diff options
author | Maxime Ripard <maxime@cerno.tech> | 2020-09-03 11:00:46 +0300 |
---|---|---|
committer | Maxime Ripard <maxime@cerno.tech> | 2020-09-07 19:02:51 +0300 |
commit | 87ebcd42fb7b8d1d3269007a621e41ae96a0077e (patch) | |
tree | f62a14f12199df09b729594299b439208867d39d /drivers/gpu/drm/vc4/vc4_kms.c | |
parent | 596356678fb429cc181c30971b5cb6c4244b58ad (diff) | |
download | linux-87ebcd42fb7b8d1d3269007a621e41ae96a0077e.tar.xz |
drm/vc4: crtc: Assign output to channel automatically
The HVS found in the BCM2711 has 6 outputs and 3 FIFOs, with each output
being connected to a pixelvalve, and some muxing between the FIFOs and
outputs.
Any output cannot feed from any FIFO though, and they all have a bunch of
constraints.
In order to support this, let's store the possible FIFOs each output can be
assigned to in the vc4_crtc_data, and use that information at atomic_check
time to iterate over all the CRTCs enabled and assign them FIFOs.
The channel assigned is then set in the vc4_crtc_state so that the rest of
the driver can use it.
Signed-off-by: Maxime Ripard <maxime@cerno.tech>
Tested-by: Chanwoo Choi <cw00.choi@samsung.com>
Tested-by: Hoegeun Kwon <hoegeun.kwon@samsung.com>
Tested-by: Stefan Wahren <stefan.wahren@i2se.com>
Reviewed-by: Dave Stevenson <dave.stevenson@raspberrypi.com>
Link: https://patchwork.freedesktop.org/patch/msgid/f9aba3814ef37156ff36f310118cdd3954dd3dc5.1599120059.git-series.maxime@cerno.tech
Diffstat (limited to 'drivers/gpu/drm/vc4/vc4_kms.c')
-rw-r--r-- | drivers/gpu/drm/vc4/vc4_kms.c | 168 |
1 files changed, 164 insertions, 4 deletions
diff --git a/drivers/gpu/drm/vc4/vc4_kms.c b/drivers/gpu/drm/vc4/vc4_kms.c index a41d105d4e3c..bfc7ddd49ac5 100644 --- a/drivers/gpu/drm/vc4/vc4_kms.c +++ b/drivers/gpu/drm/vc4/vc4_kms.c @@ -146,6 +146,107 @@ vc4_ctm_commit(struct vc4_dev *vc4, struct drm_atomic_state *state) VC4_SET_FIELD(ctm_state->fifo, SCALER_OLEDOFFS_DISPFIFO)); } +static void vc4_hvs_pv_muxing_commit(struct vc4_dev *vc4, + struct drm_atomic_state *state) +{ + struct drm_crtc_state *crtc_state; + struct drm_crtc *crtc; + unsigned int i; + + for_each_new_crtc_in_state(state, crtc, crtc_state, i) { + struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc_state); + u32 dispctrl; + u32 dsp3_mux; + + if (!crtc_state->active) + continue; + + if (vc4_state->assigned_channel != 2) + continue; + + /* + * SCALER_DISPCTRL_DSP3 = X, where X < 2 means 'connect DSP3 to + * FIFO X'. + * SCALER_DISPCTRL_DSP3 = 3 means 'disable DSP 3'. + * + * DSP3 is connected to FIFO2 unless the transposer is + * enabled. In this case, FIFO 2 is directly accessed by the + * TXP IP, and we need to disable the FIFO2 -> pixelvalve1 + * route. + */ + if (vc4_state->feed_txp) + dsp3_mux = VC4_SET_FIELD(3, SCALER_DISPCTRL_DSP3_MUX); + else + dsp3_mux = VC4_SET_FIELD(2, SCALER_DISPCTRL_DSP3_MUX); + + dispctrl = HVS_READ(SCALER_DISPCTRL) & + ~SCALER_DISPCTRL_DSP3_MUX_MASK; + HVS_WRITE(SCALER_DISPCTRL, dispctrl | dsp3_mux); + } +} + +static void vc5_hvs_pv_muxing_commit(struct vc4_dev *vc4, + struct drm_atomic_state *state) +{ + struct drm_crtc_state *crtc_state; + struct drm_crtc *crtc; + unsigned char dsp2_mux = 0; + unsigned char dsp3_mux = 3; + unsigned char dsp4_mux = 3; + unsigned char dsp5_mux = 3; + unsigned int i; + u32 reg; + + for_each_new_crtc_in_state(state, crtc, crtc_state, i) { + struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc_state); + struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); + + if (!crtc_state->active) + continue; + + switch (vc4_crtc->data->hvs_output) { + case 2: + dsp2_mux = (vc4_state->assigned_channel == 2) ? 0 : 1; + break; + + case 3: + dsp3_mux = vc4_state->assigned_channel; + break; + + case 4: + dsp4_mux = vc4_state->assigned_channel; + break; + + case 5: + dsp5_mux = vc4_state->assigned_channel; + break; + + default: + break; + } + } + + reg = HVS_READ(SCALER_DISPECTRL); + HVS_WRITE(SCALER_DISPECTRL, + (reg & ~SCALER_DISPECTRL_DSP2_MUX_MASK) | + VC4_SET_FIELD(dsp2_mux, SCALER_DISPECTRL_DSP2_MUX)); + + reg = HVS_READ(SCALER_DISPCTRL); + HVS_WRITE(SCALER_DISPCTRL, + (reg & ~SCALER_DISPCTRL_DSP3_MUX_MASK) | + VC4_SET_FIELD(dsp3_mux, SCALER_DISPCTRL_DSP3_MUX)); + + reg = HVS_READ(SCALER_DISPEOLN); + HVS_WRITE(SCALER_DISPEOLN, + (reg & ~SCALER_DISPEOLN_DSP4_MUX_MASK) | + VC4_SET_FIELD(dsp4_mux, SCALER_DISPEOLN_DSP4_MUX)); + + reg = HVS_READ(SCALER_DISPDITHER); + HVS_WRITE(SCALER_DISPDITHER, + (reg & ~SCALER_DISPDITHER_DSP5_MUX_MASK) | + VC4_SET_FIELD(dsp5_mux, SCALER_DISPDITHER_DSP5_MUX)); +} + static void vc4_atomic_complete_commit(struct drm_atomic_state *state) { @@ -157,12 +258,13 @@ vc4_atomic_complete_commit(struct drm_atomic_state *state) int i; for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) { - struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); + struct vc4_crtc_state *vc4_crtc_state; if (!new_crtc_state->commit) continue; - vc4_hvs_mask_underrun(dev, vc4_crtc->channel); + vc4_crtc_state = to_vc4_crtc_state(new_crtc_state); + vc4_hvs_mask_underrun(dev, vc4_crtc_state->assigned_channel); } if (vc4->hvs->hvs5) @@ -176,6 +278,11 @@ vc4_atomic_complete_commit(struct drm_atomic_state *state) vc4_ctm_commit(vc4, state); + if (vc4->hvs->hvs5) + vc5_hvs_pv_muxing_commit(vc4, state); + else + vc4_hvs_pv_muxing_commit(vc4, state); + drm_atomic_helper_commit_planes(dev, state, 0); drm_atomic_helper_commit_modeset_enables(dev, state); @@ -385,8 +492,11 @@ vc4_ctm_atomic_check(struct drm_device *dev, struct drm_atomic_state *state) /* CTM is being enabled or the matrix changed. */ if (new_crtc_state->ctm) { + struct vc4_crtc_state *vc4_crtc_state = + to_vc4_crtc_state(new_crtc_state); + /* fifo is 1-based since 0 disables CTM. */ - int fifo = to_vc4_crtc(crtc)->channel + 1; + int fifo = vc4_crtc_state->assigned_channel + 1; /* Check userland isn't trying to turn on CTM for more * than one CRTC at a time. @@ -496,10 +606,60 @@ static const struct drm_private_state_funcs vc4_load_tracker_state_funcs = { .atomic_destroy_state = vc4_load_tracker_destroy_state, }; +#define NUM_OUTPUTS 6 +#define NUM_CHANNELS 3 + static int vc4_atomic_check(struct drm_device *dev, struct drm_atomic_state *state) { - int ret; + unsigned long unassigned_channels = GENMASK(NUM_CHANNELS - 1, 0); + struct drm_crtc_state *crtc_state; + struct drm_crtc *crtc; + int i, ret; + + for_each_new_crtc_in_state(state, crtc, crtc_state, i) { + struct vc4_crtc_state *vc4_crtc_state = + to_vc4_crtc_state(crtc_state); + struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); + unsigned int matching_channels; + + if (!crtc_state->active) + continue; + + /* + * The problem we have to solve here is that we have + * up to 7 encoders, connected to up to 6 CRTCs. + * + * Those CRTCs, depending on the instance, can be + * routed to 1, 2 or 3 HVS FIFOs, and we need to set + * the change the muxing between FIFOs and outputs in + * the HVS accordingly. + * + * It would be pretty hard to come up with an + * algorithm that would generically solve + * this. However, the current routing trees we support + * allow us to simplify a bit the problem. + * + * Indeed, with the current supported layouts, if we + * try to assign in the ascending crtc index order the + * FIFOs, we can't fall into the situation where an + * earlier CRTC that had multiple routes is assigned + * one that was the only option for a later CRTC. + * + * If the layout changes and doesn't give us that in + * the future, we will need to have something smarter, + * but it works so far. + */ + matching_channels = unassigned_channels & vc4_crtc->data->hvs_available_channels; + if (matching_channels) { + unsigned int channel = ffs(matching_channels) - 1; + + vc4_crtc_state->assigned_channel = channel; + unassigned_channels &= ~BIT(channel); + } else { + return -EINVAL; + } + } ret = vc4_ctm_atomic_check(dev, state); if (ret < 0) |