summaryrefslogtreecommitdiff
path: root/crypto
diff options
context:
space:
mode:
authorChristian Brauner <christian.brauner@ubuntu.com>2021-01-21 16:19:54 +0300
committerChristian Brauner <christian.brauner@ubuntu.com>2021-01-24 16:43:45 +0300
commit9caccd41541a6f7d6279928d9f971f6642c361af (patch)
treec9fd1a3ffe04a19e0b44ca1007fba8a40f2c451e /crypto
parent2a1867219c7b27f928e2545782b86daaf9ad50bd (diff)
downloadlinux-9caccd41541a6f7d6279928d9f971f6642c361af.tar.xz
fs: introduce MOUNT_ATTR_IDMAP
Introduce a new mount bind mount property to allow idmapping mounts. The MOUNT_ATTR_IDMAP flag can be set via the new mount_setattr() syscall together with a file descriptor referring to a user namespace. The user namespace referenced by the namespace file descriptor will be attached to the bind mount. All interactions with the filesystem going through that mount will be mapped according to the mapping specified in the user namespace attached to it. Using user namespaces to mark mounts means we can reuse all the existing infrastructure in the kernel that already exists to handle idmappings and can also use this for permission checking to allow unprivileged user to create idmapped mounts in the future. Idmapping a mount is decoupled from the caller's user and mount namespace. This means idmapped mounts can be created in the initial user namespace which is an important use-case for systemd-homed, portable usb-sticks between systems, sharing data between the initial user namespace and unprivileged containers, and other use-cases that have been brought up. For example, assume a home directory where all files are owned by uid and gid 1000 and the home directory is brought to a new laptop where the user has id 12345. The system administrator can simply create a mount of this home directory with a mapping of 1000:12345:1 and other mappings to indicate the ids should be kept. (With this it is e.g. also possible to create idmapped mounts on the host with an identity mapping 1:1:100000 where the root user is not mapped. A user with root access that e.g. has been pivot rooted into such a mount on the host will be not be able to execute, read, write, or create files as root.) Given that mapping a mount is decoupled from the caller's user namespace a sufficiently privileged process such as a container manager can set up an idmapped mount for the container and the container can simply pivot root to it. There's no need for the container to do anything. The mount will appear correctly mapped independent of the user namespace the container uses. This means we don't need to mark a mount as idmappable. In order to create an idmapped mount the caller must currently be privileged in the user namespace of the superblock the mount belongs to. Once a mount has been idmapped we don't allow it to change its mapping. This keeps permission checking and life-cycle management simple. Users wanting to change the idmapped can always create a new detached mount with a different idmapping. Link: https://lore.kernel.org/r/20210121131959.646623-36-christian.brauner@ubuntu.com Cc: Christoph Hellwig <hch@lst.de> Cc: David Howells <dhowells@redhat.com> Cc: Mauricio Vásquez Bernal <mauricio@kinvolk.io> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: linux-fsdevel@vger.kernel.org Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
Diffstat (limited to 'crypto')
0 files changed, 0 insertions, 0 deletions