diff options
author | Juergen Gross <jgross@suse.com> | 2020-06-29 11:35:39 +0300 |
---|---|---|
committer | Juergen Gross <jgross@suse.com> | 2020-08-11 09:26:48 +0300 |
commit | a13f2ef168cb2a033a284eb841bcc481ffbc90cf (patch) | |
tree | dcbd853b5274f1e92a48d66bfb77b5c718968b85 /arch/x86/xen/xen-asm_32.S | |
parent | d7b461caa6cc64dd190577b46b0ec892a8d5e7c0 (diff) | |
download | linux-a13f2ef168cb2a033a284eb841bcc481ffbc90cf.tar.xz |
x86/xen: remove 32-bit Xen PV guest support
Xen is requiring 64-bit machines today and since Xen 4.14 it can be
built without 32-bit PV guest support. There is no need to carry the
burden of 32-bit PV guest support in the kernel any longer, as new
guests can be either HVM or PVH, or they can use a 64 bit kernel.
Remove the 32-bit Xen PV support from the kernel.
Signed-off-by: Juergen Gross <jgross@suse.com>
Reviewed-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Signed-off-by: Juergen Gross <jgross@suse.com>
Diffstat (limited to 'arch/x86/xen/xen-asm_32.S')
-rw-r--r-- | arch/x86/xen/xen-asm_32.S | 185 |
1 files changed, 0 insertions, 185 deletions
diff --git a/arch/x86/xen/xen-asm_32.S b/arch/x86/xen/xen-asm_32.S deleted file mode 100644 index 4757cec33abe..000000000000 --- a/arch/x86/xen/xen-asm_32.S +++ /dev/null @@ -1,185 +0,0 @@ -/* SPDX-License-Identifier: GPL-2.0 */ -/* - * Asm versions of Xen pv-ops, suitable for direct use. - * - * We only bother with direct forms (ie, vcpu in pda) of the - * operations here; the indirect forms are better handled in C. - */ - -#include <asm/thread_info.h> -#include <asm/processor-flags.h> -#include <asm/segment.h> -#include <asm/asm.h> - -#include <xen/interface/xen.h> - -#include <linux/linkage.h> - -/* Pseudo-flag used for virtual NMI, which we don't implement yet */ -#define XEN_EFLAGS_NMI 0x80000000 - -/* - * This is run where a normal iret would be run, with the same stack setup: - * 8: eflags - * 4: cs - * esp-> 0: eip - * - * This attempts to make sure that any pending events are dealt with - * on return to usermode, but there is a small window in which an - * event can happen just before entering usermode. If the nested - * interrupt ends up setting one of the TIF_WORK_MASK pending work - * flags, they will not be tested again before returning to - * usermode. This means that a process can end up with pending work, - * which will be unprocessed until the process enters and leaves the - * kernel again, which could be an unbounded amount of time. This - * means that a pending signal or reschedule event could be - * indefinitely delayed. - * - * The fix is to notice a nested interrupt in the critical window, and - * if one occurs, then fold the nested interrupt into the current - * interrupt stack frame, and re-process it iteratively rather than - * recursively. This means that it will exit via the normal path, and - * all pending work will be dealt with appropriately. - * - * Because the nested interrupt handler needs to deal with the current - * stack state in whatever form its in, we keep things simple by only - * using a single register which is pushed/popped on the stack. - */ - -.macro POP_FS -1: - popw %fs -.pushsection .fixup, "ax" -2: movw $0, (%esp) - jmp 1b -.popsection - _ASM_EXTABLE(1b,2b) -.endm - -SYM_CODE_START(xen_iret) - /* test eflags for special cases */ - testl $(X86_EFLAGS_VM | XEN_EFLAGS_NMI), 8(%esp) - jnz hyper_iret - - push %eax - ESP_OFFSET=4 # bytes pushed onto stack - - /* Store vcpu_info pointer for easy access */ -#ifdef CONFIG_SMP - pushw %fs - movl $(__KERNEL_PERCPU), %eax - movl %eax, %fs - movl %fs:xen_vcpu, %eax - POP_FS -#else - movl %ss:xen_vcpu, %eax -#endif - - /* check IF state we're restoring */ - testb $X86_EFLAGS_IF>>8, 8+1+ESP_OFFSET(%esp) - - /* - * Maybe enable events. Once this happens we could get a - * recursive event, so the critical region starts immediately - * afterwards. However, if that happens we don't end up - * resuming the code, so we don't have to be worried about - * being preempted to another CPU. - */ - setz %ss:XEN_vcpu_info_mask(%eax) -xen_iret_start_crit: - - /* check for unmasked and pending */ - cmpw $0x0001, %ss:XEN_vcpu_info_pending(%eax) - - /* - * If there's something pending, mask events again so we can - * jump back into exc_xen_hypervisor_callback. Otherwise do not - * touch XEN_vcpu_info_mask. - */ - jne 1f - movb $1, %ss:XEN_vcpu_info_mask(%eax) - -1: popl %eax - - /* - * From this point on the registers are restored and the stack - * updated, so we don't need to worry about it if we're - * preempted - */ -iret_restore_end: - - /* - * Jump to hypervisor_callback after fixing up the stack. - * Events are masked, so jumping out of the critical region is - * OK. - */ - je xen_asm_exc_xen_hypervisor_callback - -1: iret -xen_iret_end_crit: - _ASM_EXTABLE(1b, asm_iret_error) - -hyper_iret: - /* put this out of line since its very rarely used */ - jmp hypercall_page + __HYPERVISOR_iret * 32 -SYM_CODE_END(xen_iret) - - .globl xen_iret_start_crit, xen_iret_end_crit - -/* - * This is called by xen_asm_exc_xen_hypervisor_callback in entry_32.S when it sees - * that the EIP at the time of interrupt was between - * xen_iret_start_crit and xen_iret_end_crit. - * - * The stack format at this point is: - * ---------------- - * ss : (ss/esp may be present if we came from usermode) - * esp : - * eflags } outer exception info - * cs } - * eip } - * ---------------- - * eax : outer eax if it hasn't been restored - * ---------------- - * eflags } - * cs } nested exception info - * eip } - * return address : (into xen_asm_exc_xen_hypervisor_callback) - * - * In order to deliver the nested exception properly, we need to discard the - * nested exception frame such that when we handle the exception, we do it - * in the context of the outer exception rather than starting a new one. - * - * The only caveat is that if the outer eax hasn't been restored yet (i.e. - * it's still on stack), we need to restore its value here. -*/ -.pushsection .noinstr.text, "ax" -SYM_CODE_START(xen_iret_crit_fixup) - /* - * Paranoia: Make sure we're really coming from kernel space. - * One could imagine a case where userspace jumps into the - * critical range address, but just before the CPU delivers a - * PF, it decides to deliver an interrupt instead. Unlikely? - * Definitely. Easy to avoid? Yes. - */ - testb $2, 2*4(%esp) /* nested CS */ - jnz 2f - - /* - * If eip is before iret_restore_end then stack - * hasn't been restored yet. - */ - cmpl $iret_restore_end, 1*4(%esp) - jae 1f - - movl 4*4(%esp), %eax /* load outer EAX */ - ret $4*4 /* discard nested EIP, CS, and EFLAGS as - * well as the just restored EAX */ - -1: - ret $3*4 /* discard nested EIP, CS, and EFLAGS */ - -2: - ret -SYM_CODE_END(xen_iret_crit_fixup) -.popsection |