = 0;
+
+ /* Get our incoming buffer of either one or two fields, or one frame */
+ src_vb = v4l2_m2m_src_buf_remove(ctx->fh.m2m_ctx);
+ buf = to_fdp1_buffer(src_vb);
+
+ for (i = 0; i < buf->num_fields; i++) {
+ struct fdp1_field_buffer *fbuf = &buf->fields[i];
+
+ fdp1_queue_field(ctx, fbuf);
+ dprintk(fdp1, "Queued Buffer [%d] last_field:%d\n",
+ i, fbuf->last_field);
+ }
+
+ /* Queue as many jobs as our data provides for */
+ while (fdp1_prepare_job(ctx))
+ ;
+
+ if (ctx->translen == 0) {
+ dprintk(fdp1, "No jobs were processed. M2M action complete\n");
+ v4l2_m2m_job_finish(fdp1->m2m_dev, ctx->fh.m2m_ctx);
+ return;
+ }
+
+ /* Kick the job processing action */
+ fdp1_device_process(ctx);
+}
+
+/*
+ * device_frame_end:
+ *
+ * Handles the M2M level after a buffer completion event.
+ */
+static void device_frame_end(struct fdp1_dev *fdp1,
+ enum vb2_buffer_state state)
+{
+ struct fdp1_ctx *ctx;
+ unsigned long flags;
+ struct fdp1_job *job = get_hw_queued_job(fdp1);
+
+ dprintk(fdp1, "+\n");
+
+ ctx = v4l2_m2m_get_curr_priv(fdp1->m2m_dev);
+
+ if (ctx == NULL) {
+ v4l2_err(&fdp1->v4l2_dev,
+ "Instance released before the end of transaction\n");
+ return;
+ }
+
+ ctx->num_processed++;
+
+ /*
+ * fdp1_field_complete will call buf_done only when the last vb2_buffer
+ * reference is complete
+ */
+ if (FDP1_DEINT_MODE_USES_PREV(ctx->deint_mode))
+ fdp1_field_complete(ctx, job->previous);
+ else
+ fdp1_field_complete(ctx, job->active);
+
+ spin_lock_irqsave(&fdp1->irqlock, flags);
+ v4l2_m2m_buf_done(job->dst->vb, state);
+ job->dst = NULL;
+ spin_unlock_irqrestore(&fdp1->irqlock, flags);
+
+ /* Move this job back to the free job list */
+ fdp1_job_free(fdp1, job);
+
+ dprintk(fdp1, "curr_ctx->num_processed %d curr_ctx->translen %d\n",
+ ctx->num_processed, ctx->translen);
+
+ if (ctx->num_processed == ctx->translen ||
+ ctx->aborting) {
+ dprintk(ctx->fdp1, "Finishing transaction\n");
+ ctx->num_processed = 0;
+ v4l2_m2m_job_finish(fdp1->m2m_dev, ctx->fh.m2m_ctx);
+ } else {
+ /*
+ * For pipelined performance support, this would
+ * be called from a VINT handler
+ */
+ fdp1_device_process(ctx);
+ }
+}
+
+/*
+ * video ioctls
+ */
+static int fdp1_vidioc_querycap(struct file *file, void *priv,
+ struct v4l2_capability *cap)
+{
+ strlcpy(cap->driver, DRIVER_NAME, sizeof(cap->driver));
+ strlcpy(cap->card, DRIVER_NAME, sizeof(cap->card));
+ snprintf(cap->bus_info, sizeof(cap->bus_info),
+ "platform:%s", DRIVER_NAME);
+ return 0;
+}
+
+static int fdp1_enum_fmt(struct v4l2_fmtdesc *f, u32 type)
+{
+ unsigned int i, num;
+
+ num = 0;
+
+ for (i = 0; i < ARRAY_SIZE(fdp1_formats); ++i) {
+ if (fdp1_formats[i].types & type) {
+ if (num == f->index)
+ break;
+ ++num;
+ }
+ }
+
+ /* Format not found */
+ if (i >= ARRAY_SIZE(fdp1_formats))
+ return -EINVAL;
+
+ /* Format found */
+ f->pixelformat = fdp1_formats[i].fourcc;
+
+ return 0;
+}
+
+static int fdp1_enum_fmt_vid_cap(struct file *file, void *priv,
+ struct v4l2_fmtdesc *f)
+{
+ return fdp1_enum_fmt(f, FDP1_CAPTURE);
+}
+
+static int fdp1_enum_fmt_vid_out(struct file *file, void *priv,
+ struct v4l2_fmtdesc *f)
+{
+ return fdp1_enum_fmt(f, FDP1_OUTPUT);
+}
+
+static int fdp1_g_fmt(struct file *file, void *priv, struct v4l2_format *f)
+{
+ struct fdp1_q_data *q_data;
+ struct fdp1_ctx *ctx = fh_to_ctx(priv);
+
+ if (!v4l2_m2m_get_vq(ctx->fh.m2m_ctx, f->type))
+ return -EINVAL;
+
+ q_data = get_q_data(ctx, f->type);
+ f->fmt.pix_mp = q_data->format;
+
+ return 0;
+}
+
+static void fdp1_compute_stride(struct v4l2_pix_format_mplane *pix,
+ const struct fdp1_fmt *fmt)
+{
+ unsigned int i;
+
+ /* Compute and clamp the stride and image size. */
+ for (i = 0; i < min_t(unsigned int, fmt->num_planes, 2U); ++i) {
+ unsigned int hsub = i > 0 ? fmt->hsub : 1;
+ unsigned int vsub = i > 0 ? fmt->vsub : 1;
+ /* From VSP : TODO: Confirm alignment limits for FDP1 */
+ unsigned int align = 128;
+ unsigned int bpl;
+
+ bpl = clamp_t(unsigned int, pix->plane_fmt[i].bytesperline,
+ pix->width / hsub * fmt->bpp[i] / 8,
+ round_down(FDP1_MAX_STRIDE, align));
+
+ pix->plane_fmt[i].bytesperline = round_up(bpl, align);
+ pix->plane_fmt[i].sizeimage = pix->plane_fmt[i].bytesperline
+ * pix->height / vsub;
+
+ memset(pix->plane_fmt[i].reserved, 0,
+ sizeof(pix->plane_fmt[i].reserved));
+ }
+
+ if (fmt->num_planes == 3) {
+ /* The two chroma planes must have the same stride. */
+ pix->plane_fmt[2].bytesperline = pix->plane_fmt[1].bytesperline;
+ pix->plane_fmt[2].sizeimage = pix->plane_fmt[1].sizeimage;
+
+ memset(pix->plane_fmt[2].reserved, 0,
+ sizeof(pix->plane_fmt[2].reserved));
+ }
+}
+
+static void fdp1_try_fmt_output(struct fdp1_ctx *ctx,
+ const struct fdp1_fmt **fmtinfo,
+ struct v4l2_pix_format_mplane *pix)
+{
+ const struct fdp1_fmt *fmt;
+ unsigned int width;
+ unsigned int height;
+
+ /* Validate the pixel format to ensure the output queue supports it. */
+ fmt = fdp1_find_format(pix->pixelformat);
+ if (!fmt || !(fmt->types & FDP1_OUTPUT))
+ fmt = fdp1_find_format(V4L2_PIX_FMT_YUYV);
+
+ if (fmtinfo)
+ *fmtinfo = fmt;
+
+ pix->pixelformat = fmt->fourcc;
+ pix->num_planes = fmt->num_planes;
+
+ /*
+ * Progressive video and all interlaced field orders are acceptable.
+ * Default to V4L2_FIELD_INTERLACED.
+ */
+ if (pix->field != V4L2_FIELD_NONE &&
+ pix->field != V4L2_FIELD_ALTERNATE &&
+ !V4L2_FIELD_HAS_BOTH(pix->field))
+ pix->field = V4L2_FIELD_INTERLACED;
+
+ /*
+ * The deinterlacer doesn't care about the colorspace, accept all values
+ * and default to V4L2_COLORSPACE_SMPTE170M. The YUV to RGB conversion
+ * at the output of the deinterlacer supports a subset of encodings and
+ * quantization methods and will only be available when the colorspace
+ * allows it.
+ */
+ if (pix->colorspace == V4L2_COLORSPACE_DEFAULT)
+ pix->colorspace = V4L2_COLORSPACE_SMPTE170M;
+
+ /*
+ * Align the width and height for YUV 4:2:2 and 4:2:0 formats and clamp
+ * them to the supported frame size range. The height boundary are
+ * related to the full frame, divide them by two when the format passes
+ * fields in separate buffers.
+ */
+ width = round_down(pix->width, fmt->hsub);
+ pix->width = clamp(width, FDP1_MIN_W, FDP1_MAX_W);
+
+ height = round_down(pix->height, fmt->vsub);
+ if (pix->field == V4L2_FIELD_ALTERNATE)
+ pix->height = clamp(height, FDP1_MIN_H / 2, FDP1_MAX_H / 2);
+ else
+ pix->height = clamp(height, FDP1_MIN_H, FDP1_MAX_H);
+
+ fdp1_compute_stride(pix, fmt);
+}
+
+static void fdp1_try_fmt_capture(struct fdp1_ctx *ctx,
+ const struct fdp1_fmt **fmtinfo,
+ struct v4l2_pix_format_mplane *pix)
+{
+ struct fdp1_q_data *src_data = &ctx->out_q;
+ enum v4l2_colorspace colorspace;
+ enum v4l2_ycbcr_encoding ycbcr_enc;
+ enum v4l2_quantization quantization;
+ const struct fdp1_fmt *fmt;
+ bool allow_rgb;
+
+ /*
+ * Validate the pixel format. We can only accept RGB output formats if
+ * the input encoding and quantization are compatible with the format
+ * conversions supported by the hardware. The supported combinations are
+ *
+ * V4L2_YCBCR_ENC_601 + V4L2_QUANTIZATION_LIM_RANGE
+ * V4L2_YCBCR_ENC_601 + V4L2_QUANTIZATION_FULL_RANGE
+ * V4L2_YCBCR_ENC_709 + V4L2_QUANTIZATION_LIM_RANGE
+ */
+ colorspace = src_data->format.colorspace;
+
+ ycbcr_enc = src_data->format.ycbcr_enc;
+ if (ycbcr_enc == V4L2_YCBCR_ENC_DEFAULT)
+ ycbcr_enc = V4L2_MAP_YCBCR_ENC_DEFAULT(colorspace);
+
+ quantization = src_data->format.quantization;
+ if (quantization == V4L2_QUANTIZATION_DEFAULT)
+ quantization = V4L2_MAP_QUANTIZATION_DEFAULT(false, colorspace,
+ ycbcr_enc);
+
+ allow_rgb = ycbcr_enc == V4L2_YCBCR_ENC_601 ||
+ (ycbcr_enc == V4L2_YCBCR_ENC_709 &&
+ quantization == V4L2_QUANTIZATION_LIM_RANGE);
+
+ fmt = fdp1_find_format(pix->pixelformat);
+ if (!fmt || (!allow_rgb && fdp1_fmt_is_rgb(fmt)))
+ fmt = fdp1_find_format(V4L2_PIX_FMT_YUYV);
+
+ if (fmtinfo)
+ *fmtinfo = fmt;
+
+ pix->pixelformat = fmt->fourcc;
+ pix->num_planes = fmt->num_planes;
+ pix->field = V4L2_FIELD_NONE;
+
+ /*
+ * The colorspace on the capture queue is copied from the output queue
+ * as the hardware can't change the colorspace. It can convert YCbCr to
+ * RGB though, in which case the encoding and quantization are set to
+ * default values as anything else wouldn't make sense.
+ */
+ pix->colorspace = src_data->format.colorspace;
+ pix->xfer_func = src_data->format.xfer_func;
+
+ if (fdp1_fmt_is_rgb(fmt)) {
+ pix->ycbcr_enc = V4L2_YCBCR_ENC_DEFAULT;
+ pix->quantization = V4L2_QUANTIZATION_DEFAULT;
+ } else {
+ pix->ycbcr_enc = src_data->format.ycbcr_enc;
+ pix->quantization = src_data->format.quantization;
+ }
+
+ /*
+ * The frame width is identical to the output queue, and the height is
+ * either doubled or identical depending on whether the output queue
+ * field order contains one or two fields per frame.
+ */
+ pix->width = src_data->format.width;
+ if (src_data->format.field == V4L2_FIELD_ALTERNATE)
+ pix->height = 2 * src_data->format.height;
+ else
+ pix->height = src_data->format.height;
+
+ fdp1_compute_stride(pix, fmt);
+}
+
+static int fdp1_try_fmt(struct file *file, void *priv, struct v4l2_format *f)
+{
+ struct fdp1_ctx *ctx = fh_to_ctx(priv);
+
+ if (f->type == V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE)
+ fdp1_try_fmt_output(ctx, NULL, &f->fmt.pix_mp);
+ else
+ fdp1_try_fmt_capture(ctx, NULL, &f->fmt.pix_mp);
+
+ dprintk(ctx->fdp1, "Try %s format: %4s (0x%08x) %ux%u field %u\n",
+ V4L2_TYPE_IS_OUTPUT(f->type) ? "output" : "capture",
+ (char *)&f->fmt.pix_mp.pixelformat, f->fmt.pix_mp.pixelformat,
+ f->fmt.pix_mp.width, f->fmt.pix_mp.height, f->fmt.pix_mp.field);
+
+ return 0;
+}
+
+static void fdp1_set_format(struct fdp1_ctx *ctx,
+ struct v4l2_pix_format_mplane *pix,
+ enum v4l2_buf_type type)
+{
+ struct fdp1_q_data *q_data = get_q_data(ctx, type);
+ const struct fdp1_fmt *fmtinfo;
+
+ if (type == V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE)
+ fdp1_try_fmt_output(ctx, &fmtinfo, pix);
+ else
+ fdp1_try_fmt_capture(ctx, &fmtinfo, pix);
+
+ q_data->fmt = fmtinfo;
+ q_data->format = *pix;
+
+ q_data->vsize = pix->height;
+ if (pix->field != V4L2_FIELD_NONE)
+ q_data->vsize /= 2;
+
+ q_data->stride_y = pix->plane_fmt[0].bytesperline;
+ q_data->stride_c = pix->plane_fmt[1].bytesperline;
+
+ /* Adjust strides for interleaved buffers */
+ if (pix->field == V4L2_FIELD_INTERLACED ||
+ pix->field == V4L2_FIELD_INTERLACED_TB ||
+ pix->field == V4L2_FIELD_INTERLACED_BT) {
+ q_data->stride_y *= 2;
+ q_data->stride_c *= 2;
+ }
+
+ /* Propagate the format from the output node to the capture node. */
+ if (type == V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE) {
+ struct fdp1_q_data *dst_data = &ctx->cap_q;
+
+ /*
+ * Copy the format, clear the per-plane bytes per line and image
+ * size, override the field and double the height if needed.
+ */
+ dst_data->format = q_data->format;
+ memset(dst_data->format.plane_fmt, 0,
+ sizeof(dst_data->format.plane_fmt));
+
+ dst_data->format.field = V4L2_FIELD_NONE;
+ if (pix->field == V4L2_FIELD_ALTERNATE)
+ dst_data->format.height *= 2;
+
+ fdp1_try_fmt_capture(ctx, &dst_data->fmt, &dst_data->format);
+
+ dst_data->vsize = dst_data->format.height;
+ dst_data->stride_y = dst_data->format.plane_fmt[0].bytesperline;
+ dst_data->stride_c = dst_data->format.plane_fmt[1].bytesperline;
+ }
+}
+
+static int fdp1_s_fmt(struct file *file, void *priv, struct v4l2_format *f)
+{
+ struct fdp1_ctx *ctx = fh_to_ctx(priv);
+ struct v4l2_m2m_ctx *m2m_ctx = ctx->fh.m2m_ctx;
+ struct vb2_queue *vq = v4l2_m2m_get_vq(m2m_ctx, f->type);
+
+ if (vb2_is_busy(vq)) {
+ v4l2_err(&ctx->fdp1->v4l2_dev, "%s queue busy\n", __func__);
+ return -EBUSY;
+ }
+
+ fdp1_set_format(ctx, &f->fmt.pix_mp, f->type);
+
+ dprintk(ctx->fdp1, "Set %s format: %4s (0x%08x) %ux%u field %u\n",
+ V4L2_TYPE_IS_OUTPUT(f->type) ? "output" : "capture",
+ (char *)&f->fmt.pix_mp.pixelformat, f->fmt.pix_mp.pixelformat,
+ f->fmt.pix_mp.width, f->fmt.pix_mp.height, f->fmt.pix_mp.field);
+
+ return 0;
+}
+
+static int fdp1_g_ctrl(struct v4l2_ctrl *ctrl)
+{
+ struct fdp1_ctx *ctx =
+ container_of(ctrl->handler, struct fdp1_ctx, hdl);
+ struct fdp1_q_data *src_q_data = &ctx->out_q;
+
+ switch (ctrl->id) {
+ case V4L2_CID_MIN_BUFFERS_FOR_CAPTURE:
+ if (V4L2_FIELD_HAS_BOTH(src_q_data->format.field))
+ ctrl->val = 2;
+ else
+ ctrl->val = 1;
+ return 0;
+ }
+
+ return 1;
+}
+
+static int fdp1_s_ctrl(struct v4l2_ctrl *ctrl)
+{
+ struct fdp1_ctx *ctx =
+ container_of(ctrl->handler, struct fdp1_ctx, hdl);
+
+ switch (ctrl->id) {
+ case V4L2_CID_ALPHA_COMPONENT:
+ ctx->alpha = ctrl->val;
+ break;
+
+ case V4L2_CID_DEINTERLACING_MODE:
+ ctx->deint_mode = ctrl->val;
+ break;
+ }
+
+ return 0;
+}
+
+static const struct v4l2_ctrl_ops fdp1_ctrl_ops = {
+ .s_ctrl = fdp1_s_ctrl,
+ .g_volatile_ctrl = fdp1_g_ctrl,
+};
+
+static const char * const fdp1_ctrl_deint_menu[] = {
+ "Progressive",
+ "Adaptive 2D/3D",
+ "Fixed 2D",
+ "Fixed 3D",
+ "Previous field",
+ "Next field",
+ NULL
+};
+
+static const struct v4l2_ioctl_ops fdp1_ioctl_ops = {
+ .vidioc_querycap = fdp1_vidioc_querycap,
+
+ .vidioc_enum_fmt_vid_cap_mplane = fdp1_enum_fmt_vid_cap,
+ .vidioc_enum_fmt_vid_out_mplane = fdp1_enum_fmt_vid_out,
+ .vidioc_g_fmt_vid_cap_mplane = fdp1_g_fmt,
+ .vidioc_g_fmt_vid_out_mplane = fdp1_g_fmt,
+ .vidioc_try_fmt_vid_cap_mplane = fdp1_try_fmt,
+ .vidioc_try_fmt_vid_out_mplane = fdp1_try_fmt,
+ .vidioc_s_fmt_vid_cap_mplane = fdp1_s_fmt,
+ .vidioc_s_fmt_vid_out_mplane = fdp1_s_fmt,
+
+ .vidioc_reqbufs = v4l2_m2m_ioctl_reqbufs,
+ .vidioc_querybuf = v4l2_m2m_ioctl_querybuf,
+ .vidioc_qbuf = v4l2_m2m_ioctl_qbuf,
+ .vidioc_dqbuf = v4l2_m2m_ioctl_dqbuf,
+ .vidioc_prepare_buf = v4l2_m2m_ioctl_prepare_buf,
+ .vidioc_create_bufs = v4l2_m2m_ioctl_create_bufs,
+ .vidioc_expbuf = v4l2_m2m_ioctl_expbuf,
+
+ .vidioc_streamon = v4l2_m2m_ioctl_streamon,
+ .vidioc_streamoff = v4l2_m2m_ioctl_streamoff,
+
+ .vidioc_subscribe_event = v4l2_ctrl_subscribe_event,
+ .vidioc_unsubscribe_event = v4l2_event_unsubscribe,
+};
+
+/*
+ * Queue operations
+ */
+
+static int fdp1_queue_setup(struct vb2_queue *vq,
+ unsigned int *nbuffers, unsigned int *nplanes,
+ unsigned int sizes[],
+ struct device *alloc_ctxs[])
+{
+ struct fdp1_ctx *ctx = vb2_get_drv_priv(vq);
+ struct fdp1_q_data *q_data;
+ unsigned int i;
+
+ q_data = get_q_data(ctx, vq->type);
+
+ if (*nplanes) {
+ if (*nplanes > FDP1_MAX_PLANES)
+ return -EINVAL;
+
+ return 0;
+ }
+
+ *nplanes = q_data->format.num_planes;
+
+ for (i = 0; i < *nplanes; i++)
+ sizes[i] = q_data->format.plane_fmt[i].sizeimage;
+
+ return 0;
+}
+
+static void fdp1_buf_prepare_field(struct fdp1_q_data *q_data,
+ struct vb2_v4l2_buffer *vbuf,
+ unsigned int field_num)
+{
+ struct fdp1_buffer *buf = to_fdp1_buffer(vbuf);
+ struct fdp1_field_buffer *fbuf = &buf->fields[field_num];
+ unsigned int num_fields;
+ unsigned int i;
+
+ num_fields = V4L2_FIELD_HAS_BOTH(vbuf->field) ? 2 : 1;
+
+ fbuf->vb = vbuf;
+ fbuf->last_field = (field_num + 1) == num_fields;
+
+ for (i = 0; i < vbuf->vb2_buf.num_planes; ++i)
+ fbuf->addrs[i] = vb2_dma_contig_plane_dma_addr(&vbuf->vb2_buf, i);
+
+ switch (vbuf->field) {
+ case V4L2_FIELD_INTERLACED:
+ /*
+ * Interlaced means bottom-top for 60Hz TV standards (NTSC) and
+ * top-bottom for 50Hz. As TV standards are not applicable to
+ * the mem-to-mem API, use the height as a heuristic.
+ */
+ fbuf->field = (q_data->format.height < 576) == field_num
+ ? V4L2_FIELD_TOP : V4L2_FIELD_BOTTOM;
+ break;
+ case V4L2_FIELD_INTERLACED_TB:
+ case V4L2_FIELD_SEQ_TB:
+ fbuf->field = field_num ? V4L2_FIELD_BOTTOM : V4L2_FIELD_TOP;
+ break;
+ case V4L2_FIELD_INTERLACED_BT:
+ case V4L2_FIELD_SEQ_BT:
+ fbuf->field = field_num ? V4L2_FIELD_TOP : V4L2_FIELD_BOTTOM;
+ break;
+ default:
+ fbuf->field = vbuf->field;
+ break;
+ }
+
+ /* Buffer is completed */
+ if (!field_num)
+ return;
+
+ /* Adjust buffer addresses for second field */
+ switch (vbuf->field) {
+ case V4L2_FIELD_INTERLACED:
+ case V4L2_FIELD_INTERLACED_TB:
+ case V4L2_FIELD_INTERLACED_BT:
+ for (i = 0; i < vbuf->vb2_buf.num_planes; i++)
+ fbuf->addrs[i] +=
+ (i == 0 ? q_data->stride_y : q_data->stride_c);
+ break;
+ case V4L2_FIELD_SEQ_TB:
+ case V4L2_FIELD_SEQ_BT:
+ for (i = 0; i < vbuf->vb2_buf.num_planes; i++)
+ fbuf->addrs[i] += q_data->vsize *
+ (i == 0 ? q_data->stride_y : q_data->stride_c);
+ break;
+ }
+}
+
+static int fdp1_buf_prepare(struct vb2_buffer *vb)
+{
+ struct fdp1_ctx *ctx = vb2_get_drv_priv(vb->vb2_queue);
+ struct fdp1_q_data *q_data = get_q_data(ctx, vb->vb2_queue->type);
+ struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
+ struct fdp1_buffer *buf = to_fdp1_buffer(vbuf);
+ unsigned int i;
+
+ if (V4L2_TYPE_IS_OUTPUT(vb->vb2_queue->type)) {
+ bool field_valid = true;
+
+ /* Validate the buffer field. */
+ switch (q_data->format.field) {
+ case V4L2_FIELD_NONE:
+ if (vbuf->field != V4L2_FIELD_NONE)
+ field_valid = false;
+ break;
+
+ case V4L2_FIELD_ALTERNATE:
+ if (vbuf->field != V4L2_FIELD_TOP &&
+ vbuf->field != V4L2_FIELD_BOTTOM)
+ field_valid = false;
+ break;
+
+ case V4L2_FIELD_INTERLACED:
+ case V4L2_FIELD_SEQ_TB:
+ case V4L2_FIELD_SEQ_BT:
+ case V4L2_FIELD_INTERLACED_TB:
+ case V4L2_FIELD_INTERLACED_BT:
+ if (vbuf->field != q_data->format.field)
+ field_valid = false;
+ break;
+ }
+
+ if (!field_valid) {
+ dprintk(ctx->fdp1,
+ "buffer field %u invalid for format field %u\n",
+ vbuf->field, q_data->format.field);
+ return -EINVAL;
+ }
+ } else {
+ vbuf->field = V4L2_FIELD_NONE;
+ }
+
+ /* Validate the planes sizes. */
+ for (i = 0; i < q_data->format.num_planes; i++) {
+ unsigned long size = q_data->format.plane_fmt[i].sizeimage;
+
+ if (vb2_plane_size(vb, i) < size) {
+ dprintk(ctx->fdp1,
+ "data will not fit into plane [%u/%u] (%lu < %lu)\n",
+ i, q_data->format.num_planes,
+ vb2_plane_size(vb, i), size);
+ return -EINVAL;
+ }
+
+ /* We have known size formats all around */
+ vb2_set_plane_payload(vb, i, size);
+ }
+
+ buf->num_fields = V4L2_FIELD_HAS_BOTH(vbuf->field) ? 2 : 1;
+ for (i = 0; i < buf->num_fields; ++i)
+ fdp1_buf_prepare_field(q_data, vbuf, i);
+
+ return 0;
+}
+
+static void fdp1_buf_queue(struct vb2_buffer *vb)
+{
+ struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
+ struct fdp1_ctx *ctx = vb2_get_drv_priv(vb->vb2_queue);
+
+ v4l2_m2m_buf_queue(ctx->fh.m2m_ctx, vbuf);
+}
+
+static int fdp1_start_streaming(struct vb2_queue *q, unsigned int count)
+{
+ struct fdp1_ctx *ctx = vb2_get_drv_priv(q);
+ struct fdp1_q_data *q_data = get_q_data(ctx, q->type);
+
+ if (V4L2_TYPE_IS_OUTPUT(q->type)) {
+ /*
+ * Force our deint_mode when we are progressive,
+ * ignoring any setting on the device from the user,
+ * Otherwise, lock in the requested de-interlace mode.
+ */
+ if (q_data->format.field == V4L2_FIELD_NONE)
+ ctx->deint_mode = FDP1_PROGRESSIVE;
+
+ if (ctx->deint_mode == FDP1_ADAPT2D3D) {
+ u32 stride;
+ dma_addr_t smsk_base;
+ const u32 bpp = 2; /* bytes per pixel */
+
+ stride = round_up(q_data->format.width, 8);
+
+ ctx->smsk_size = bpp * stride * q_data->vsize;
+
+ ctx->smsk_cpu = dma_alloc_coherent(ctx->fdp1->dev,
+ ctx->smsk_size, &smsk_base, GFP_KERNEL);
+
+ if (ctx->smsk_cpu == NULL) {
+ dprintk(ctx->fdp1, "Failed to alloc smsk\n");
+ return -ENOMEM;
+ }
+
+ ctx->smsk_addr[0] = smsk_base;
+ ctx->smsk_addr[1] = smsk_base + (ctx->smsk_size/2);
+ }
+ }
+
+ return 0;
+}
+
+static void fdp1_stop_streaming(struct vb2_queue *q)
+{
+ struct fdp1_ctx *ctx = vb2_get_drv_priv(q);
+ struct vb2_v4l2_buffer *vbuf;
+ unsigned long flags;
+
+ while (1) {
+ if (V4L2_TYPE_IS_OUTPUT(q->type))
+ vbuf = v4l2_m2m_src_buf_remove(ctx->fh.m2m_ctx);
+ else
+ vbuf = v4l2_m2m_dst_buf_remove(ctx->fh.m2m_ctx);
+ if (vbuf == NULL)
+ break;
+ spin_lock_irqsave(&ctx->fdp1->irqlock, flags);
+ v4l2_m2m_buf_done(vbuf, VB2_BUF_STATE_ERROR);
+ spin_unlock_irqrestore(&ctx->fdp1->irqlock, flags);
+ }
+
+ /* Empty Output queues */
+ if (V4L2_TYPE_IS_OUTPUT(q->type)) {
+ /* Empty our internal queues */
+ struct fdp1_field_buffer *fbuf;
+
+ /* Free any queued buffers */
+ fbuf = fdp1_dequeue_field(ctx);
+ while (fbuf != NULL) {
+ fdp1_field_complete(ctx, fbuf);
+ fbuf = fdp1_dequeue_field(ctx);
+ }
+
+ /* Free smsk_data */
+ if (ctx->smsk_cpu) {
+ dma_free_coherent(ctx->fdp1->dev, ctx->smsk_size,
+ ctx->smsk_cpu, ctx->smsk_addr[0]);
+ ctx->smsk_addr[0] = ctx->smsk_addr[1] = 0;
+ ctx->smsk_cpu = NULL;
+ }
+
+ WARN(!list_empty(&ctx->fields_queue),
+ "Buffer queue not empty");
+ } else {
+ /* Empty Capture queues (Jobs) */
+ struct fdp1_job *job;
+
+ job = get_queued_job(ctx->fdp1);
+ while (job) {
+ if (FDP1_DEINT_MODE_USES_PREV(ctx->deint_mode))
+ fdp1_field_complete(ctx, job->previous);
+ else
+ fdp1_field_complete(ctx, job->active);
+
+ v4l2_m2m_buf_done(job->dst->vb, VB2_BUF_STATE_ERROR);
+ job->dst = NULL;
+
+ job = get_queued_job(ctx->fdp1);
+ }
+
+ /* Free any held buffer in the ctx */
+ fdp1_field_complete(ctx, ctx->previous);
+
+ WARN(!list_empty(&ctx->fdp1->queued_job_list),
+ "Queued Job List not empty");
+
+ WARN(!list_empty(&ctx->fdp1->hw_job_list),
+ "HW Job list not empty");
+ }
+}
+
+static struct vb2_ops fdp1_qops = {
+ .queue_setup = fdp1_queue_setup,
+ .buf_prepare = fdp1_buf_prepare,
+ .buf_queue = fdp1_buf_queue,
+ .start_streaming = fdp1_start_streaming,
+ .stop_streaming = fdp1_stop_streaming,
+ .wait_prepare = vb2_ops_wait_prepare,
+ .wait_finish = vb2_ops_wait_finish,
+};
+
+static int queue_init(void *priv, struct vb2_queue *src_vq,
+ struct vb2_queue *dst_vq)
+{
+ struct fdp1_ctx *ctx = priv;
+ int ret;
+
+ src_vq->type = V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE;
+ src_vq->io_modes = VB2_MMAP | VB2_USERPTR | VB2_DMABUF;
+ src_vq->drv_priv = ctx;
+ src_vq->buf_struct_size = sizeof(struct fdp1_buffer);
+ src_vq->ops = &fdp1_qops;
+ src_vq->mem_ops = &vb2_dma_contig_memops;
+ src_vq->timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_COPY;
+ src_vq->lock = &ctx->fdp1->dev_mutex;
+ src_vq->dev = ctx->fdp1->dev;
+
+ ret = vb2_queue_init(src_vq);
+ if (ret)
+ return ret;
+
+ dst_vq->type = V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE;
+ dst_vq->io_modes = VB2_MMAP | VB2_USERPTR | VB2_DMABUF;
+ dst_vq->drv_priv = ctx;
+ dst_vq->buf_struct_size = sizeof(struct fdp1_buffer);
+ dst_vq->ops = &fdp1_qops;
+ dst_vq->mem_ops = &vb2_dma_contig_memops;
+ dst_vq->timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_COPY;
+ dst_vq->lock = &ctx->fdp1->dev_mutex;
+ dst_vq->dev = ctx->fdp1->dev;
+
+ return vb2_queue_init(dst_vq);
+}
+
+/*
+ * File operations
+ */
+static int fdp1_open(struct file *file)
+{
+ struct fdp1_dev *fdp1 = video_drvdata(file);
+ struct v4l2_pix_format_mplane format;
+ struct fdp1_ctx *ctx = NULL;
+ struct v4l2_ctrl *ctrl;
+ int ret = 0;
+
+ if (mutex_lock_interruptible(&fdp1->dev_mutex))
+ return -ERESTARTSYS;
+
+ ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
+ if (!ctx) {
+ ret = -ENOMEM;
+ goto done;
+ }
+
+ v4l2_fh_init(&ctx->fh, video_devdata(file));
+ file->private_data = &ctx->fh;
+ ctx->fdp1 = fdp1;
+
+ /* Initialise Queues */
+ INIT_LIST_HEAD(&ctx->fields_queue);
+
+ ctx->translen = 1;
+ ctx->sequence = 0;
+
+ /* Initialise controls */
+
+ v4l2_ctrl_handler_init(&ctx->hdl, 3);
+ v4l2_ctrl_new_std_menu_items(&ctx->hdl, &fdp1_ctrl_ops,
+ V4L2_CID_DEINTERLACING_MODE,
+ FDP1_NEXTFIELD, BIT(0), FDP1_FIXED3D,
+ fdp1_ctrl_deint_menu);
+
+ ctrl = v4l2_ctrl_new_std(&ctx->hdl, &fdp1_ctrl_ops,
+ V4L2_CID_MIN_BUFFERS_FOR_CAPTURE, 1, 2, 1, 1);
+ if (ctrl)
+ ctrl->flags |= V4L2_CTRL_FLAG_VOLATILE;
+
+ v4l2_ctrl_new_std(&ctx->hdl, &fdp1_ctrl_ops,
+ V4L2_CID_ALPHA_COMPONENT, 0, 255, 1, 255);
+
+ if (ctx->hdl.error) {
+ ret = ctx->hdl.error;
+ v4l2_ctrl_handler_free(&ctx->hdl);
+ goto done;
+ }
+
+ ctx->fh.ctrl_handler = &ctx->hdl;
+ v4l2_ctrl_handler_setup(&ctx->hdl);
+
+ /* Configure default parameters. */
+ memset(&format, 0, sizeof(format));
+ fdp1_set_format(ctx, &format, V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE);
+
+ ctx->fh.m2m_ctx = v4l2_m2m_ctx_init(fdp1->m2m_dev, ctx, &queue_init);
+
+ if (IS_ERR(ctx->fh.m2m_ctx)) {
+ ret = PTR_ERR(ctx->fh.m2m_ctx);
+
+ v4l2_ctrl_handler_free(&ctx->hdl);
+ kfree(ctx);
+ goto done;
+ }
+
+ /* Perform any power management required */
+ pm_runtime_get_sync(fdp1->dev);
+
+ v4l2_fh_add(&ctx->fh);
+
+ dprintk(fdp1, "Created instance: %p, m2m_ctx: %p\n",
+ ctx, ctx->fh.m2m_ctx);
+
+done:
+ mutex_unlock(&fdp1->dev_mutex);
+ return ret;
+}
+
+static int fdp1_release(struct file *file)
+{
+ struct fdp1_dev *fdp1 = video_drvdata(file);
+ struct fdp1_ctx *ctx = fh_to_ctx(file->private_data);
+
+ dprintk(fdp1, "Releasing instance %p\n", ctx);
+
+ v4l2_fh_del(&ctx->fh);
+ v4l2_fh_exit(&ctx->fh);
+ v4l2_ctrl_handler_free(&ctx->hdl);
+ mutex_lock(&fdp1->dev_mutex);
+ v4l2_m2m_ctx_release(ctx->fh.m2m_ctx);
+ mutex_unlock(&fdp1->dev_mutex);
+ kfree(ctx);
+
+ pm_runtime_put(fdp1->dev);
+
+ return 0;
+}
+
+static const struct v4l2_file_operations fdp1_fops = {
+ .owner = THIS_MODULE,
+ .open = fdp1_open,
+ .release = fdp1_release,
+ .poll = v4l2_m2m_fop_poll,
+ .unlocked_ioctl = video_ioctl2,
+ .mmap = v4l2_m2m_fop_mmap,
+};
+
+static const struct video_device fdp1_videodev = {
+ .name = DRIVER_NAME,
+ .vfl_dir = VFL_DIR_M2M,
+ .fops = &fdp1_fops,
+ .device_caps = V4L2_CAP_VIDEO_M2M_MPLANE | V4L2_CAP_STREAMING,
+ .ioctl_ops = &fdp1_ioctl_ops,
+ .minor = -1,
+ .release = video_device_release_empty,
+};
+
+static const struct v4l2_m2m_ops m2m_ops = {
+ .device_run = fdp1_m2m_device_run,
+ .job_ready = fdp1_m2m_job_ready,
+ .job_abort = fdp1_m2m_job_abort,
+};
+
+static irqreturn_t fdp1_irq_handler(int irq, void *dev_id)
+{
+ struct fdp1_dev *fdp1 = dev_id;
+ u32 int_status;
+ u32 ctl_status;
+ u32 vint_cnt;
+ u32 cycles;
+
+ int_status = fdp1_read(fdp1, FD1_CTL_IRQSTA);
+ cycles = fdp1_read(fdp1, FD1_CTL_VCYCLE_STAT);
+ ctl_status = fdp1_read(fdp1, FD1_CTL_STATUS);
+ vint_cnt = (ctl_status & FD1_CTL_STATUS_VINT_CNT_MASK) >>
+ FD1_CTL_STATUS_VINT_CNT_SHIFT;
+
+ /* Clear interrupts */
+ fdp1_write(fdp1, ~(int_status) & FD1_CTL_IRQ_MASK, FD1_CTL_IRQSTA);
+
+ if (debug >= 2) {
+ dprintk(fdp1, "IRQ: 0x%x %s%s%s\n", int_status,
+ int_status & FD1_CTL_IRQ_VERE ? "[Error]" : "[!E]",
+ int_status & FD1_CTL_IRQ_VINTE ? "[VSync]" : "[!V]",
+ int_status & FD1_CTL_IRQ_FREE ? "[FrameEnd]" : "[!F]");
+
+ dprintk(fdp1, "CycleStatus = %d (%dms)\n",
+ cycles, cycles/(fdp1->clk_rate/1000));
+
+ dprintk(fdp1,
+ "Control Status = 0x%08x : VINT_CNT = %d %s:%s:%s:%s\n",
+ ctl_status, vint_cnt,
+ ctl_status & FD1_CTL_STATUS_SGREGSET ? "RegSet" : "",
+ ctl_status & FD1_CTL_STATUS_SGVERR ? "Vsync Error" : "",
+ ctl_status & FD1_CTL_STATUS_SGFREND ? "FrameEnd" : "",
+ ctl_status & FD1_CTL_STATUS_BSY ? "Busy" : "");
+ dprintk(fdp1, "***********************************\n");
+ }
+
+ /* Spurious interrupt */
+ if (!(FD1_CTL_IRQ_MASK & int_status))
+ return IRQ_NONE;
+
+ /* Work completed, release the frame */
+ if (FD1_CTL_IRQ_VERE & int_status)
+ device_frame_end(fdp1, VB2_BUF_STATE_ERROR);
+ else if (FD1_CTL_IRQ_FREE & int_status)
+ device_frame_end(fdp1, VB2_BUF_STATE_DONE);
+
+ return IRQ_HANDLED;
+}
+
+static int fdp1_probe(struct platform_device *pdev)
+{
+ struct fdp1_dev *fdp1;
+ struct video_device *vfd;
+ struct device_node *fcp_node;
+ struct resource *res;
+ struct clk *clk;
+ unsigned int i;
+
+ int ret;
+ int hw_version;
+
+ fdp1 = devm_kzalloc(&pdev->dev, sizeof(*fdp1), GFP_KERNEL);
+ if (!fdp1)
+ return -ENOMEM;
+
+ INIT_LIST_HEAD(&fdp1->free_job_list);
+ INIT_LIST_HEAD(&fdp1->queued_job_list);
+ INIT_LIST_HEAD(&fdp1->hw_job_list);
+
+ /* Initialise the jobs on the free list */
+ for (i = 0; i < ARRAY_SIZE(fdp1->jobs); i++)
+ list_add(&fdp1->jobs[i].list, &fdp1->free_job_list);
+
+ mutex_init(&fdp1->dev_mutex);
+
+ spin_lock_init(&fdp1->irqlock);
+ spin_lock_init(&fdp1->device_process_lock);
+ fdp1->dev = &pdev->dev;
+ platform_set_drvdata(pdev, fdp1);
+
+ /* Memory-mapped registers */
+ res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
+ fdp1->regs = devm_ioremap_resource(&pdev->dev, res);
+ if (IS_ERR(fdp1->regs))
+ return PTR_ERR(fdp1->regs);
+
+ /* Interrupt service routine registration */
+ fdp1->irq = ret = platform_get_irq(pdev, 0);
+ if (ret < 0) {
+ dev_err(&pdev->dev, "cannot find IRQ\n");
+ return ret;
+ }
+
+ ret = devm_request_irq(&pdev->dev, fdp1->irq, fdp1_irq_handler, 0,
+ dev_name(&pdev->dev), fdp1);
+ if (ret) {
+ dev_err(&pdev->dev, "cannot claim IRQ %d\n", fdp1->irq);
+ return ret;
+ }
+
+ /* FCP */
+ fcp_node = of_parse_phandle(pdev->dev.of_node, "renesas,fcp", 0);
+ if (fcp_node) {
+ fdp1->fcp = rcar_fcp_get(fcp_node);
+ of_node_put(fcp_node);
+ if (IS_ERR(fdp1->fcp)) {
+ dev_err(&pdev->dev, "FCP not found (%ld)\n",
+ PTR_ERR(fdp1->fcp));
+ return PTR_ERR(fdp1->fcp);
+ }
+ }
+
+ /* Determine our clock rate */
+ clk = clk_get(&pdev->dev, NULL);
+ if (IS_ERR(clk))
+ return PTR_ERR(clk);
+
+ fdp1->clk_rate = clk_get_rate(clk);
+ clk_put(clk);
+
+ /* V4L2 device registration */
+ ret = v4l2_device_register(&pdev->dev, &fdp1->v4l2_dev);
+ if (ret) {
+ v4l2_err(&fdp1->v4l2_dev, "Failed to register video device\n");
+ return ret;
+ }
+
+ /* M2M registration */
+ fdp1->m2m_dev = v4l2_m2m_init(&m2m_ops);
+ if (IS_ERR(fdp1->m2m_dev)) {
+ v4l2_err(&fdp1->v4l2_dev, "Failed to init mem2mem device\n");
+ ret = PTR_ERR(fdp1->m2m_dev);
+ goto unreg_dev;
+ }
+
+ /* Video registration */
+ fdp1->vfd = fdp1_videodev;
+ vfd = &fdp1->vfd;
+ vfd->lock = &fdp1->dev_mutex;
+ vfd->v4l2_dev = &fdp1->v4l2_dev;
+ video_set_drvdata(vfd, fdp1);
+ strlcpy(vfd->name, fdp1_videodev.name, sizeof(vfd->name));
+
+ ret = video_register_device(vfd, VFL_TYPE_GRABBER, 0);
+ if (ret) {
+ v4l2_err(&fdp1->v4l2_dev, "Failed to register video device\n");
+ goto release_m2m;
+ }
+
+ v4l2_info(&fdp1->v4l2_dev,
+ "Device registered as /dev/video%d\n", vfd->num);
+
+ /* Power up the cells to read HW */
+ pm_runtime_enable(&pdev->dev);
+ pm_runtime_get_sync(fdp1->dev);
+
+ hw_version = fdp1_read(fdp1, FD1_IP_INTDATA);
+ switch (hw_version) {
+ case FD1_IP_H3:
+ dprintk(fdp1, "FDP1 Version R-Car H3\n");
+ break;
+ case FD1_IP_M3W:
+ dprintk(fdp1, "FDP1 Version R-Car M3-W\n");
+ break;
+ default:
+ dev_err(fdp1->dev, "FDP1 Unidentifiable (0x%08x)\n",
+ hw_version);
+ }
+
+ /* Allow the hw to sleep until an open call puts it to use */
+ pm_runtime_put(fdp1->dev);
+
+ return 0;
+
+release_m2m:
+ v4l2_m2m_release(fdp1->m2m_dev);
+
+unreg_dev:
+ v4l2_device_unregister(&fdp1->v4l2_dev);
+
+ return ret;
+}
+
+static int fdp1_remove(struct platform_device *pdev)
+{
+ struct fdp1_dev *fdp1 = platform_get_drvdata(pdev);
+
+ v4l2_m2m_release(fdp1->m2m_dev);
+ video_unregister_device(&fdp1->vfd);
+ v4l2_device_unregister(&fdp1->v4l2_dev);
+ pm_runtime_disable(&pdev->dev);
+
+ return 0;
+}
+
+static int fdp1_pm_runtime_suspend(struct device *dev)
+{
+ struct fdp1_dev *fdp1 = dev_get_drvdata(dev);
+
+ rcar_fcp_disable(fdp1->fcp);
+
+ return 0;
+}
+
+static int fdp1_pm_runtime_resume(struct device *dev)
+{
+ struct fdp1_dev *fdp1 = dev_get_drvdata(dev);
+
+ /* Program in the static LUTs */
+ fdp1_set_lut(fdp1);
+
+ return rcar_fcp_enable(fdp1->fcp);
+}
+
+static const struct dev_pm_ops fdp1_pm_ops = {
+ SET_RUNTIME_PM_OPS(fdp1_pm_runtime_suspend,
+ fdp1_pm_runtime_resume,
+ NULL)
+};
+
+static const struct of_device_id fdp1_dt_ids[] = {
+ { .compatible = "renesas,fdp1" },
+ { },
+};
+MODULE_DEVICE_TABLE(of, fdp1_dt_ids);
+
+static struct platform_driver fdp1_pdrv = {
+ .probe = fdp1_probe,
+ .remove = fdp1_remove,
+ .driver = {
+ .name = DRIVER_NAME,
+ .of_match_table = fdp1_dt_ids,
+ .pm = &fdp1_pm_ops,
+ },
+};
+
+module_platform_driver(fdp1_pdrv);
+
+MODULE_DESCRIPTION("Renesas R-Car Fine Display Processor Driver");
+MODULE_AUTHOR("Kieran Bingham <kieran@bingham.xyz>");
+MODULE_LICENSE("GPL");
+MODULE_ALIAS("platform:" DRIVER_NAME);