summaryrefslogtreecommitdiff
path: root/drivers/firmware
diff options
context:
space:
mode:
authorArd Biesheuvel <ard.biesheuvel@linaro.org>2019-10-29 20:37:53 +0300
committerIngo Molnar <mingo@kernel.org>2019-10-31 11:40:19 +0300
commit41cd96fa149b29684ebd38759fefb07f9c7d5276 (patch)
treefce13b2d950718e2c44329cd6f6448cd6e4a65e0 /drivers/firmware
parent18b915ac6b0ac5ba7ded03156860f60a9f16df2b (diff)
downloadlinux-41cd96fa149b29684ebd38759fefb07f9c7d5276.tar.xz
efi: libstub/arm: Account for firmware reserved memory at the base of RAM
The EFI stubloader for ARM starts out by allocating a 32 MB window at the base of RAM, in order to ensure that the decompressor (which blindly copies the uncompressed kernel into that window) does not overwrite other allocations that are made while running in the context of the EFI firmware. In some cases, (e.g., U-Boot running on the Raspberry Pi 2), this is causing boot failures because this initial allocation conflicts with a page of reserved memory at the base of RAM that contains the SMP spin tables and other pieces of firmware data and which was put there by the bootloader under the assumption that the TEXT_OFFSET window right below the kernel is only used partially during early boot, and will be left alone once the memory reservations are processed and taken into account. So let's permit reserved memory regions to exist in the region starting at the base of RAM, and ending at TEXT_OFFSET - 5 * PAGE_SIZE, which is the window below the kernel that is not touched by the early boot code. Tested-by: Guillaume Gardet <Guillaume.Gardet@arm.com> Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Acked-by: Chester Lin <clin@suse.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-efi@vger.kernel.org Link: https://lkml.kernel.org/r/20191029173755.27149-5-ardb@kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
Diffstat (limited to 'drivers/firmware')
-rw-r--r--drivers/firmware/efi/libstub/Makefile1
-rw-r--r--drivers/firmware/efi/libstub/arm32-stub.c16
2 files changed, 14 insertions, 3 deletions
diff --git a/drivers/firmware/efi/libstub/Makefile b/drivers/firmware/efi/libstub/Makefile
index 0460c7581220..ee0661ddb25b 100644
--- a/drivers/firmware/efi/libstub/Makefile
+++ b/drivers/firmware/efi/libstub/Makefile
@@ -52,6 +52,7 @@ lib-$(CONFIG_EFI_ARMSTUB) += arm-stub.o fdt.o string.o random.o \
lib-$(CONFIG_ARM) += arm32-stub.o
lib-$(CONFIG_ARM64) += arm64-stub.o
+CFLAGS_arm32-stub.o := -DTEXT_OFFSET=$(TEXT_OFFSET)
CFLAGS_arm64-stub.o := -DTEXT_OFFSET=$(TEXT_OFFSET)
#
diff --git a/drivers/firmware/efi/libstub/arm32-stub.c b/drivers/firmware/efi/libstub/arm32-stub.c
index e8f7aefb6813..ffa242ad0a82 100644
--- a/drivers/firmware/efi/libstub/arm32-stub.c
+++ b/drivers/firmware/efi/libstub/arm32-stub.c
@@ -195,6 +195,7 @@ efi_status_t handle_kernel_image(efi_system_table_t *sys_table,
unsigned long dram_base,
efi_loaded_image_t *image)
{
+ unsigned long kernel_base;
efi_status_t status;
/*
@@ -204,9 +205,18 @@ efi_status_t handle_kernel_image(efi_system_table_t *sys_table,
* loaded. These assumptions are made by the decompressor,
* before any memory map is available.
*/
- dram_base = round_up(dram_base, SZ_128M);
+ kernel_base = round_up(dram_base, SZ_128M);
- status = reserve_kernel_base(sys_table, dram_base, reserve_addr,
+ /*
+ * Note that some platforms (notably, the Raspberry Pi 2) put
+ * spin-tables and other pieces of firmware at the base of RAM,
+ * abusing the fact that the window of TEXT_OFFSET bytes at the
+ * base of the kernel image is only partially used at the moment.
+ * (Up to 5 pages are used for the swapper page tables)
+ */
+ kernel_base += TEXT_OFFSET - 5 * PAGE_SIZE;
+
+ status = reserve_kernel_base(sys_table, kernel_base, reserve_addr,
reserve_size);
if (status != EFI_SUCCESS) {
pr_efi_err(sys_table, "Unable to allocate memory for uncompressed kernel.\n");
@@ -220,7 +230,7 @@ efi_status_t handle_kernel_image(efi_system_table_t *sys_table,
*image_size = image->image_size;
status = efi_relocate_kernel(sys_table, image_addr, *image_size,
*image_size,
- dram_base + MAX_UNCOMP_KERNEL_SIZE, 0);
+ kernel_base + MAX_UNCOMP_KERNEL_SIZE, 0);
if (status != EFI_SUCCESS) {
pr_efi_err(sys_table, "Failed to relocate kernel.\n");
efi_free(sys_table, *reserve_size, *reserve_addr);