diff options
author | Rusty Russell <rusty@rustcorp.com.au> | 2009-07-31 02:03:45 +0400 |
---|---|---|
committer | Rusty Russell <rusty@rustcorp.com.au> | 2009-07-30 10:33:46 +0400 |
commit | a91d74a3c4de8115295ee87350c13a329164aaaf (patch) | |
tree | 02c862fccc9abedf7fc354061e69c4b5fbcce06d /arch/x86/lguest | |
parent | 2e04ef76916d1e29a077ea9d0f2003c8fd86724d (diff) | |
download | linux-a91d74a3c4de8115295ee87350c13a329164aaaf.tar.xz |
lguest: update commentry
Every so often, after code shuffles, I need to go through and unbitrot
the Lguest Journey (see drivers/lguest/README). Since we now use RCU in
a simple form in one place I took the opportunity to expand that explanation.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Paul McKenney <paulmck@linux.vnet.ibm.com>
Diffstat (limited to 'arch/x86/lguest')
-rw-r--r-- | arch/x86/lguest/boot.c | 99 | ||||
-rw-r--r-- | arch/x86/lguest/i386_head.S | 2 |
2 files changed, 79 insertions, 22 deletions
diff --git a/arch/x86/lguest/boot.c b/arch/x86/lguest/boot.c index 025c04d18f2b..d677fa9ca650 100644 --- a/arch/x86/lguest/boot.c +++ b/arch/x86/lguest/boot.c @@ -154,6 +154,7 @@ static void lazy_hcall1(unsigned long call, async_hcall(call, arg1, 0, 0, 0); } +/* You can imagine what lazy_hcall2, 3 and 4 look like. :*/ static void lazy_hcall2(unsigned long call, unsigned long arg1, unsigned long arg2) @@ -189,8 +190,10 @@ static void lazy_hcall4(unsigned long call, } #endif -/* When lazy mode is turned off reset the per-cpu lazy mode variable and then - * issue the do-nothing hypercall to flush any stored calls. */ +/*G:036 + * When lazy mode is turned off reset the per-cpu lazy mode variable and then + * issue the do-nothing hypercall to flush any stored calls. +:*/ static void lguest_leave_lazy_mmu_mode(void) { kvm_hypercall0(LHCALL_FLUSH_ASYNC); @@ -250,13 +253,11 @@ extern void lg_irq_enable(void); extern void lg_restore_fl(unsigned long flags); /*M:003 - * Note that we don't check for outstanding interrupts when we re-enable them - * (or when we unmask an interrupt). This seems to work for the moment, since - * interrupts are rare and we'll just get the interrupt on the next timer tick, - * but now we can run with CONFIG_NO_HZ, we should revisit this. One way would - * be to put the "irq_enabled" field in a page by itself, and have the Host - * write-protect it when an interrupt comes in when irqs are disabled. There - * will then be a page fault as soon as interrupts are re-enabled. + * We could be more efficient in our checking of outstanding interrupts, rather + * than using a branch. One way would be to put the "irq_enabled" field in a + * page by itself, and have the Host write-protect it when an interrupt comes + * in when irqs are disabled. There will then be a page fault as soon as + * interrupts are re-enabled. * * A better method is to implement soft interrupt disable generally for x86: * instead of disabling interrupts, we set a flag. If an interrupt does come @@ -568,7 +569,7 @@ static void lguest_write_cr4(unsigned long val) * cr3 ---> +---------+ * | --------->+---------+ * | | | PADDR1 | - * Top-level | | PADDR2 | + * Mid-level | | PADDR2 | * (PMD) page | | | * | | Lower-level | * | | (PTE) page | @@ -588,23 +589,62 @@ static void lguest_write_cr4(unsigned long val) * Index into top Index into second Offset within page * page directory page pagetable page * - * The kernel spends a lot of time changing both the top-level page directory - * and lower-level pagetable pages. The Guest doesn't know physical addresses, - * so while it maintains these page tables exactly like normal, it also needs - * to keep the Host informed whenever it makes a change: the Host will create - * the real page tables based on the Guests'. + * Now, unfortunately, this isn't the whole story: Intel added Physical Address + * Extension (PAE) to allow 32 bit systems to use 64GB of memory (ie. 36 bits). + * These are held in 64-bit page table entries, so we can now only fit 512 + * entries in a page, and the neat three-level tree breaks down. + * + * The result is a four level page table: + * + * cr3 --> [ 4 Upper ] + * [ Level ] + * [ Entries ] + * [(PUD Page)]---> +---------+ + * | --------->+---------+ + * | | | PADDR1 | + * Mid-level | | PADDR2 | + * (PMD) page | | | + * | | Lower-level | + * | | (PTE) page | + * | | | | + * .... .... + * + * + * And the virtual address is decoded as: + * + * 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 + * |<-2->|<--- 9 bits ---->|<---- 9 bits --->|<------ 12 bits ------>| + * Index into Index into mid Index into lower Offset within page + * top entries directory page pagetable page + * + * It's too hard to switch between these two formats at runtime, so Linux only + * supports one or the other depending on whether CONFIG_X86_PAE is set. Many + * distributions turn it on, and not just for people with silly amounts of + * memory: the larger PTE entries allow room for the NX bit, which lets the + * kernel disable execution of pages and increase security. + * + * This was a problem for lguest, which couldn't run on these distributions; + * then Matias Zabaljauregui figured it all out and implemented it, and only a + * handful of puppies were crushed in the process! + * + * Back to our point: the kernel spends a lot of time changing both the + * top-level page directory and lower-level pagetable pages. The Guest doesn't + * know physical addresses, so while it maintains these page tables exactly + * like normal, it also needs to keep the Host informed whenever it makes a + * change: the Host will create the real page tables based on the Guests'. */ /* - * The Guest calls this to set a second-level entry (pte), ie. to map a page - * into a process' address space. We set the entry then tell the Host the - * toplevel and address this corresponds to. The Guest uses one pagetable per - * process, so we need to tell the Host which one we're changing (mm->pgd). + * The Guest calls this after it has set a second-level entry (pte), ie. to map + * a page into a process' address space. Wetell the Host the toplevel and + * address this corresponds to. The Guest uses one pagetable per process, so + * we need to tell the Host which one we're changing (mm->pgd). */ static void lguest_pte_update(struct mm_struct *mm, unsigned long addr, pte_t *ptep) { #ifdef CONFIG_X86_PAE + /* PAE needs to hand a 64 bit page table entry, so it uses two args. */ lazy_hcall4(LHCALL_SET_PTE, __pa(mm->pgd), addr, ptep->pte_low, ptep->pte_high); #else @@ -612,6 +652,7 @@ static void lguest_pte_update(struct mm_struct *mm, unsigned long addr, #endif } +/* This is the "set and update" combo-meal-deal version. */ static void lguest_set_pte_at(struct mm_struct *mm, unsigned long addr, pte_t *ptep, pte_t pteval) { @@ -672,6 +713,11 @@ static void lguest_set_pte(pte_t *ptep, pte_t pteval) } #ifdef CONFIG_X86_PAE +/* + * With 64-bit PTE values, we need to be careful setting them: if we set 32 + * bits at a time, the hardware could see a weird half-set entry. These + * versions ensure we update all 64 bits at once. + */ static void lguest_set_pte_atomic(pte_t *ptep, pte_t pte) { native_set_pte_atomic(ptep, pte); @@ -679,13 +725,14 @@ static void lguest_set_pte_atomic(pte_t *ptep, pte_t pte) lazy_hcall1(LHCALL_FLUSH_TLB, 1); } -void lguest_pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) +static void lguest_pte_clear(struct mm_struct *mm, unsigned long addr, + pte_t *ptep) { native_pte_clear(mm, addr, ptep); lguest_pte_update(mm, addr, ptep); } -void lguest_pmd_clear(pmd_t *pmdp) +static void lguest_pmd_clear(pmd_t *pmdp) { lguest_set_pmd(pmdp, __pmd(0)); } @@ -784,6 +831,14 @@ static void __init lguest_init_IRQ(void) irq_ctx_init(smp_processor_id()); } +/* + * With CONFIG_SPARSE_IRQ, interrupt descriptors are allocated as-needed, so + * rather than set them in lguest_init_IRQ we are called here every time an + * lguest device needs an interrupt. + * + * FIXME: irq_to_desc_alloc_node() can fail due to lack of memory, we should + * pass that up! + */ void lguest_setup_irq(unsigned int irq) { irq_to_desc_alloc_node(irq, 0); @@ -1298,7 +1353,7 @@ __init void lguest_init(void) */ switch_to_new_gdt(0); - /* As described in head_32.S, we map the first 128M of memory. */ + /* We actually boot with all memory mapped, but let's say 128MB. */ max_pfn_mapped = (128*1024*1024) >> PAGE_SHIFT; /* diff --git a/arch/x86/lguest/i386_head.S b/arch/x86/lguest/i386_head.S index db6aa95eb054..27eac0faee48 100644 --- a/arch/x86/lguest/i386_head.S +++ b/arch/x86/lguest/i386_head.S @@ -102,6 +102,7 @@ send_interrupts: * create one manually here. */ .byte 0x0f,0x01,0xc1 /* KVM_HYPERCALL */ + /* Put eax back the way we found it. */ popl %eax ret @@ -125,6 +126,7 @@ ENTRY(lg_restore_fl) jnz send_interrupts /* Again, the normal path has used no extra registers. Clever, huh? */ ret +/*:*/ /* These demark the EIP range where host should never deliver interrupts. */ .global lguest_noirq_start |