diff options
author | Linus Torvalds <torvalds@linux-foundation.org> | 2017-11-14 01:13:48 +0300 |
---|---|---|
committer | Linus Torvalds <torvalds@linux-foundation.org> | 2017-11-14 01:13:48 +0300 |
commit | d6ec9d9a4def52a5094237564eaf6f6979fd7a27 (patch) | |
tree | adfb80f83f04a021e82cb25227b64b1bb9e793dc /arch/x86/mm | |
parent | 3e2014637c50e5d6a77cd63d5db6c209fe29d1b1 (diff) | |
parent | 91a6a6cfee8ad34ea4cc10a54c0765edfe437cdb (diff) | |
download | linux-d6ec9d9a4def52a5094237564eaf6f6979fd7a27.tar.xz |
Merge branch 'x86-asm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 core updates from Ingo Molnar:
"Note that in this cycle most of the x86 topics interacted at a level
that caused them to be merged into tip:x86/asm - but this should be a
temporary phenomenon, hopefully we'll back to the usual patterns in
the next merge window.
The main changes in this cycle were:
Hardware enablement:
- Add support for the Intel UMIP (User Mode Instruction Prevention)
CPU feature. This is a security feature that disables certain
instructions such as SGDT, SLDT, SIDT, SMSW and STR. (Ricardo Neri)
[ Note that this is disabled by default for now, there are some
smaller enhancements in the pipeline that I'll follow up with in
the next 1-2 days, which allows this to be enabled by default.]
- Add support for the AMD SEV (Secure Encrypted Virtualization) CPU
feature, on top of SME (Secure Memory Encryption) support that was
added in v4.14. (Tom Lendacky, Brijesh Singh)
- Enable new SSE/AVX/AVX512 CPU features: AVX512_VBMI2, GFNI, VAES,
VPCLMULQDQ, AVX512_VNNI, AVX512_BITALG. (Gayatri Kammela)
Other changes:
- A big series of entry code simplifications and enhancements (Andy
Lutomirski)
- Make the ORC unwinder default on x86 and various objtool
enhancements. (Josh Poimboeuf)
- 5-level paging enhancements (Kirill A. Shutemov)
- Micro-optimize the entry code a bit (Borislav Petkov)
- Improve the handling of interdependent CPU features in the early
FPU init code (Andi Kleen)
- Build system enhancements (Changbin Du, Masahiro Yamada)
- ... plus misc enhancements, fixes and cleanups"
* 'x86-asm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (118 commits)
x86/build: Make the boot image generation less verbose
selftests/x86: Add tests for the STR and SLDT instructions
selftests/x86: Add tests for User-Mode Instruction Prevention
x86/traps: Fix up general protection faults caused by UMIP
x86/umip: Enable User-Mode Instruction Prevention at runtime
x86/umip: Force a page fault when unable to copy emulated result to user
x86/umip: Add emulation code for UMIP instructions
x86/cpufeature: Add User-Mode Instruction Prevention definitions
x86/insn-eval: Add support to resolve 16-bit address encodings
x86/insn-eval: Handle 32-bit address encodings in virtual-8086 mode
x86/insn-eval: Add wrapper function for 32 and 64-bit addresses
x86/insn-eval: Add support to resolve 32-bit address encodings
x86/insn-eval: Compute linear address in several utility functions
resource: Fix resource_size.cocci warnings
X86/KVM: Clear encryption attribute when SEV is active
X86/KVM: Decrypt shared per-cpu variables when SEV is active
percpu: Introduce DEFINE_PER_CPU_DECRYPTED
x86: Add support for changing memory encryption attribute in early boot
x86/io: Unroll string I/O when SEV is active
x86/boot: Add early boot support when running with SEV active
...
Diffstat (limited to 'arch/x86/mm')
-rw-r--r-- | arch/x86/mm/fault.c | 88 | ||||
-rw-r--r-- | arch/x86/mm/init_64.c | 10 | ||||
-rw-r--r-- | arch/x86/mm/ioremap.c | 123 | ||||
-rw-r--r-- | arch/x86/mm/kasan_init_64.c | 101 | ||||
-rw-r--r-- | arch/x86/mm/mem_encrypt.c | 301 | ||||
-rw-r--r-- | arch/x86/mm/mpx.c | 120 | ||||
-rw-r--r-- | arch/x86/mm/pageattr.c | 4 |
7 files changed, 509 insertions, 238 deletions
diff --git a/arch/x86/mm/fault.c b/arch/x86/mm/fault.c index b0ff378650a9..3109ba6c6ede 100644 --- a/arch/x86/mm/fault.c +++ b/arch/x86/mm/fault.c @@ -30,26 +30,6 @@ #include <asm/trace/exceptions.h> /* - * Page fault error code bits: - * - * bit 0 == 0: no page found 1: protection fault - * bit 1 == 0: read access 1: write access - * bit 2 == 0: kernel-mode access 1: user-mode access - * bit 3 == 1: use of reserved bit detected - * bit 4 == 1: fault was an instruction fetch - * bit 5 == 1: protection keys block access - */ -enum x86_pf_error_code { - - PF_PROT = 1 << 0, - PF_WRITE = 1 << 1, - PF_USER = 1 << 2, - PF_RSVD = 1 << 3, - PF_INSTR = 1 << 4, - PF_PK = 1 << 5, -}; - -/* * Returns 0 if mmiotrace is disabled, or if the fault is not * handled by mmiotrace: */ @@ -150,7 +130,7 @@ is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr) * If it was a exec (instruction fetch) fault on NX page, then * do not ignore the fault: */ - if (error_code & PF_INSTR) + if (error_code & X86_PF_INSTR) return 0; instr = (void *)convert_ip_to_linear(current, regs); @@ -180,7 +160,7 @@ is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr) * siginfo so userspace can discover which protection key was set * on the PTE. * - * If we get here, we know that the hardware signaled a PF_PK + * If we get here, we know that the hardware signaled a X86_PF_PK * fault and that there was a VMA once we got in the fault * handler. It does *not* guarantee that the VMA we find here * was the one that we faulted on. @@ -205,7 +185,7 @@ static void fill_sig_info_pkey(int si_code, siginfo_t *info, u32 *pkey) /* * force_sig_info_fault() is called from a number of * contexts, some of which have a VMA and some of which - * do not. The PF_PK handing happens after we have a + * do not. The X86_PF_PK handing happens after we have a * valid VMA, so we should never reach this without a * valid VMA. */ @@ -698,7 +678,7 @@ show_fault_oops(struct pt_regs *regs, unsigned long error_code, if (!oops_may_print()) return; - if (error_code & PF_INSTR) { + if (error_code & X86_PF_INSTR) { unsigned int level; pgd_t *pgd; pte_t *pte; @@ -780,7 +760,7 @@ no_context(struct pt_regs *regs, unsigned long error_code, */ if (current->thread.sig_on_uaccess_err && signal) { tsk->thread.trap_nr = X86_TRAP_PF; - tsk->thread.error_code = error_code | PF_USER; + tsk->thread.error_code = error_code | X86_PF_USER; tsk->thread.cr2 = address; /* XXX: hwpoison faults will set the wrong code. */ @@ -898,7 +878,7 @@ __bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code, struct task_struct *tsk = current; /* User mode accesses just cause a SIGSEGV */ - if (error_code & PF_USER) { + if (error_code & X86_PF_USER) { /* * It's possible to have interrupts off here: */ @@ -919,7 +899,7 @@ __bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code, * Instruction fetch faults in the vsyscall page might need * emulation. */ - if (unlikely((error_code & PF_INSTR) && + if (unlikely((error_code & X86_PF_INSTR) && ((address & ~0xfff) == VSYSCALL_ADDR))) { if (emulate_vsyscall(regs, address)) return; @@ -932,7 +912,7 @@ __bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code, * are always protection faults. */ if (address >= TASK_SIZE_MAX) - error_code |= PF_PROT; + error_code |= X86_PF_PROT; if (likely(show_unhandled_signals)) show_signal_msg(regs, error_code, address, tsk); @@ -993,11 +973,11 @@ static inline bool bad_area_access_from_pkeys(unsigned long error_code, if (!boot_cpu_has(X86_FEATURE_OSPKE)) return false; - if (error_code & PF_PK) + if (error_code & X86_PF_PK) return true; /* this checks permission keys on the VMA: */ - if (!arch_vma_access_permitted(vma, (error_code & PF_WRITE), - (error_code & PF_INSTR), foreign)) + if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE), + (error_code & X86_PF_INSTR), foreign)) return true; return false; } @@ -1025,7 +1005,7 @@ do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address, int code = BUS_ADRERR; /* Kernel mode? Handle exceptions or die: */ - if (!(error_code & PF_USER)) { + if (!(error_code & X86_PF_USER)) { no_context(regs, error_code, address, SIGBUS, BUS_ADRERR); return; } @@ -1053,14 +1033,14 @@ static noinline void mm_fault_error(struct pt_regs *regs, unsigned long error_code, unsigned long address, u32 *pkey, unsigned int fault) { - if (fatal_signal_pending(current) && !(error_code & PF_USER)) { + if (fatal_signal_pending(current) && !(error_code & X86_PF_USER)) { no_context(regs, error_code, address, 0, 0); return; } if (fault & VM_FAULT_OOM) { /* Kernel mode? Handle exceptions or die: */ - if (!(error_code & PF_USER)) { + if (!(error_code & X86_PF_USER)) { no_context(regs, error_code, address, SIGSEGV, SEGV_MAPERR); return; @@ -1085,16 +1065,16 @@ mm_fault_error(struct pt_regs *regs, unsigned long error_code, static int spurious_fault_check(unsigned long error_code, pte_t *pte) { - if ((error_code & PF_WRITE) && !pte_write(*pte)) + if ((error_code & X86_PF_WRITE) && !pte_write(*pte)) return 0; - if ((error_code & PF_INSTR) && !pte_exec(*pte)) + if ((error_code & X86_PF_INSTR) && !pte_exec(*pte)) return 0; /* * Note: We do not do lazy flushing on protection key - * changes, so no spurious fault will ever set PF_PK. + * changes, so no spurious fault will ever set X86_PF_PK. */ - if ((error_code & PF_PK)) + if ((error_code & X86_PF_PK)) return 1; return 1; @@ -1140,8 +1120,8 @@ spurious_fault(unsigned long error_code, unsigned long address) * change, so user accesses are not expected to cause spurious * faults. */ - if (error_code != (PF_WRITE | PF_PROT) - && error_code != (PF_INSTR | PF_PROT)) + if (error_code != (X86_PF_WRITE | X86_PF_PROT) && + error_code != (X86_PF_INSTR | X86_PF_PROT)) return 0; pgd = init_mm.pgd + pgd_index(address); @@ -1201,19 +1181,19 @@ access_error(unsigned long error_code, struct vm_area_struct *vma) * always an unconditional error and can never result in * a follow-up action to resolve the fault, like a COW. */ - if (error_code & PF_PK) + if (error_code & X86_PF_PK) return 1; /* * Make sure to check the VMA so that we do not perform - * faults just to hit a PF_PK as soon as we fill in a + * faults just to hit a X86_PF_PK as soon as we fill in a * page. */ - if (!arch_vma_access_permitted(vma, (error_code & PF_WRITE), - (error_code & PF_INSTR), foreign)) + if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE), + (error_code & X86_PF_INSTR), foreign)) return 1; - if (error_code & PF_WRITE) { + if (error_code & X86_PF_WRITE) { /* write, present and write, not present: */ if (unlikely(!(vma->vm_flags & VM_WRITE))) return 1; @@ -1221,7 +1201,7 @@ access_error(unsigned long error_code, struct vm_area_struct *vma) } /* read, present: */ - if (unlikely(error_code & PF_PROT)) + if (unlikely(error_code & X86_PF_PROT)) return 1; /* read, not present: */ @@ -1244,7 +1224,7 @@ static inline bool smap_violation(int error_code, struct pt_regs *regs) if (!static_cpu_has(X86_FEATURE_SMAP)) return false; - if (error_code & PF_USER) + if (error_code & X86_PF_USER) return false; if (!user_mode(regs) && (regs->flags & X86_EFLAGS_AC)) @@ -1297,7 +1277,7 @@ __do_page_fault(struct pt_regs *regs, unsigned long error_code, * protection error (error_code & 9) == 0. */ if (unlikely(fault_in_kernel_space(address))) { - if (!(error_code & (PF_RSVD | PF_USER | PF_PROT))) { + if (!(error_code & (X86_PF_RSVD | X86_PF_USER | X86_PF_PROT))) { if (vmalloc_fault(address) >= 0) return; @@ -1325,7 +1305,7 @@ __do_page_fault(struct pt_regs *regs, unsigned long error_code, if (unlikely(kprobes_fault(regs))) return; - if (unlikely(error_code & PF_RSVD)) + if (unlikely(error_code & X86_PF_RSVD)) pgtable_bad(regs, error_code, address); if (unlikely(smap_violation(error_code, regs))) { @@ -1351,7 +1331,7 @@ __do_page_fault(struct pt_regs *regs, unsigned long error_code, */ if (user_mode(regs)) { local_irq_enable(); - error_code |= PF_USER; + error_code |= X86_PF_USER; flags |= FAULT_FLAG_USER; } else { if (regs->flags & X86_EFLAGS_IF) @@ -1360,9 +1340,9 @@ __do_page_fault(struct pt_regs *regs, unsigned long error_code, perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address); - if (error_code & PF_WRITE) + if (error_code & X86_PF_WRITE) flags |= FAULT_FLAG_WRITE; - if (error_code & PF_INSTR) + if (error_code & X86_PF_INSTR) flags |= FAULT_FLAG_INSTRUCTION; /* @@ -1382,7 +1362,7 @@ __do_page_fault(struct pt_regs *regs, unsigned long error_code, * space check, thus avoiding the deadlock: */ if (unlikely(!down_read_trylock(&mm->mmap_sem))) { - if ((error_code & PF_USER) == 0 && + if (!(error_code & X86_PF_USER) && !search_exception_tables(regs->ip)) { bad_area_nosemaphore(regs, error_code, address, NULL); return; @@ -1409,7 +1389,7 @@ retry: bad_area(regs, error_code, address); return; } - if (error_code & PF_USER) { + if (error_code & X86_PF_USER) { /* * Accessing the stack below %sp is always a bug. * The large cushion allows instructions like enter diff --git a/arch/x86/mm/init_64.c b/arch/x86/mm/init_64.c index 048fbe8fc274..adcea90a2046 100644 --- a/arch/x86/mm/init_64.c +++ b/arch/x86/mm/init_64.c @@ -1426,16 +1426,16 @@ int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node) #if defined(CONFIG_MEMORY_HOTPLUG_SPARSE) && defined(CONFIG_HAVE_BOOTMEM_INFO_NODE) void register_page_bootmem_memmap(unsigned long section_nr, - struct page *start_page, unsigned long size) + struct page *start_page, unsigned long nr_pages) { unsigned long addr = (unsigned long)start_page; - unsigned long end = (unsigned long)(start_page + size); + unsigned long end = (unsigned long)(start_page + nr_pages); unsigned long next; pgd_t *pgd; p4d_t *p4d; pud_t *pud; pmd_t *pmd; - unsigned int nr_pages; + unsigned int nr_pmd_pages; struct page *page; for (; addr < end; addr = next) { @@ -1482,9 +1482,9 @@ void register_page_bootmem_memmap(unsigned long section_nr, if (pmd_none(*pmd)) continue; - nr_pages = 1 << (get_order(PMD_SIZE)); + nr_pmd_pages = 1 << get_order(PMD_SIZE); page = pmd_page(*pmd); - while (nr_pages--) + while (nr_pmd_pages--) get_page_bootmem(section_nr, page++, SECTION_INFO); } diff --git a/arch/x86/mm/ioremap.c b/arch/x86/mm/ioremap.c index 34f0e1847dd6..6e4573b1da34 100644 --- a/arch/x86/mm/ioremap.c +++ b/arch/x86/mm/ioremap.c @@ -27,6 +27,11 @@ #include "physaddr.h" +struct ioremap_mem_flags { + bool system_ram; + bool desc_other; +}; + /* * Fix up the linear direct mapping of the kernel to avoid cache attribute * conflicts. @@ -56,17 +61,59 @@ int ioremap_change_attr(unsigned long vaddr, unsigned long size, return err; } -static int __ioremap_check_ram(unsigned long start_pfn, unsigned long nr_pages, - void *arg) +static bool __ioremap_check_ram(struct resource *res) { + unsigned long start_pfn, stop_pfn; unsigned long i; - for (i = 0; i < nr_pages; ++i) - if (pfn_valid(start_pfn + i) && - !PageReserved(pfn_to_page(start_pfn + i))) - return 1; + if ((res->flags & IORESOURCE_SYSTEM_RAM) != IORESOURCE_SYSTEM_RAM) + return false; - return 0; + start_pfn = (res->start + PAGE_SIZE - 1) >> PAGE_SHIFT; + stop_pfn = (res->end + 1) >> PAGE_SHIFT; + if (stop_pfn > start_pfn) { + for (i = 0; i < (stop_pfn - start_pfn); ++i) + if (pfn_valid(start_pfn + i) && + !PageReserved(pfn_to_page(start_pfn + i))) + return true; + } + + return false; +} + +static int __ioremap_check_desc_other(struct resource *res) +{ + return (res->desc != IORES_DESC_NONE); +} + +static int __ioremap_res_check(struct resource *res, void *arg) +{ + struct ioremap_mem_flags *flags = arg; + + if (!flags->system_ram) + flags->system_ram = __ioremap_check_ram(res); + + if (!flags->desc_other) + flags->desc_other = __ioremap_check_desc_other(res); + + return flags->system_ram && flags->desc_other; +} + +/* + * To avoid multiple resource walks, this function walks resources marked as + * IORESOURCE_MEM and IORESOURCE_BUSY and looking for system RAM and/or a + * resource described not as IORES_DESC_NONE (e.g. IORES_DESC_ACPI_TABLES). + */ +static void __ioremap_check_mem(resource_size_t addr, unsigned long size, + struct ioremap_mem_flags *flags) +{ + u64 start, end; + + start = (u64)addr; + end = start + size - 1; + memset(flags, 0, sizeof(*flags)); + + walk_mem_res(start, end, flags, __ioremap_res_check); } /* @@ -87,9 +134,10 @@ static void __iomem *__ioremap_caller(resource_size_t phys_addr, unsigned long size, enum page_cache_mode pcm, void *caller) { unsigned long offset, vaddr; - resource_size_t pfn, last_pfn, last_addr; + resource_size_t last_addr; const resource_size_t unaligned_phys_addr = phys_addr; const unsigned long unaligned_size = size; + struct ioremap_mem_flags mem_flags; struct vm_struct *area; enum page_cache_mode new_pcm; pgprot_t prot; @@ -108,13 +156,12 @@ static void __iomem *__ioremap_caller(resource_size_t phys_addr, return NULL; } + __ioremap_check_mem(phys_addr, size, &mem_flags); + /* * Don't allow anybody to remap normal RAM that we're using.. */ - pfn = phys_addr >> PAGE_SHIFT; - last_pfn = last_addr >> PAGE_SHIFT; - if (walk_system_ram_range(pfn, last_pfn - pfn + 1, NULL, - __ioremap_check_ram) == 1) { + if (mem_flags.system_ram) { WARN_ONCE(1, "ioremap on RAM at %pa - %pa\n", &phys_addr, &last_addr); return NULL; @@ -146,7 +193,15 @@ static void __iomem *__ioremap_caller(resource_size_t phys_addr, pcm = new_pcm; } + /* + * If the page being mapped is in memory and SEV is active then + * make sure the memory encryption attribute is enabled in the + * resulting mapping. + */ prot = PAGE_KERNEL_IO; + if (sev_active() && mem_flags.desc_other) + prot = pgprot_encrypted(prot); + switch (pcm) { case _PAGE_CACHE_MODE_UC: default: @@ -422,6 +477,9 @@ void unxlate_dev_mem_ptr(phys_addr_t phys, void *addr) * areas should be mapped decrypted. And since the encryption key can * change across reboots, persistent memory should also be mapped * decrypted. + * + * If SEV is active, that implies that BIOS/UEFI also ran encrypted so + * only persistent memory should be mapped decrypted. */ static bool memremap_should_map_decrypted(resource_size_t phys_addr, unsigned long size) @@ -458,6 +516,11 @@ static bool memremap_should_map_decrypted(resource_size_t phys_addr, case E820_TYPE_ACPI: case E820_TYPE_NVS: case E820_TYPE_UNUSABLE: + /* For SEV, these areas are encrypted */ + if (sev_active()) + break; + /* Fallthrough */ + case E820_TYPE_PRAM: return true; default: @@ -581,7 +644,7 @@ static bool __init early_memremap_is_setup_data(resource_size_t phys_addr, bool arch_memremap_can_ram_remap(resource_size_t phys_addr, unsigned long size, unsigned long flags) { - if (!sme_active()) + if (!mem_encrypt_active()) return true; if (flags & MEMREMAP_ENC) @@ -590,12 +653,13 @@ bool arch_memremap_can_ram_remap(resource_size_t phys_addr, unsigned long size, if (flags & MEMREMAP_DEC) return false; - if (memremap_is_setup_data(phys_addr, size) || - memremap_is_efi_data(phys_addr, size) || - memremap_should_map_decrypted(phys_addr, size)) - return false; + if (sme_active()) { + if (memremap_is_setup_data(phys_addr, size) || + memremap_is_efi_data(phys_addr, size)) + return false; + } - return true; + return !memremap_should_map_decrypted(phys_addr, size); } /* @@ -608,17 +672,24 @@ pgprot_t __init early_memremap_pgprot_adjust(resource_size_t phys_addr, unsigned long size, pgprot_t prot) { - if (!sme_active()) + bool encrypted_prot; + + if (!mem_encrypt_active()) return prot; - if (early_memremap_is_setup_data(phys_addr, size) || - memremap_is_efi_data(phys_addr, size) || - memremap_should_map_decrypted(phys_addr, size)) - prot = pgprot_decrypted(prot); - else - prot = pgprot_encrypted(prot); + encrypted_prot = true; + + if (sme_active()) { + if (early_memremap_is_setup_data(phys_addr, size) || + memremap_is_efi_data(phys_addr, size)) + encrypted_prot = false; + } + + if (encrypted_prot && memremap_should_map_decrypted(phys_addr, size)) + encrypted_prot = false; - return prot; + return encrypted_prot ? pgprot_encrypted(prot) + : pgprot_decrypted(prot); } bool phys_mem_access_encrypted(unsigned long phys_addr, unsigned long size) diff --git a/arch/x86/mm/kasan_init_64.c b/arch/x86/mm/kasan_init_64.c index 8f5be3eb40dd..2b60dc6e64b1 100644 --- a/arch/x86/mm/kasan_init_64.c +++ b/arch/x86/mm/kasan_init_64.c @@ -16,6 +16,8 @@ extern struct range pfn_mapped[E820_MAX_ENTRIES]; +static p4d_t tmp_p4d_table[PTRS_PER_P4D] __initdata __aligned(PAGE_SIZE); + static int __init map_range(struct range *range) { unsigned long start; @@ -31,8 +33,10 @@ static void __init clear_pgds(unsigned long start, unsigned long end) { pgd_t *pgd; + /* See comment in kasan_init() */ + unsigned long pgd_end = end & PGDIR_MASK; - for (; start < end; start += PGDIR_SIZE) { + for (; start < pgd_end; start += PGDIR_SIZE) { pgd = pgd_offset_k(start); /* * With folded p4d, pgd_clear() is nop, use p4d_clear() @@ -43,29 +47,61 @@ static void __init clear_pgds(unsigned long start, else pgd_clear(pgd); } + + pgd = pgd_offset_k(start); + for (; start < end; start += P4D_SIZE) + p4d_clear(p4d_offset(pgd, start)); +} + +static inline p4d_t *early_p4d_offset(pgd_t *pgd, unsigned long addr) +{ + unsigned long p4d; + + if (!IS_ENABLED(CONFIG_X86_5LEVEL)) + return (p4d_t *)pgd; + + p4d = __pa_nodebug(pgd_val(*pgd)) & PTE_PFN_MASK; + p4d += __START_KERNEL_map - phys_base; + return (p4d_t *)p4d + p4d_index(addr); +} + +static void __init kasan_early_p4d_populate(pgd_t *pgd, + unsigned long addr, + unsigned long end) +{ + pgd_t pgd_entry; + p4d_t *p4d, p4d_entry; + unsigned long next; + + if (pgd_none(*pgd)) { + pgd_entry = __pgd(_KERNPG_TABLE | __pa_nodebug(kasan_zero_p4d)); + set_pgd(pgd, pgd_entry); + } + + p4d = early_p4d_offset(pgd, addr); + do { + next = p4d_addr_end(addr, end); + + if (!p4d_none(*p4d)) + continue; + + p4d_entry = __p4d(_KERNPG_TABLE | __pa_nodebug(kasan_zero_pud)); + set_p4d(p4d, p4d_entry); + } while (p4d++, addr = next, addr != end && p4d_none(*p4d)); } static void __init kasan_map_early_shadow(pgd_t *pgd) { - int i; - unsigned long start = KASAN_SHADOW_START; + /* See comment in kasan_init() */ + unsigned long addr = KASAN_SHADOW_START & PGDIR_MASK; unsigned long end = KASAN_SHADOW_END; + unsigned long next; - for (i = pgd_index(start); start < end; i++) { - switch (CONFIG_PGTABLE_LEVELS) { - case 4: - pgd[i] = __pgd(__pa_nodebug(kasan_zero_pud) | - _KERNPG_TABLE); - break; - case 5: - pgd[i] = __pgd(__pa_nodebug(kasan_zero_p4d) | - _KERNPG_TABLE); - break; - default: - BUILD_BUG(); - } - start += PGDIR_SIZE; - } + pgd += pgd_index(addr); + do { + next = pgd_addr_end(addr, end); + kasan_early_p4d_populate(pgd, addr, next); + } while (pgd++, addr = next, addr != end); } #ifdef CONFIG_KASAN_INLINE @@ -102,7 +138,7 @@ void __init kasan_early_init(void) for (i = 0; i < PTRS_PER_PUD; i++) kasan_zero_pud[i] = __pud(pud_val); - for (i = 0; CONFIG_PGTABLE_LEVELS >= 5 && i < PTRS_PER_P4D; i++) + for (i = 0; IS_ENABLED(CONFIG_X86_5LEVEL) && i < PTRS_PER_P4D; i++) kasan_zero_p4d[i] = __p4d(p4d_val); kasan_map_early_shadow(early_top_pgt); @@ -118,12 +154,35 @@ void __init kasan_init(void) #endif memcpy(early_top_pgt, init_top_pgt, sizeof(early_top_pgt)); + + /* + * We use the same shadow offset for 4- and 5-level paging to + * facilitate boot-time switching between paging modes. + * As result in 5-level paging mode KASAN_SHADOW_START and + * KASAN_SHADOW_END are not aligned to PGD boundary. + * + * KASAN_SHADOW_START doesn't share PGD with anything else. + * We claim whole PGD entry to make things easier. + * + * KASAN_SHADOW_END lands in the last PGD entry and it collides with + * bunch of things like kernel code, modules, EFI mapping, etc. + * We need to take extra steps to not overwrite them. + */ + if (IS_ENABLED(CONFIG_X86_5LEVEL)) { + void *ptr; + + ptr = (void *)pgd_page_vaddr(*pgd_offset_k(KASAN_SHADOW_END)); + memcpy(tmp_p4d_table, (void *)ptr, sizeof(tmp_p4d_table)); + set_pgd(&early_top_pgt[pgd_index(KASAN_SHADOW_END)], + __pgd(__pa(tmp_p4d_table) | _KERNPG_TABLE)); + } + load_cr3(early_top_pgt); __flush_tlb_all(); - clear_pgds(KASAN_SHADOW_START, KASAN_SHADOW_END); + clear_pgds(KASAN_SHADOW_START & PGDIR_MASK, KASAN_SHADOW_END); - kasan_populate_zero_shadow((void *)KASAN_SHADOW_START, + kasan_populate_zero_shadow((void *)(KASAN_SHADOW_START & PGDIR_MASK), kasan_mem_to_shadow((void *)PAGE_OFFSET)); for (i = 0; i < E820_MAX_ENTRIES; i++) { diff --git a/arch/x86/mm/mem_encrypt.c b/arch/x86/mm/mem_encrypt.c index 0286327e65fa..d9a9e9fc75dd 100644 --- a/arch/x86/mm/mem_encrypt.c +++ b/arch/x86/mm/mem_encrypt.c @@ -30,6 +30,8 @@ #include <asm/msr.h> #include <asm/cmdline.h> +#include "mm_internal.h" + static char sme_cmdline_arg[] __initdata = "mem_encrypt"; static char sme_cmdline_on[] __initdata = "on"; static char sme_cmdline_off[] __initdata = "off"; @@ -41,6 +43,10 @@ static char sme_cmdline_off[] __initdata = "off"; */ u64 sme_me_mask __section(.data) = 0; EXPORT_SYMBOL(sme_me_mask); +DEFINE_STATIC_KEY_FALSE(sev_enable_key); +EXPORT_SYMBOL_GPL(sev_enable_key); + +static bool sev_enabled __section(.data); /* Buffer used for early in-place encryption by BSP, no locking needed */ static char sme_early_buffer[PAGE_SIZE] __aligned(PAGE_SIZE); @@ -63,7 +69,6 @@ static void __init __sme_early_enc_dec(resource_size_t paddr, if (!sme_me_mask) return; - local_flush_tlb(); wbinvd(); /* @@ -190,8 +195,238 @@ void __init sme_early_init(void) /* Update the protection map with memory encryption mask */ for (i = 0; i < ARRAY_SIZE(protection_map); i++) protection_map[i] = pgprot_encrypted(protection_map[i]); + + if (sev_active()) + swiotlb_force = SWIOTLB_FORCE; +} + +static void *sev_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle, + gfp_t gfp, unsigned long attrs) +{ + unsigned long dma_mask; + unsigned int order; + struct page *page; + void *vaddr = NULL; + + dma_mask = dma_alloc_coherent_mask(dev, gfp); + order = get_order(size); + + /* + * Memory will be memset to zero after marking decrypted, so don't + * bother clearing it before. + */ + gfp &= ~__GFP_ZERO; + + page = alloc_pages_node(dev_to_node(dev), gfp, order); + if (page) { + dma_addr_t addr; + + /* + * Since we will be clearing the encryption bit, check the + * mask with it already cleared. + */ + addr = __sme_clr(phys_to_dma(dev, page_to_phys(page))); + if ((addr + size) > dma_mask) { + __free_pages(page, get_order(size)); + } else { + vaddr = page_address(page); + *dma_handle = addr; + } + } + + if (!vaddr) + vaddr = swiotlb_alloc_coherent(dev, size, dma_handle, gfp); + + if (!vaddr) + return NULL; + + /* Clear the SME encryption bit for DMA use if not swiotlb area */ + if (!is_swiotlb_buffer(dma_to_phys(dev, *dma_handle))) { + set_memory_decrypted((unsigned long)vaddr, 1 << order); + memset(vaddr, 0, PAGE_SIZE << order); + *dma_handle = __sme_clr(*dma_handle); + } + + return vaddr; } +static void sev_free(struct device *dev, size_t size, void *vaddr, + dma_addr_t dma_handle, unsigned long attrs) +{ + /* Set the SME encryption bit for re-use if not swiotlb area */ + if (!is_swiotlb_buffer(dma_to_phys(dev, dma_handle))) + set_memory_encrypted((unsigned long)vaddr, + 1 << get_order(size)); + + swiotlb_free_coherent(dev, size, vaddr, dma_handle); +} + +static void __init __set_clr_pte_enc(pte_t *kpte, int level, bool enc) +{ + pgprot_t old_prot, new_prot; + unsigned long pfn, pa, size; + pte_t new_pte; + + switch (level) { + case PG_LEVEL_4K: + pfn = pte_pfn(*kpte); + old_prot = pte_pgprot(*kpte); + break; + case PG_LEVEL_2M: + pfn = pmd_pfn(*(pmd_t *)kpte); + old_prot = pmd_pgprot(*(pmd_t *)kpte); + break; + case PG_LEVEL_1G: + pfn = pud_pfn(*(pud_t *)kpte); + old_prot = pud_pgprot(*(pud_t *)kpte); + break; + default: + return; + } + + new_prot = old_prot; + if (enc) + pgprot_val(new_prot) |= _PAGE_ENC; + else + pgprot_val(new_prot) &= ~_PAGE_ENC; + + /* If prot is same then do nothing. */ + if (pgprot_val(old_prot) == pgprot_val(new_prot)) + return; + + pa = pfn << page_level_shift(level); + size = page_level_size(level); + + /* + * We are going to perform in-place en-/decryption and change the + * physical page attribute from C=1 to C=0 or vice versa. Flush the + * caches to ensure that data gets accessed with the correct C-bit. + */ + clflush_cache_range(__va(pa), size); + + /* Encrypt/decrypt the contents in-place */ + if (enc) + sme_early_encrypt(pa, size); + else + sme_early_decrypt(pa, size); + + /* Change the page encryption mask. */ + new_pte = pfn_pte(pfn, new_prot); + set_pte_atomic(kpte, new_pte); +} + +static int __init early_set_memory_enc_dec(unsigned long vaddr, + unsigned long size, bool enc) +{ + unsigned long vaddr_end, vaddr_next; + unsigned long psize, pmask; + int split_page_size_mask; + int level, ret; + pte_t *kpte; + + vaddr_next = vaddr; + vaddr_end = vaddr + size; + + for (; vaddr < vaddr_end; vaddr = vaddr_next) { + kpte = lookup_address(vaddr, &level); + if (!kpte || pte_none(*kpte)) { + ret = 1; + goto out; + } + + if (level == PG_LEVEL_4K) { + __set_clr_pte_enc(kpte, level, enc); + vaddr_next = (vaddr & PAGE_MASK) + PAGE_SIZE; + continue; + } + + psize = page_level_size(level); + pmask = page_level_mask(level); + + /* + * Check whether we can change the large page in one go. + * We request a split when the address is not aligned and + * the number of pages to set/clear encryption bit is smaller + * than the number of pages in the large page. + */ + if (vaddr == (vaddr & pmask) && + ((vaddr_end - vaddr) >= psize)) { + __set_clr_pte_enc(kpte, level, enc); + vaddr_next = (vaddr & pmask) + psize; + continue; + } + + /* + * The virtual address is part of a larger page, create the next + * level page table mapping (4K or 2M). If it is part of a 2M + * page then we request a split of the large page into 4K + * chunks. A 1GB large page is split into 2M pages, resp. + */ + if (level == PG_LEVEL_2M) + split_page_size_mask = 0; + else + split_page_size_mask = 1 << PG_LEVEL_2M; + + kernel_physical_mapping_init(__pa(vaddr & pmask), + __pa((vaddr_end & pmask) + psize), + split_page_size_mask); + } + + ret = 0; + +out: + __flush_tlb_all(); + return ret; +} + +int __init early_set_memory_decrypted(unsigned long vaddr, unsigned long size) +{ + return early_set_memory_enc_dec(vaddr, size, false); +} + +int __init early_set_memory_encrypted(unsigned long vaddr, unsigned long size) +{ + return early_set_memory_enc_dec(vaddr, size, true); +} + +/* + * SME and SEV are very similar but they are not the same, so there are + * times that the kernel will need to distinguish between SME and SEV. The + * sme_active() and sev_active() functions are used for this. When a + * distinction isn't needed, the mem_encrypt_active() function can be used. + * + * The trampoline code is a good example for this requirement. Before + * paging is activated, SME will access all memory as decrypted, but SEV + * will access all memory as encrypted. So, when APs are being brought + * up under SME the trampoline area cannot be encrypted, whereas under SEV + * the trampoline area must be encrypted. + */ +bool sme_active(void) +{ + return sme_me_mask && !sev_enabled; +} +EXPORT_SYMBOL_GPL(sme_active); + +bool sev_active(void) +{ + return sme_me_mask && sev_enabled; +} +EXPORT_SYMBOL_GPL(sev_active); + +static const struct dma_map_ops sev_dma_ops = { + .alloc = sev_alloc, + .free = sev_free, + .map_page = swiotlb_map_page, + .unmap_page = swiotlb_unmap_page, + .map_sg = swiotlb_map_sg_attrs, + .unmap_sg = swiotlb_unmap_sg_attrs, + .sync_single_for_cpu = swiotlb_sync_single_for_cpu, + .sync_single_for_device = swiotlb_sync_single_for_device, + .sync_sg_for_cpu = swiotlb_sync_sg_for_cpu, + .sync_sg_for_device = swiotlb_sync_sg_for_device, + .mapping_error = swiotlb_dma_mapping_error, +}; + /* Architecture __weak replacement functions */ void __init mem_encrypt_init(void) { @@ -201,7 +436,23 @@ void __init mem_encrypt_init(void) /* Call into SWIOTLB to update the SWIOTLB DMA buffers */ swiotlb_update_mem_attributes(); - pr_info("AMD Secure Memory Encryption (SME) active\n"); + /* + * With SEV, DMA operations cannot use encryption. New DMA ops + * are required in order to mark the DMA areas as decrypted or + * to use bounce buffers. + */ + if (sev_active()) + dma_ops = &sev_dma_ops; + + /* + * With SEV, we need to unroll the rep string I/O instructions. + */ + if (sev_active()) + static_branch_enable(&sev_enable_key); + + pr_info("AMD %s active\n", + sev_active() ? "Secure Encrypted Virtualization (SEV)" + : "Secure Memory Encryption (SME)"); } void swiotlb_set_mem_attributes(void *vaddr, unsigned long size) @@ -529,37 +780,63 @@ void __init __nostackprotector sme_enable(struct boot_params *bp) { const char *cmdline_ptr, *cmdline_arg, *cmdline_on, *cmdline_off; unsigned int eax, ebx, ecx, edx; + unsigned long feature_mask; bool active_by_default; unsigned long me_mask; char buffer[16]; u64 msr; - /* Check for the SME support leaf */ + /* Check for the SME/SEV support leaf */ eax = 0x80000000; ecx = 0; native_cpuid(&eax, &ebx, &ecx, &edx); if (eax < 0x8000001f) return; +#define AMD_SME_BIT BIT(0) +#define AMD_SEV_BIT BIT(1) /* - * Check for the SME feature: - * CPUID Fn8000_001F[EAX] - Bit 0 - * Secure Memory Encryption support - * CPUID Fn8000_001F[EBX] - Bits 5:0 - * Pagetable bit position used to indicate encryption + * Set the feature mask (SME or SEV) based on whether we are + * running under a hypervisor. + */ + eax = 1; + ecx = 0; + native_cpuid(&eax, &ebx, &ecx, &edx); + feature_mask = (ecx & BIT(31)) ? AMD_SEV_BIT : AMD_SME_BIT; + + /* + * Check for the SME/SEV feature: + * CPUID Fn8000_001F[EAX] + * - Bit 0 - Secure Memory Encryption support + * - Bit 1 - Secure Encrypted Virtualization support + * CPUID Fn8000_001F[EBX] + * - Bits 5:0 - Pagetable bit position used to indicate encryption */ eax = 0x8000001f; ecx = 0; native_cpuid(&eax, &ebx, &ecx, &edx); - if (!(eax & 1)) + if (!(eax & feature_mask)) return; me_mask = 1UL << (ebx & 0x3f); - /* Check if SME is enabled */ - msr = __rdmsr(MSR_K8_SYSCFG); - if (!(msr & MSR_K8_SYSCFG_MEM_ENCRYPT)) + /* Check if memory encryption is enabled */ + if (feature_mask == AMD_SME_BIT) { + /* For SME, check the SYSCFG MSR */ + msr = __rdmsr(MSR_K8_SYSCFG); + if (!(msr & MSR_K8_SYSCFG_MEM_ENCRYPT)) + return; + } else { + /* For SEV, check the SEV MSR */ + msr = __rdmsr(MSR_AMD64_SEV); + if (!(msr & MSR_AMD64_SEV_ENABLED)) + return; + + /* SEV state cannot be controlled by a command line option */ + sme_me_mask = me_mask; + sev_enabled = true; return; + } /* * Fixups have not been applied to phys_base yet and we're running diff --git a/arch/x86/mm/mpx.c b/arch/x86/mm/mpx.c index 7eb06701a935..e500949bae24 100644 --- a/arch/x86/mm/mpx.c +++ b/arch/x86/mm/mpx.c @@ -13,6 +13,7 @@ #include <linux/sched/sysctl.h> #include <asm/insn.h> +#include <asm/insn-eval.h> #include <asm/mman.h> #include <asm/mmu_context.h> #include <asm/mpx.h> @@ -61,123 +62,6 @@ static unsigned long mpx_mmap(unsigned long len) return addr; } -enum reg_type { - REG_TYPE_RM = 0, - REG_TYPE_INDEX, - REG_TYPE_BASE, -}; - -static int get_reg_offset(struct insn *insn, struct pt_regs *regs, - enum reg_type type) -{ - int regno = 0; - - static const int regoff[] = { - offsetof(struct pt_regs, ax), - offsetof(struct pt_regs, cx), - offsetof(struct pt_regs, dx), - offsetof(struct pt_regs, bx), - offsetof(struct pt_regs, sp), - offsetof(struct pt_regs, bp), - offsetof(struct pt_regs, si), - offsetof(struct pt_regs, di), -#ifdef CONFIG_X86_64 - offsetof(struct pt_regs, r8), - offsetof(struct pt_regs, r9), - offsetof(struct pt_regs, r10), - offsetof(struct pt_regs, r11), - offsetof(struct pt_regs, r12), - offsetof(struct pt_regs, r13), - offsetof(struct pt_regs, r14), - offsetof(struct pt_regs, r15), -#endif - }; - int nr_registers = ARRAY_SIZE(regoff); - /* - * Don't possibly decode a 32-bit instructions as - * reading a 64-bit-only register. - */ - if (IS_ENABLED(CONFIG_X86_64) && !insn->x86_64) - nr_registers -= 8; - - switch (type) { - case REG_TYPE_RM: - regno = X86_MODRM_RM(insn->modrm.value); - if (X86_REX_B(insn->rex_prefix.value)) - regno += 8; - break; - - case REG_TYPE_INDEX: - regno = X86_SIB_INDEX(insn->sib.value); - if (X86_REX_X(insn->rex_prefix.value)) - regno += 8; - break; - - case REG_TYPE_BASE: - regno = X86_SIB_BASE(insn->sib.value); - if (X86_REX_B(insn->rex_prefix.value)) - regno += 8; - break; - - default: - pr_err("invalid register type"); - BUG(); - break; - } - - if (regno >= nr_registers) { - WARN_ONCE(1, "decoded an instruction with an invalid register"); - return -EINVAL; - } - return regoff[regno]; -} - -/* - * return the address being referenced be instruction - * for rm=3 returning the content of the rm reg - * for rm!=3 calculates the address using SIB and Disp - */ -static void __user *mpx_get_addr_ref(struct insn *insn, struct pt_regs *regs) -{ - unsigned long addr, base, indx; - int addr_offset, base_offset, indx_offset; - insn_byte_t sib; - - insn_get_modrm(insn); - insn_get_sib(insn); - sib = insn->sib.value; - - if (X86_MODRM_MOD(insn->modrm.value) == 3) { - addr_offset = get_reg_offset(insn, regs, REG_TYPE_RM); - if (addr_offset < 0) - goto out_err; - addr = regs_get_register(regs, addr_offset); - } else { - if (insn->sib.nbytes) { - base_offset = get_reg_offset(insn, regs, REG_TYPE_BASE); - if (base_offset < 0) - goto out_err; - - indx_offset = get_reg_offset(insn, regs, REG_TYPE_INDEX); - if (indx_offset < 0) - goto out_err; - - base = regs_get_register(regs, base_offset); - indx = regs_get_register(regs, indx_offset); - addr = base + indx * (1 << X86_SIB_SCALE(sib)); - } else { - addr_offset = get_reg_offset(insn, regs, REG_TYPE_RM); - if (addr_offset < 0) - goto out_err; - addr = regs_get_register(regs, addr_offset); - } - addr += insn->displacement.value; - } - return (void __user *)addr; -out_err: - return (void __user *)-1; -} - static int mpx_insn_decode(struct insn *insn, struct pt_regs *regs) { @@ -290,7 +174,7 @@ siginfo_t *mpx_generate_siginfo(struct pt_regs *regs) info->si_signo = SIGSEGV; info->si_errno = 0; info->si_code = SEGV_BNDERR; - info->si_addr = mpx_get_addr_ref(&insn, regs); + info->si_addr = insn_get_addr_ref(&insn, regs); /* * We were not able to extract an address from the instruction, * probably because there was something invalid in it. diff --git a/arch/x86/mm/pageattr.c b/arch/x86/mm/pageattr.c index dfb7d657cf43..3fe68483463c 100644 --- a/arch/x86/mm/pageattr.c +++ b/arch/x86/mm/pageattr.c @@ -1781,8 +1781,8 @@ static int __set_memory_enc_dec(unsigned long addr, int numpages, bool enc) unsigned long start; int ret; - /* Nothing to do if the SME is not active */ - if (!sme_active()) + /* Nothing to do if memory encryption is not active */ + if (!mem_encrypt_active()) return 0; /* Should not be working on unaligned addresses */ |