summaryrefslogtreecommitdiff
path: root/arch/x86_64
diff options
context:
space:
mode:
authorIngo Molnar <mingo@elte.hu>2007-02-16 12:27:34 +0300
committerLinus Torvalds <torvalds@woody.linux-foundation.org>2007-02-16 19:13:57 +0300
commit95492e4646e5de8b43d9a7908d6177fb737b61f0 (patch)
treeae25cd206ca76f78d50ac2a206ef012e0ab1d9df /arch/x86_64
parent92c7e00254b2d0efc1e36ac3e45474ce1871b6b2 (diff)
downloadlinux-95492e4646e5de8b43d9a7908d6177fb737b61f0.tar.xz
[PATCH] x86: rewrite SMP TSC sync code
make the TSC synchronization code more robust, and unify it between x86_64 and i386. The biggest change is the removal of the 'fix up TSCs' code on x86_64 and i386, in some rare cases it was /causing/ time-warps on SMP systems. The new code only checks for TSC asynchronity - and if it can prove a time-warp (if it can observe the TSC going backwards when going from one CPU to another within a critical section), then the TSC clock-source is turned off. The TSC synchronization-checking code also got moved into a separate file. Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: john stultz <johnstul@us.ibm.com> Cc: Roman Zippel <zippel@linux-m68k.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Diffstat (limited to 'arch/x86_64')
-rw-r--r--arch/x86_64/kernel/Makefile2
-rw-r--r--arch/x86_64/kernel/smpboot.c230
-rw-r--r--arch/x86_64/kernel/time.c11
-rw-r--r--arch/x86_64/kernel/tsc_sync.c187
4 files changed, 210 insertions, 220 deletions
diff --git a/arch/x86_64/kernel/Makefile b/arch/x86_64/kernel/Makefile
index ae399458024b..6465eee6d920 100644
--- a/arch/x86_64/kernel/Makefile
+++ b/arch/x86_64/kernel/Makefile
@@ -19,7 +19,7 @@ obj-$(CONFIG_ACPI) += acpi/
obj-$(CONFIG_X86_MSR) += msr.o
obj-$(CONFIG_MICROCODE) += microcode.o
obj-$(CONFIG_X86_CPUID) += cpuid.o
-obj-$(CONFIG_SMP) += smp.o smpboot.o trampoline.o
+obj-$(CONFIG_SMP) += smp.o smpboot.o trampoline.o tsc_sync.o
obj-y += apic.o nmi.o
obj-y += io_apic.o mpparse.o \
genapic.o genapic_cluster.o genapic_flat.o
diff --git a/arch/x86_64/kernel/smpboot.c b/arch/x86_64/kernel/smpboot.c
index daf19332f0dd..62d828433c30 100644
--- a/arch/x86_64/kernel/smpboot.c
+++ b/arch/x86_64/kernel/smpboot.c
@@ -148,217 +148,6 @@ static void __cpuinit smp_store_cpu_info(int id)
print_cpu_info(c);
}
-/*
- * New Funky TSC sync algorithm borrowed from IA64.
- * Main advantage is that it doesn't reset the TSCs fully and
- * in general looks more robust and it works better than my earlier
- * attempts. I believe it was written by David Mosberger. Some minor
- * adjustments for x86-64 by me -AK
- *
- * Original comment reproduced below.
- *
- * Synchronize TSC of the current (slave) CPU with the TSC of the
- * MASTER CPU (normally the time-keeper CPU). We use a closed loop to
- * eliminate the possibility of unaccounted-for errors (such as
- * getting a machine check in the middle of a calibration step). The
- * basic idea is for the slave to ask the master what itc value it has
- * and to read its own itc before and after the master responds. Each
- * iteration gives us three timestamps:
- *
- * slave master
- *
- * t0 ---\
- * ---\
- * --->
- * tm
- * /---
- * /---
- * t1 <---
- *
- *
- * The goal is to adjust the slave's TSC such that tm falls exactly
- * half-way between t0 and t1. If we achieve this, the clocks are
- * synchronized provided the interconnect between the slave and the
- * master is symmetric. Even if the interconnect were asymmetric, we
- * would still know that the synchronization error is smaller than the
- * roundtrip latency (t0 - t1).
- *
- * When the interconnect is quiet and symmetric, this lets us
- * synchronize the TSC to within one or two cycles. However, we can
- * only *guarantee* that the synchronization is accurate to within a
- * round-trip time, which is typically in the range of several hundred
- * cycles (e.g., ~500 cycles). In practice, this means that the TSCs
- * are usually almost perfectly synchronized, but we shouldn't assume
- * that the accuracy is much better than half a micro second or so.
- *
- * [there are other errors like the latency of RDTSC and of the
- * WRMSR. These can also account to hundreds of cycles. So it's
- * probably worse. It claims 153 cycles error on a dual Opteron,
- * but I suspect the numbers are actually somewhat worse -AK]
- */
-
-#define MASTER 0
-#define SLAVE (SMP_CACHE_BYTES/8)
-
-/* Intentionally don't use cpu_relax() while TSC synchronization
- because we don't want to go into funky power save modi or cause
- hypervisors to schedule us away. Going to sleep would likely affect
- latency and low latency is the primary objective here. -AK */
-#define no_cpu_relax() barrier()
-
-static __cpuinitdata DEFINE_SPINLOCK(tsc_sync_lock);
-static volatile __cpuinitdata unsigned long go[SLAVE + 1];
-static int notscsync __cpuinitdata;
-
-#undef DEBUG_TSC_SYNC
-
-#define NUM_ROUNDS 64 /* magic value */
-#define NUM_ITERS 5 /* likewise */
-
-/* Callback on boot CPU */
-static __cpuinit void sync_master(void *arg)
-{
- unsigned long flags, i;
-
- go[MASTER] = 0;
-
- local_irq_save(flags);
- {
- for (i = 0; i < NUM_ROUNDS*NUM_ITERS; ++i) {
- while (!go[MASTER])
- no_cpu_relax();
- go[MASTER] = 0;
- rdtscll(go[SLAVE]);
- }
- }
- local_irq_restore(flags);
-}
-
-/*
- * Return the number of cycles by which our tsc differs from the tsc
- * on the master (time-keeper) CPU. A positive number indicates our
- * tsc is ahead of the master, negative that it is behind.
- */
-static inline long
-get_delta(long *rt, long *master)
-{
- unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
- unsigned long tcenter, t0, t1, tm;
- int i;
-
- for (i = 0; i < NUM_ITERS; ++i) {
- rdtscll(t0);
- go[MASTER] = 1;
- while (!(tm = go[SLAVE]))
- no_cpu_relax();
- go[SLAVE] = 0;
- rdtscll(t1);
-
- if (t1 - t0 < best_t1 - best_t0)
- best_t0 = t0, best_t1 = t1, best_tm = tm;
- }
-
- *rt = best_t1 - best_t0;
- *master = best_tm - best_t0;
-
- /* average best_t0 and best_t1 without overflow: */
- tcenter = (best_t0/2 + best_t1/2);
- if (best_t0 % 2 + best_t1 % 2 == 2)
- ++tcenter;
- return tcenter - best_tm;
-}
-
-static __cpuinit void sync_tsc(unsigned int master)
-{
- int i, done = 0;
- long delta, adj, adjust_latency = 0;
- unsigned long flags, rt, master_time_stamp, bound;
-#ifdef DEBUG_TSC_SYNC
- static struct syncdebug {
- long rt; /* roundtrip time */
- long master; /* master's timestamp */
- long diff; /* difference between midpoint and master's timestamp */
- long lat; /* estimate of tsc adjustment latency */
- } t[NUM_ROUNDS] __cpuinitdata;
-#endif
-
- printk(KERN_INFO "CPU %d: Syncing TSC to CPU %u.\n",
- smp_processor_id(), master);
-
- go[MASTER] = 1;
-
- /* It is dangerous to broadcast IPI as cpus are coming up,
- * as they may not be ready to accept them. So since
- * we only need to send the ipi to the boot cpu direct
- * the message, and avoid the race.
- */
- smp_call_function_single(master, sync_master, NULL, 1, 0);
-
- while (go[MASTER]) /* wait for master to be ready */
- no_cpu_relax();
-
- spin_lock_irqsave(&tsc_sync_lock, flags);
- {
- for (i = 0; i < NUM_ROUNDS; ++i) {
- delta = get_delta(&rt, &master_time_stamp);
- if (delta == 0) {
- done = 1; /* let's lock on to this... */
- bound = rt;
- }
-
- if (!done) {
- unsigned long t;
- if (i > 0) {
- adjust_latency += -delta;
- adj = -delta + adjust_latency/4;
- } else
- adj = -delta;
-
- rdtscll(t);
- wrmsrl(MSR_IA32_TSC, t + adj);
- }
-#ifdef DEBUG_TSC_SYNC
- t[i].rt = rt;
- t[i].master = master_time_stamp;
- t[i].diff = delta;
- t[i].lat = adjust_latency/4;
-#endif
- }
- }
- spin_unlock_irqrestore(&tsc_sync_lock, flags);
-
-#ifdef DEBUG_TSC_SYNC
- for (i = 0; i < NUM_ROUNDS; ++i)
- printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
- t[i].rt, t[i].master, t[i].diff, t[i].lat);
-#endif
-
- printk(KERN_INFO
- "CPU %d: synchronized TSC with CPU %u (last diff %ld cycles, "
- "maxerr %lu cycles)\n",
- smp_processor_id(), master, delta, rt);
-}
-
-static void __cpuinit tsc_sync_wait(void)
-{
- /*
- * When the CPU has synchronized TSCs assume the BIOS
- * or the hardware already synced. Otherwise we could
- * mess up a possible perfect synchronization with a
- * not-quite-perfect algorithm.
- */
- if (notscsync || !cpu_has_tsc || !unsynchronized_tsc())
- return;
- sync_tsc(0);
-}
-
-static __init int notscsync_setup(char *s)
-{
- notscsync = 1;
- return 1;
-}
-__setup("notscsync", notscsync_setup);
-
static atomic_t init_deasserted __cpuinitdata;
/*
@@ -546,6 +335,11 @@ void __cpuinit start_secondary(void)
/* otherwise gcc will move up the smp_processor_id before the cpu_init */
barrier();
+ /*
+ * Check TSC sync first:
+ */
+ check_tsc_sync_target();
+
Dprintk("cpu %d: setting up apic clock\n", smp_processor_id());
setup_secondary_APIC_clock();
@@ -565,14 +359,6 @@ void __cpuinit start_secondary(void)
*/
set_cpu_sibling_map(smp_processor_id());
- /*
- * Wait for TSC sync to not schedule things before.
- * We still process interrupts, which could see an inconsistent
- * time in that window unfortunately.
- * Do this here because TSC sync has global unprotected state.
- */
- tsc_sync_wait();
-
/*
* We need to hold call_lock, so there is no inconsistency
* between the time smp_call_function() determines number of
@@ -592,6 +378,7 @@ void __cpuinit start_secondary(void)
cpu_set(smp_processor_id(), cpu_online_map);
per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE;
spin_unlock(&vector_lock);
+
unlock_ipi_call_lock();
cpu_idle();
@@ -1168,6 +955,11 @@ int __cpuinit __cpu_up(unsigned int cpu)
/* Unleash the CPU! */
Dprintk("waiting for cpu %d\n", cpu);
+ /*
+ * Make sure and check TSC sync:
+ */
+ check_tsc_sync_source(cpu);
+
while (!cpu_isset(cpu, cpu_online_map))
cpu_relax();
diff --git a/arch/x86_64/kernel/time.c b/arch/x86_64/kernel/time.c
index 3cc6886f1fb7..8cb2b2d35f5d 100644
--- a/arch/x86_64/kernel/time.c
+++ b/arch/x86_64/kernel/time.c
@@ -944,12 +944,23 @@ void __init time_init(void)
#endif
}
+static int tsc_unstable = 0;
+
+void mark_tsc_unstable(void)
+{
+ tsc_unstable = 1;
+}
+EXPORT_SYMBOL_GPL(mark_tsc_unstable);
+
/*
* Make an educated guess if the TSC is trustworthy and synchronized
* over all CPUs.
*/
__cpuinit int unsynchronized_tsc(void)
{
+ if (tsc_unstable)
+ return 1;
+
#ifdef CONFIG_SMP
if (apic_is_clustered_box())
return 1;
diff --git a/arch/x86_64/kernel/tsc_sync.c b/arch/x86_64/kernel/tsc_sync.c
new file mode 100644
index 000000000000..014f0db45dfa
--- /dev/null
+++ b/arch/x86_64/kernel/tsc_sync.c
@@ -0,0 +1,187 @@
+/*
+ * arch/x86_64/kernel/tsc_sync.c: check TSC synchronization.
+ *
+ * Copyright (C) 2006, Red Hat, Inc., Ingo Molnar
+ *
+ * We check whether all boot CPUs have their TSC's synchronized,
+ * print a warning if not and turn off the TSC clock-source.
+ *
+ * The warp-check is point-to-point between two CPUs, the CPU
+ * initiating the bootup is the 'source CPU', the freshly booting
+ * CPU is the 'target CPU'.
+ *
+ * Only two CPUs may participate - they can enter in any order.
+ * ( The serial nature of the boot logic and the CPU hotplug lock
+ * protects against more than 2 CPUs entering this code. )
+ */
+#include <linux/spinlock.h>
+#include <linux/kernel.h>
+#include <linux/init.h>
+#include <linux/smp.h>
+#include <linux/nmi.h>
+#include <asm/tsc.h>
+
+/*
+ * Entry/exit counters that make sure that both CPUs
+ * run the measurement code at once:
+ */
+static __cpuinitdata atomic_t start_count;
+static __cpuinitdata atomic_t stop_count;
+
+/*
+ * We use a raw spinlock in this exceptional case, because
+ * we want to have the fastest, inlined, non-debug version
+ * of a critical section, to be able to prove TSC time-warps:
+ */
+static __cpuinitdata raw_spinlock_t sync_lock = __RAW_SPIN_LOCK_UNLOCKED;
+static __cpuinitdata cycles_t last_tsc;
+static __cpuinitdata cycles_t max_warp;
+static __cpuinitdata int nr_warps;
+
+/*
+ * TSC-warp measurement loop running on both CPUs:
+ */
+static __cpuinit void check_tsc_warp(void)
+{
+ cycles_t start, now, prev, end;
+ int i;
+
+ start = get_cycles_sync();
+ /*
+ * The measurement runs for 20 msecs:
+ */
+ end = start + cpu_khz * 20ULL;
+ now = start;
+
+ for (i = 0; ; i++) {
+ /*
+ * We take the global lock, measure TSC, save the
+ * previous TSC that was measured (possibly on
+ * another CPU) and update the previous TSC timestamp.
+ */
+ __raw_spin_lock(&sync_lock);
+ prev = last_tsc;
+ now = get_cycles_sync();
+ last_tsc = now;
+ __raw_spin_unlock(&sync_lock);
+
+ /*
+ * Be nice every now and then (and also check whether
+ * measurement is done [we also insert a 100 million
+ * loops safety exit, so we dont lock up in case the
+ * TSC readout is totally broken]):
+ */
+ if (unlikely(!(i & 7))) {
+ if (now > end || i > 100000000)
+ break;
+ cpu_relax();
+ touch_nmi_watchdog();
+ }
+ /*
+ * Outside the critical section we can now see whether
+ * we saw a time-warp of the TSC going backwards:
+ */
+ if (unlikely(prev > now)) {
+ __raw_spin_lock(&sync_lock);
+ max_warp = max(max_warp, prev - now);
+ nr_warps++;
+ __raw_spin_unlock(&sync_lock);
+ }
+
+ }
+}
+
+/*
+ * Source CPU calls into this - it waits for the freshly booted
+ * target CPU to arrive and then starts the measurement:
+ */
+void __cpuinit check_tsc_sync_source(int cpu)
+{
+ int cpus = 2;
+
+ /*
+ * No need to check if we already know that the TSC is not
+ * synchronized:
+ */
+ if (unsynchronized_tsc())
+ return;
+
+ printk(KERN_INFO "checking TSC synchronization [CPU#%d -> CPU#%d]:",
+ smp_processor_id(), cpu);
+
+ /*
+ * Reset it - in case this is a second bootup:
+ */
+ atomic_set(&stop_count, 0);
+
+ /*
+ * Wait for the target to arrive:
+ */
+ while (atomic_read(&start_count) != cpus-1)
+ cpu_relax();
+ /*
+ * Trigger the target to continue into the measurement too:
+ */
+ atomic_inc(&start_count);
+
+ check_tsc_warp();
+
+ while (atomic_read(&stop_count) != cpus-1)
+ cpu_relax();
+
+ /*
+ * Reset it - just in case we boot another CPU later:
+ */
+ atomic_set(&start_count, 0);
+
+ if (nr_warps) {
+ printk("\n");
+ printk(KERN_WARNING "Measured %Ld cycles TSC warp between CPUs,"
+ " turning off TSC clock.\n", max_warp);
+ mark_tsc_unstable();
+ nr_warps = 0;
+ max_warp = 0;
+ last_tsc = 0;
+ } else {
+ printk(" passed.\n");
+ }
+
+ /*
+ * Let the target continue with the bootup:
+ */
+ atomic_inc(&stop_count);
+}
+
+/*
+ * Freshly booted CPUs call into this:
+ */
+void __cpuinit check_tsc_sync_target(void)
+{
+ int cpus = 2;
+
+ if (unsynchronized_tsc())
+ return;
+
+ /*
+ * Register this CPU's participation and wait for the
+ * source CPU to start the measurement:
+ */
+ atomic_inc(&start_count);
+ while (atomic_read(&start_count) != cpus)
+ cpu_relax();
+
+ check_tsc_warp();
+
+ /*
+ * Ok, we are done:
+ */
+ atomic_inc(&stop_count);
+
+ /*
+ * Wait for the source CPU to print stuff:
+ */
+ while (atomic_read(&stop_count) != cpus)
+ cpu_relax();
+}
+#undef NR_LOOPS
+