summaryrefslogtreecommitdiff
path: root/arch/x86/entry
diff options
context:
space:
mode:
authorSebastian Andrzej Siewior <bigeasy@linutronix.de>2016-08-05 16:37:39 +0300
committerIngo Molnar <mingo@kernel.org>2016-08-10 16:37:16 +0300
commit5cf0791da5c162ebc14b01eb01631cfa7ed4fa6e (patch)
tree6bbd35a819dc26c434e032c91a870719e37a2a7d /arch/x86/entry
parentfb754f958f8e46202c1efd7f66d5b3db1208117d (diff)
downloadlinux-5cf0791da5c162ebc14b01eb01631cfa7ed4fa6e.tar.xz
x86/mm: Disable preemption during CR3 read+write
There's a subtle preemption race on UP kernels: Usually current->mm (and therefore mm->pgd) stays the same during the lifetime of a task so it does not matter if a task gets preempted during the read and write of the CR3. But then, there is this scenario on x86-UP: TaskA is in do_exit() and exit_mm() sets current->mm = NULL followed by: -> mmput() -> exit_mmap() -> tlb_finish_mmu() -> tlb_flush_mmu() -> tlb_flush_mmu_tlbonly() -> tlb_flush() -> flush_tlb_mm_range() -> __flush_tlb_up() -> __flush_tlb() -> __native_flush_tlb() At this point current->mm is NULL but current->active_mm still points to the "old" mm. Let's preempt taskA _after_ native_read_cr3() by taskB. TaskB has its own mm so CR3 has changed. Now preempt back to taskA. TaskA has no ->mm set so it borrows taskB's mm and so CR3 remains unchanged. Once taskA gets active it continues where it was interrupted and that means it writes its old CR3 value back. Everything is fine because userland won't need its memory anymore. Now the fun part: Let's preempt taskA one more time and get back to taskB. This time switch_mm() won't do a thing because oldmm (->active_mm) is the same as mm (as per context_switch()). So we remain with a bad CR3 / PGD and return to userland. The next thing that happens is handle_mm_fault() with an address for the execution of its code in userland. handle_mm_fault() realizes that it has a PTE with proper rights so it returns doing nothing. But the CPU looks at the wrong PGD and insists that something is wrong and faults again. And again. And one more timeā€¦ This pagefault circle continues until the scheduler gets tired of it and puts another task on the CPU. It gets little difficult if the task is a RT task with a high priority. The system will either freeze or it gets fixed by the software watchdog thread which usually runs at RT-max prio. But waiting for the watchdog will increase the latency of the RT task which is no good. Fix this by disabling preemption across the critical code section. Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Rik van Riel <riel@redhat.com> Acked-by: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Borislav Petkov <bp@suse.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-mm@kvack.org Cc: stable@vger.kernel.org Link: http://lkml.kernel.org/r/1470404259-26290-1-git-send-email-bigeasy@linutronix.de [ Prettified the changelog. ] Signed-off-by: Ingo Molnar <mingo@kernel.org>
Diffstat (limited to 'arch/x86/entry')
0 files changed, 0 insertions, 0 deletions