diff options
author | Linus Torvalds <torvalds@linux-foundation.org> | 2022-09-04 21:27:14 +0300 |
---|---|---|
committer | Linus Torvalds <torvalds@linux-foundation.org> | 2022-09-04 21:27:14 +0300 |
commit | 685ed983e2dc330680a076a1fd37ebe04017df91 (patch) | |
tree | b6d2fda970b3536d109e94af7ed025943c23fd62 /arch | |
parent | b0839b281c427e844143dba3893e25c83cdd6c17 (diff) | |
parent | 29250ba51bc1cbe8a87e923f76978b87c3247a8c (diff) | |
download | linux-685ed983e2dc330680a076a1fd37ebe04017df91.tar.xz |
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull kvm fixes from Paolo Bonzini:
"s390:
- PCI interpretation compile fixes
RISC-V:
- fix unused variable warnings in vcpu_timer.c
- move extern sbi_ext declarations to a header
x86:
- check validity of argument to KVM_SET_MP_STATE
- use guest's global_ctrl to completely disable guest PEBS
- fix a memory leak on memory allocation failure
- mask off unsupported and unknown bits of IA32_ARCH_CAPABILITIES
- fix build failure with Clang integrated assembler
- fix MSR interception
- always flush TLBs when enabling dirty logging"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm:
KVM: x86: check validity of argument to KVM_SET_MP_STATE
perf/x86/core: Completely disable guest PEBS via guest's global_ctrl
KVM: x86: fix memoryleak in kvm_arch_vcpu_create()
KVM: x86: Mask off unsupported and unknown bits of IA32_ARCH_CAPABILITIES
KVM: s390: pci: Hook to access KVM lowlevel from VFIO
riscv: kvm: move extern sbi_ext declarations to a header
riscv: kvm: vcpu_timer: fix unused variable warnings
KVM: selftests: Fix ambiguous mov in KVM_ASM_SAFE()
KVM: selftests: Fix KVM_EXCEPTION_MAGIC build with Clang
KVM: VMX: Heed the 'msr' argument in msr_write_intercepted()
kvm: x86: mmu: Always flush TLBs when enabling dirty logging
kvm: x86: mmu: Drop the need_remote_flush() function
Diffstat (limited to 'arch')
-rw-r--r-- | arch/riscv/include/asm/kvm_vcpu_sbi.h | 12 | ||||
-rw-r--r-- | arch/riscv/kvm/vcpu_sbi.c | 12 | ||||
-rw-r--r-- | arch/riscv/kvm/vcpu_timer.c | 4 | ||||
-rw-r--r-- | arch/s390/include/asm/kvm_host.h | 17 | ||||
-rw-r--r-- | arch/s390/kvm/pci.c | 12 | ||||
-rw-r--r-- | arch/s390/pci/Makefile | 2 | ||||
-rw-r--r-- | arch/s390/pci/pci_kvm_hook.c | 11 | ||||
-rw-r--r-- | arch/x86/events/intel/core.c | 3 | ||||
-rw-r--r-- | arch/x86/kvm/mmu/mmu.c | 60 | ||||
-rw-r--r-- | arch/x86/kvm/mmu/spte.h | 14 | ||||
-rw-r--r-- | arch/x86/kvm/vmx/vmx.c | 3 | ||||
-rw-r--r-- | arch/x86/kvm/x86.c | 92 |
12 files changed, 143 insertions, 99 deletions
diff --git a/arch/riscv/include/asm/kvm_vcpu_sbi.h b/arch/riscv/include/asm/kvm_vcpu_sbi.h index 83d6d4d2b1df..26a446a34057 100644 --- a/arch/riscv/include/asm/kvm_vcpu_sbi.h +++ b/arch/riscv/include/asm/kvm_vcpu_sbi.h @@ -33,4 +33,16 @@ void kvm_riscv_vcpu_sbi_system_reset(struct kvm_vcpu *vcpu, u32 type, u64 flags); const struct kvm_vcpu_sbi_extension *kvm_vcpu_sbi_find_ext(unsigned long extid); +#ifdef CONFIG_RISCV_SBI_V01 +extern const struct kvm_vcpu_sbi_extension vcpu_sbi_ext_v01; +#endif +extern const struct kvm_vcpu_sbi_extension vcpu_sbi_ext_base; +extern const struct kvm_vcpu_sbi_extension vcpu_sbi_ext_time; +extern const struct kvm_vcpu_sbi_extension vcpu_sbi_ext_ipi; +extern const struct kvm_vcpu_sbi_extension vcpu_sbi_ext_rfence; +extern const struct kvm_vcpu_sbi_extension vcpu_sbi_ext_srst; +extern const struct kvm_vcpu_sbi_extension vcpu_sbi_ext_hsm; +extern const struct kvm_vcpu_sbi_extension vcpu_sbi_ext_experimental; +extern const struct kvm_vcpu_sbi_extension vcpu_sbi_ext_vendor; + #endif /* __RISCV_KVM_VCPU_SBI_H__ */ diff --git a/arch/riscv/kvm/vcpu_sbi.c b/arch/riscv/kvm/vcpu_sbi.c index d45e7da3f0d3..f96991d230bf 100644 --- a/arch/riscv/kvm/vcpu_sbi.c +++ b/arch/riscv/kvm/vcpu_sbi.c @@ -32,23 +32,13 @@ static int kvm_linux_err_map_sbi(int err) }; } -#ifdef CONFIG_RISCV_SBI_V01 -extern const struct kvm_vcpu_sbi_extension vcpu_sbi_ext_v01; -#else +#ifndef CONFIG_RISCV_SBI_V01 static const struct kvm_vcpu_sbi_extension vcpu_sbi_ext_v01 = { .extid_start = -1UL, .extid_end = -1UL, .handler = NULL, }; #endif -extern const struct kvm_vcpu_sbi_extension vcpu_sbi_ext_base; -extern const struct kvm_vcpu_sbi_extension vcpu_sbi_ext_time; -extern const struct kvm_vcpu_sbi_extension vcpu_sbi_ext_ipi; -extern const struct kvm_vcpu_sbi_extension vcpu_sbi_ext_rfence; -extern const struct kvm_vcpu_sbi_extension vcpu_sbi_ext_srst; -extern const struct kvm_vcpu_sbi_extension vcpu_sbi_ext_hsm; -extern const struct kvm_vcpu_sbi_extension vcpu_sbi_ext_experimental; -extern const struct kvm_vcpu_sbi_extension vcpu_sbi_ext_vendor; static const struct kvm_vcpu_sbi_extension *sbi_ext[] = { &vcpu_sbi_ext_v01, diff --git a/arch/riscv/kvm/vcpu_timer.c b/arch/riscv/kvm/vcpu_timer.c index 16f50c46ba39..185f2386a747 100644 --- a/arch/riscv/kvm/vcpu_timer.c +++ b/arch/riscv/kvm/vcpu_timer.c @@ -299,7 +299,6 @@ static void kvm_riscv_vcpu_update_timedelta(struct kvm_vcpu *vcpu) void kvm_riscv_vcpu_timer_restore(struct kvm_vcpu *vcpu) { - struct kvm_vcpu_csr *csr; struct kvm_vcpu_timer *t = &vcpu->arch.timer; kvm_riscv_vcpu_update_timedelta(vcpu); @@ -307,7 +306,6 @@ void kvm_riscv_vcpu_timer_restore(struct kvm_vcpu *vcpu) if (!t->sstc_enabled) return; - csr = &vcpu->arch.guest_csr; #if defined(CONFIG_32BIT) csr_write(CSR_VSTIMECMP, (u32)t->next_cycles); csr_write(CSR_VSTIMECMPH, (u32)(t->next_cycles >> 32)); @@ -324,13 +322,11 @@ void kvm_riscv_vcpu_timer_restore(struct kvm_vcpu *vcpu) void kvm_riscv_vcpu_timer_save(struct kvm_vcpu *vcpu) { - struct kvm_vcpu_csr *csr; struct kvm_vcpu_timer *t = &vcpu->arch.timer; if (!t->sstc_enabled) return; - csr = &vcpu->arch.guest_csr; t = &vcpu->arch.timer; #if defined(CONFIG_32BIT) t->next_cycles = csr_read(CSR_VSTIMECMP); diff --git a/arch/s390/include/asm/kvm_host.h b/arch/s390/include/asm/kvm_host.h index f39092e0ceaa..b1e98a9ed152 100644 --- a/arch/s390/include/asm/kvm_host.h +++ b/arch/s390/include/asm/kvm_host.h @@ -1038,16 +1038,11 @@ static inline void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu) {} #define __KVM_HAVE_ARCH_VM_FREE void kvm_arch_free_vm(struct kvm *kvm); -#ifdef CONFIG_VFIO_PCI_ZDEV_KVM -int kvm_s390_pci_register_kvm(struct zpci_dev *zdev, struct kvm *kvm); -void kvm_s390_pci_unregister_kvm(struct zpci_dev *zdev); -#else -static inline int kvm_s390_pci_register_kvm(struct zpci_dev *dev, - struct kvm *kvm) -{ - return -EPERM; -} -static inline void kvm_s390_pci_unregister_kvm(struct zpci_dev *dev) {} -#endif +struct zpci_kvm_hook { + int (*kvm_register)(void *opaque, struct kvm *kvm); + void (*kvm_unregister)(void *opaque); +}; + +extern struct zpci_kvm_hook zpci_kvm_hook; #endif diff --git a/arch/s390/kvm/pci.c b/arch/s390/kvm/pci.c index 4946fb7757d6..bb8c335d17b9 100644 --- a/arch/s390/kvm/pci.c +++ b/arch/s390/kvm/pci.c @@ -431,8 +431,9 @@ static void kvm_s390_pci_dev_release(struct zpci_dev *zdev) * available, enable them and let userspace indicate whether or not they will * be used (specify SHM bit to disable). */ -int kvm_s390_pci_register_kvm(struct zpci_dev *zdev, struct kvm *kvm) +static int kvm_s390_pci_register_kvm(void *opaque, struct kvm *kvm) { + struct zpci_dev *zdev = opaque; int rc; if (!zdev) @@ -510,10 +511,10 @@ err: kvm_put_kvm(kvm); return rc; } -EXPORT_SYMBOL_GPL(kvm_s390_pci_register_kvm); -void kvm_s390_pci_unregister_kvm(struct zpci_dev *zdev) +static void kvm_s390_pci_unregister_kvm(void *opaque) { + struct zpci_dev *zdev = opaque; struct kvm *kvm; if (!zdev) @@ -566,7 +567,6 @@ out: kvm_put_kvm(kvm); } -EXPORT_SYMBOL_GPL(kvm_s390_pci_unregister_kvm); void kvm_s390_pci_init_list(struct kvm *kvm) { @@ -678,6 +678,8 @@ int kvm_s390_pci_init(void) spin_lock_init(&aift->gait_lock); mutex_init(&aift->aift_lock); + zpci_kvm_hook.kvm_register = kvm_s390_pci_register_kvm; + zpci_kvm_hook.kvm_unregister = kvm_s390_pci_unregister_kvm; return 0; } @@ -685,6 +687,8 @@ int kvm_s390_pci_init(void) void kvm_s390_pci_exit(void) { mutex_destroy(&aift->aift_lock); + zpci_kvm_hook.kvm_register = NULL; + zpci_kvm_hook.kvm_unregister = NULL; kfree(aift); } diff --git a/arch/s390/pci/Makefile b/arch/s390/pci/Makefile index bf557a1b789c..5ae31ca9dd44 100644 --- a/arch/s390/pci/Makefile +++ b/arch/s390/pci/Makefile @@ -5,5 +5,5 @@ obj-$(CONFIG_PCI) += pci.o pci_irq.o pci_dma.o pci_clp.o pci_sysfs.o \ pci_event.o pci_debug.o pci_insn.o pci_mmio.o \ - pci_bus.o + pci_bus.o pci_kvm_hook.o obj-$(CONFIG_PCI_IOV) += pci_iov.o diff --git a/arch/s390/pci/pci_kvm_hook.c b/arch/s390/pci/pci_kvm_hook.c new file mode 100644 index 000000000000..ff34baf50a3e --- /dev/null +++ b/arch/s390/pci/pci_kvm_hook.c @@ -0,0 +1,11 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * VFIO ZPCI devices support + * + * Copyright (C) IBM Corp. 2022. All rights reserved. + * Author(s): Pierre Morel <pmorel@linux.ibm.com> + */ +#include <linux/kvm_host.h> + +struct zpci_kvm_hook zpci_kvm_hook; +EXPORT_SYMBOL_GPL(zpci_kvm_hook); diff --git a/arch/x86/events/intel/core.c b/arch/x86/events/intel/core.c index cb98a05ee743..c601939a74b1 100644 --- a/arch/x86/events/intel/core.c +++ b/arch/x86/events/intel/core.c @@ -4052,8 +4052,9 @@ static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr, void *data) /* Disable guest PEBS if host PEBS is enabled. */ arr[pebs_enable].guest = 0; } else { - /* Disable guest PEBS for cross-mapped PEBS counters. */ + /* Disable guest PEBS thoroughly for cross-mapped PEBS counters. */ arr[pebs_enable].guest &= ~kvm_pmu->host_cross_mapped_mask; + arr[global_ctrl].guest &= ~kvm_pmu->host_cross_mapped_mask; /* Set hw GLOBAL_CTRL bits for PEBS counter when it runs for guest */ arr[global_ctrl].guest |= arr[pebs_enable].guest; } diff --git a/arch/x86/kvm/mmu/mmu.c b/arch/x86/kvm/mmu/mmu.c index 126fa9aec64c..e418ef3ecfcb 100644 --- a/arch/x86/kvm/mmu/mmu.c +++ b/arch/x86/kvm/mmu/mmu.c @@ -5361,19 +5361,6 @@ void kvm_mmu_free_obsolete_roots(struct kvm_vcpu *vcpu) __kvm_mmu_free_obsolete_roots(vcpu->kvm, &vcpu->arch.guest_mmu); } -static bool need_remote_flush(u64 old, u64 new) -{ - if (!is_shadow_present_pte(old)) - return false; - if (!is_shadow_present_pte(new)) - return true; - if ((old ^ new) & SPTE_BASE_ADDR_MASK) - return true; - old ^= shadow_nx_mask; - new ^= shadow_nx_mask; - return (old & ~new & SPTE_PERM_MASK) != 0; -} - static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa, int *bytes) { @@ -5519,7 +5506,7 @@ static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa, mmu_page_zap_pte(vcpu->kvm, sp, spte, NULL); if (gentry && sp->role.level != PG_LEVEL_4K) ++vcpu->kvm->stat.mmu_pde_zapped; - if (need_remote_flush(entry, *spte)) + if (is_shadow_present_pte(entry)) flush = true; ++spte; } @@ -6085,47 +6072,18 @@ void kvm_mmu_slot_remove_write_access(struct kvm *kvm, const struct kvm_memory_slot *memslot, int start_level) { - bool flush = false; - if (kvm_memslots_have_rmaps(kvm)) { write_lock(&kvm->mmu_lock); - flush = slot_handle_level(kvm, memslot, slot_rmap_write_protect, - start_level, KVM_MAX_HUGEPAGE_LEVEL, - false); + slot_handle_level(kvm, memslot, slot_rmap_write_protect, + start_level, KVM_MAX_HUGEPAGE_LEVEL, false); write_unlock(&kvm->mmu_lock); } if (is_tdp_mmu_enabled(kvm)) { read_lock(&kvm->mmu_lock); - flush |= kvm_tdp_mmu_wrprot_slot(kvm, memslot, start_level); + kvm_tdp_mmu_wrprot_slot(kvm, memslot, start_level); read_unlock(&kvm->mmu_lock); } - - /* - * Flush TLBs if any SPTEs had to be write-protected to ensure that - * guest writes are reflected in the dirty bitmap before the memslot - * update completes, i.e. before enabling dirty logging is visible to - * userspace. - * - * Perform the TLB flush outside the mmu_lock to reduce the amount of - * time the lock is held. However, this does mean that another CPU can - * now grab mmu_lock and encounter a write-protected SPTE while CPUs - * still have a writable mapping for the associated GFN in their TLB. - * - * This is safe but requires KVM to be careful when making decisions - * based on the write-protection status of an SPTE. Specifically, KVM - * also write-protects SPTEs to monitor changes to guest page tables - * during shadow paging, and must guarantee no CPUs can write to those - * page before the lock is dropped. As mentioned in the previous - * paragraph, a write-protected SPTE is no guarantee that CPU cannot - * perform writes. So to determine if a TLB flush is truly required, KVM - * will clear a separate software-only bit (MMU-writable) and skip the - * flush if-and-only-if this bit was already clear. - * - * See is_writable_pte() for more details. - */ - if (flush) - kvm_arch_flush_remote_tlbs_memslot(kvm, memslot); } static inline bool need_topup(struct kvm_mmu_memory_cache *cache, int min) @@ -6493,32 +6451,30 @@ void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm, void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm, const struct kvm_memory_slot *memslot) { - bool flush = false; - if (kvm_memslots_have_rmaps(kvm)) { write_lock(&kvm->mmu_lock); /* * Clear dirty bits only on 4k SPTEs since the legacy MMU only * support dirty logging at a 4k granularity. */ - flush = slot_handle_level_4k(kvm, memslot, __rmap_clear_dirty, false); + slot_handle_level_4k(kvm, memslot, __rmap_clear_dirty, false); write_unlock(&kvm->mmu_lock); } if (is_tdp_mmu_enabled(kvm)) { read_lock(&kvm->mmu_lock); - flush |= kvm_tdp_mmu_clear_dirty_slot(kvm, memslot); + kvm_tdp_mmu_clear_dirty_slot(kvm, memslot); read_unlock(&kvm->mmu_lock); } /* + * The caller will flush the TLBs after this function returns. + * * It's also safe to flush TLBs out of mmu lock here as currently this * function is only used for dirty logging, in which case flushing TLB * out of mmu lock also guarantees no dirty pages will be lost in * dirty_bitmap. */ - if (flush) - kvm_arch_flush_remote_tlbs_memslot(kvm, memslot); } void kvm_mmu_zap_all(struct kvm *kvm) diff --git a/arch/x86/kvm/mmu/spte.h b/arch/x86/kvm/mmu/spte.h index f3744eea45f5..7670c13ce251 100644 --- a/arch/x86/kvm/mmu/spte.h +++ b/arch/x86/kvm/mmu/spte.h @@ -343,7 +343,7 @@ static __always_inline bool is_rsvd_spte(struct rsvd_bits_validate *rsvd_check, } /* - * An shadow-present leaf SPTE may be non-writable for 3 possible reasons: + * A shadow-present leaf SPTE may be non-writable for 4 possible reasons: * * 1. To intercept writes for dirty logging. KVM write-protects huge pages * so that they can be split be split down into the dirty logging @@ -361,8 +361,13 @@ static __always_inline bool is_rsvd_spte(struct rsvd_bits_validate *rsvd_check, * read-only memslot or guest memory backed by a read-only VMA. Writes to * such pages are disallowed entirely. * - * To keep track of why a given SPTE is write-protected, KVM uses 2 - * software-only bits in the SPTE: + * 4. To emulate the Accessed bit for SPTEs without A/D bits. Note, in this + * case, the SPTE is access-protected, not just write-protected! + * + * For cases #1 and #4, KVM can safely make such SPTEs writable without taking + * mmu_lock as capturing the Accessed/Dirty state doesn't require taking it. + * To differentiate #1 and #4 from #2 and #3, KVM uses two software-only bits + * in the SPTE: * * shadow_mmu_writable_mask, aka MMU-writable - * Cleared on SPTEs that KVM is currently write-protecting for shadow paging @@ -391,7 +396,8 @@ static __always_inline bool is_rsvd_spte(struct rsvd_bits_validate *rsvd_check, * shadow page tables between vCPUs. Write-protecting an SPTE for dirty logging * (which does not clear the MMU-writable bit), does not flush TLBs before * dropping the lock, as it only needs to synchronize guest writes with the - * dirty bitmap. + * dirty bitmap. Similarly, making the SPTE inaccessible (and non-writable) for + * access-tracking via the clear_young() MMU notifier also does not flush TLBs. * * So, there is the problem: clearing the MMU-writable bit can encounter a * write-protected SPTE while CPUs still have writable mappings for that SPTE diff --git a/arch/x86/kvm/vmx/vmx.c b/arch/x86/kvm/vmx/vmx.c index d7f8331d6f7e..c9b49a09e6b5 100644 --- a/arch/x86/kvm/vmx/vmx.c +++ b/arch/x86/kvm/vmx/vmx.c @@ -843,8 +843,7 @@ static bool msr_write_intercepted(struct vcpu_vmx *vmx, u32 msr) if (!(exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS)) return true; - return vmx_test_msr_bitmap_write(vmx->loaded_vmcs->msr_bitmap, - MSR_IA32_SPEC_CTRL); + return vmx_test_msr_bitmap_write(vmx->loaded_vmcs->msr_bitmap, msr); } unsigned int __vmx_vcpu_run_flags(struct vcpu_vmx *vmx) diff --git a/arch/x86/kvm/x86.c b/arch/x86/kvm/x86.c index 205ebdc2b11b..43a6a7efc6ec 100644 --- a/arch/x86/kvm/x86.c +++ b/arch/x86/kvm/x86.c @@ -1557,12 +1557,32 @@ static const u32 msr_based_features_all[] = { static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)]; static unsigned int num_msr_based_features; +/* + * Some IA32_ARCH_CAPABILITIES bits have dependencies on MSRs that KVM + * does not yet virtualize. These include: + * 10 - MISC_PACKAGE_CTRLS + * 11 - ENERGY_FILTERING_CTL + * 12 - DOITM + * 18 - FB_CLEAR_CTRL + * 21 - XAPIC_DISABLE_STATUS + * 23 - OVERCLOCKING_STATUS + */ + +#define KVM_SUPPORTED_ARCH_CAP \ + (ARCH_CAP_RDCL_NO | ARCH_CAP_IBRS_ALL | ARCH_CAP_RSBA | \ + ARCH_CAP_SKIP_VMENTRY_L1DFLUSH | ARCH_CAP_SSB_NO | ARCH_CAP_MDS_NO | \ + ARCH_CAP_PSCHANGE_MC_NO | ARCH_CAP_TSX_CTRL_MSR | ARCH_CAP_TAA_NO | \ + ARCH_CAP_SBDR_SSDP_NO | ARCH_CAP_FBSDP_NO | ARCH_CAP_PSDP_NO | \ + ARCH_CAP_FB_CLEAR | ARCH_CAP_RRSBA | ARCH_CAP_PBRSB_NO) + static u64 kvm_get_arch_capabilities(void) { u64 data = 0; - if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) + if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) { rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data); + data &= KVM_SUPPORTED_ARCH_CAP; + } /* * If nx_huge_pages is enabled, KVM's shadow paging will ensure that @@ -1610,9 +1630,6 @@ static u64 kvm_get_arch_capabilities(void) */ } - /* Guests don't need to know "Fill buffer clear control" exists */ - data &= ~ARCH_CAP_FB_CLEAR_CTRL; - return data; } @@ -10652,7 +10669,8 @@ static inline int vcpu_block(struct kvm_vcpu *vcpu) case KVM_MP_STATE_INIT_RECEIVED: break; default: - return -EINTR; + WARN_ON_ONCE(1); + break; } return 1; } @@ -11093,9 +11111,22 @@ int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, vcpu_load(vcpu); - if (!lapic_in_kernel(vcpu) && - mp_state->mp_state != KVM_MP_STATE_RUNNABLE) + switch (mp_state->mp_state) { + case KVM_MP_STATE_UNINITIALIZED: + case KVM_MP_STATE_HALTED: + case KVM_MP_STATE_AP_RESET_HOLD: + case KVM_MP_STATE_INIT_RECEIVED: + case KVM_MP_STATE_SIPI_RECEIVED: + if (!lapic_in_kernel(vcpu)) + goto out; + break; + + case KVM_MP_STATE_RUNNABLE: + break; + + default: goto out; + } /* * KVM_MP_STATE_INIT_RECEIVED means the processor is in @@ -11563,7 +11594,7 @@ int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu) vcpu->arch.mci_ctl2_banks = kcalloc(KVM_MAX_MCE_BANKS, sizeof(u64), GFP_KERNEL_ACCOUNT); if (!vcpu->arch.mce_banks || !vcpu->arch.mci_ctl2_banks) - goto fail_free_pio_data; + goto fail_free_mce_banks; vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS; if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, @@ -11617,7 +11648,6 @@ free_wbinvd_dirty_mask: fail_free_mce_banks: kfree(vcpu->arch.mce_banks); kfree(vcpu->arch.mci_ctl2_banks); -fail_free_pio_data: free_page((unsigned long)vcpu->arch.pio_data); fail_free_lapic: kvm_free_lapic(vcpu); @@ -12473,6 +12503,50 @@ static void kvm_mmu_slot_apply_flags(struct kvm *kvm, } else { kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K); } + + /* + * Unconditionally flush the TLBs after enabling dirty logging. + * A flush is almost always going to be necessary (see below), + * and unconditionally flushing allows the helpers to omit + * the subtly complex checks when removing write access. + * + * Do the flush outside of mmu_lock to reduce the amount of + * time mmu_lock is held. Flushing after dropping mmu_lock is + * safe as KVM only needs to guarantee the slot is fully + * write-protected before returning to userspace, i.e. before + * userspace can consume the dirty status. + * + * Flushing outside of mmu_lock requires KVM to be careful when + * making decisions based on writable status of an SPTE, e.g. a + * !writable SPTE doesn't guarantee a CPU can't perform writes. + * + * Specifically, KVM also write-protects guest page tables to + * monitor changes when using shadow paging, and must guarantee + * no CPUs can write to those page before mmu_lock is dropped. + * Because CPUs may have stale TLB entries at this point, a + * !writable SPTE doesn't guarantee CPUs can't perform writes. + * + * KVM also allows making SPTES writable outside of mmu_lock, + * e.g. to allow dirty logging without taking mmu_lock. + * + * To handle these scenarios, KVM uses a separate software-only + * bit (MMU-writable) to track if a SPTE is !writable due to + * a guest page table being write-protected (KVM clears the + * MMU-writable flag when write-protecting for shadow paging). + * + * The use of MMU-writable is also the primary motivation for + * the unconditional flush. Because KVM must guarantee that a + * CPU doesn't contain stale, writable TLB entries for a + * !MMU-writable SPTE, KVM must flush if it encounters any + * MMU-writable SPTE regardless of whether the actual hardware + * writable bit was set. I.e. KVM is almost guaranteed to need + * to flush, while unconditionally flushing allows the "remove + * write access" helpers to ignore MMU-writable entirely. + * + * See is_writable_pte() for more details (the case involving + * access-tracked SPTEs is particularly relevant). + */ + kvm_arch_flush_remote_tlbs_memslot(kvm, new); } } |