diff options
author | Linus Torvalds <torvalds@linux-foundation.org> | 2015-06-27 01:07:37 +0300 |
---|---|---|
committer | Linus Torvalds <torvalds@linux-foundation.org> | 2015-06-27 01:07:37 +0300 |
commit | 8d7804a2f03dbd34940fcb426450c730adf29dae (patch) | |
tree | 749f33776e38f734b81c2a93275b6bf76e96f74e /drivers/base/dd.c | |
parent | d87823813fe498fdd47894bd28e460a9dee8d771 (diff) | |
parent | 0e6c861f73ec42ab5c89fda9892f2173c7aaf6cf (diff) | |
download | linux-8d7804a2f03dbd34940fcb426450c730adf29dae.tar.xz |
Merge tag 'driver-core-4.2-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core
Pull driver core updates from Greg KH:
"Here is the driver core / firmware changes for 4.2-rc1.
A number of small changes all over the place in the driver core, and
in the firmware subsystem. Nothing really major, full details in the
shortlog. Some of it is a bit of churn, given that the platform
driver probing changes was found to not work well, so they were
reverted.
All of these have been in linux-next for a while with no reported
issues"
* tag 'driver-core-4.2-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core: (31 commits)
Revert "base/platform: Only insert MEM and IO resources"
Revert "base/platform: Continue on insert_resource() error"
Revert "of/platform: Use platform_device interface"
Revert "base/platform: Remove code duplication"
firmware: add missing kfree for work on async call
fs: sysfs: don't pass count == 0 to bin file readers
base:dd - Fix for typo in comment to function driver_deferred_probe_trigger().
base/platform: Remove code duplication
of/platform: Use platform_device interface
base/platform: Continue on insert_resource() error
base/platform: Only insert MEM and IO resources
firmware: use const for remaining firmware names
firmware: fix possible use after free on name on asynchronous request
firmware: check for file truncation on direct firmware loading
firmware: fix __getname() missing failure check
drivers: of/base: move of_init to driver_init
drivers/base: cacheinfo: fix annoying typo when DT nodes are absent
sysfs: disambiguate between "error code" and "failure" in comments
driver-core: fix build for !CONFIG_MODULES
driver-core: make __device_attach() static
...
Diffstat (limited to 'drivers/base/dd.c')
-rw-r--r-- | drivers/base/dd.c | 163 |
1 files changed, 143 insertions, 20 deletions
diff --git a/drivers/base/dd.c b/drivers/base/dd.c index e843fdbe4925..a638bbb1a27a 100644 --- a/drivers/base/dd.c +++ b/drivers/base/dd.c @@ -141,7 +141,7 @@ static bool driver_deferred_probe_enable = false; * more than one device is probing at the same time, it is possible for one * probe to complete successfully while another is about to defer. If the second * depends on the first, then it will get put on the pending list after the - * trigger event has already occured and will be stuck there. + * trigger event has already occurred and will be stuck there. * * The atomic 'deferred_trigger_count' is used to determine if a successful * trigger has occurred in the midst of probing a driver. If the trigger count @@ -417,31 +417,107 @@ int driver_probe_device(struct device_driver *drv, struct device *dev) return ret; } -static int __device_attach(struct device_driver *drv, void *data) +bool driver_allows_async_probing(struct device_driver *drv) { - struct device *dev = data; + switch (drv->probe_type) { + case PROBE_PREFER_ASYNCHRONOUS: + return true; + + case PROBE_FORCE_SYNCHRONOUS: + return false; + + default: + if (module_requested_async_probing(drv->owner)) + return true; + + return false; + } +} + +struct device_attach_data { + struct device *dev; + + /* + * Indicates whether we are are considering asynchronous probing or + * not. Only initial binding after device or driver registration + * (including deferral processing) may be done asynchronously, the + * rest is always synchronous, as we expect it is being done by + * request from userspace. + */ + bool check_async; + + /* + * Indicates if we are binding synchronous or asynchronous drivers. + * When asynchronous probing is enabled we'll execute 2 passes + * over drivers: first pass doing synchronous probing and second + * doing asynchronous probing (if synchronous did not succeed - + * most likely because there was no driver requiring synchronous + * probing - and we found asynchronous driver during first pass). + * The 2 passes are done because we can't shoot asynchronous + * probe for given device and driver from bus_for_each_drv() since + * driver pointer is not guaranteed to stay valid once + * bus_for_each_drv() iterates to the next driver on the bus. + */ + bool want_async; + + /* + * We'll set have_async to 'true' if, while scanning for matching + * driver, we'll encounter one that requests asynchronous probing. + */ + bool have_async; +}; + +static int __device_attach_driver(struct device_driver *drv, void *_data) +{ + struct device_attach_data *data = _data; + struct device *dev = data->dev; + bool async_allowed; + + /* + * Check if device has already been claimed. This may + * happen with driver loading, device discovery/registration, + * and deferred probe processing happens all at once with + * multiple threads. + */ + if (dev->driver) + return -EBUSY; if (!driver_match_device(drv, dev)) return 0; + async_allowed = driver_allows_async_probing(drv); + + if (async_allowed) + data->have_async = true; + + if (data->check_async && async_allowed != data->want_async) + return 0; + return driver_probe_device(drv, dev); } -/** - * device_attach - try to attach device to a driver. - * @dev: device. - * - * Walk the list of drivers that the bus has and call - * driver_probe_device() for each pair. If a compatible - * pair is found, break out and return. - * - * Returns 1 if the device was bound to a driver; - * 0 if no matching driver was found; - * -ENODEV if the device is not registered. - * - * When called for a USB interface, @dev->parent lock must be held. - */ -int device_attach(struct device *dev) +static void __device_attach_async_helper(void *_dev, async_cookie_t cookie) +{ + struct device *dev = _dev; + struct device_attach_data data = { + .dev = dev, + .check_async = true, + .want_async = true, + }; + + device_lock(dev); + + bus_for_each_drv(dev->bus, NULL, &data, __device_attach_driver); + dev_dbg(dev, "async probe completed\n"); + + pm_request_idle(dev); + + device_unlock(dev); + + put_device(dev); +} + +static int __device_attach(struct device *dev, bool allow_async) { int ret = 0; @@ -459,15 +535,59 @@ int device_attach(struct device *dev) ret = 0; } } else { - ret = bus_for_each_drv(dev->bus, NULL, dev, __device_attach); - pm_request_idle(dev); + struct device_attach_data data = { + .dev = dev, + .check_async = allow_async, + .want_async = false, + }; + + ret = bus_for_each_drv(dev->bus, NULL, &data, + __device_attach_driver); + if (!ret && allow_async && data.have_async) { + /* + * If we could not find appropriate driver + * synchronously and we are allowed to do + * async probes and there are drivers that + * want to probe asynchronously, we'll + * try them. + */ + dev_dbg(dev, "scheduling asynchronous probe\n"); + get_device(dev); + async_schedule(__device_attach_async_helper, dev); + } else { + pm_request_idle(dev); + } } out_unlock: device_unlock(dev); return ret; } + +/** + * device_attach - try to attach device to a driver. + * @dev: device. + * + * Walk the list of drivers that the bus has and call + * driver_probe_device() for each pair. If a compatible + * pair is found, break out and return. + * + * Returns 1 if the device was bound to a driver; + * 0 if no matching driver was found; + * -ENODEV if the device is not registered. + * + * When called for a USB interface, @dev->parent lock must be held. + */ +int device_attach(struct device *dev) +{ + return __device_attach(dev, false); +} EXPORT_SYMBOL_GPL(device_attach); +void device_initial_probe(struct device *dev) +{ + __device_attach(dev, true); +} + static int __driver_attach(struct device *dev, void *data) { struct device_driver *drv = data; @@ -522,6 +642,9 @@ static void __device_release_driver(struct device *dev) drv = dev->driver; if (drv) { + if (driver_allows_async_probing(drv)) + async_synchronize_full(); + pm_runtime_get_sync(dev); driver_sysfs_remove(dev); |