summaryrefslogtreecommitdiff
path: root/arch/x86/entry/vdso/vdso2c.h
diff options
context:
space:
mode:
authorSean Christopherson <sean.j.christopherson@intel.com>2020-11-13 01:01:27 +0300
committerBorislav Petkov <bp@suse.de>2020-11-18 20:02:50 +0300
commit8382c668ce4f367d902f4a340a1bfa9e46096ec1 (patch)
tree7a742dc0d3169e41c54eafb411e3b3a33f60e667 /arch/x86/entry/vdso/vdso2c.h
parentc82c61865024b9981f00358433bebed92ca20c00 (diff)
downloadlinux-8382c668ce4f367d902f4a340a1bfa9e46096ec1.tar.xz
x86/vdso: Add support for exception fixup in vDSO functions
Signals are a horrid little mechanism. They are especially nasty in multi-threaded environments because signal state like handlers is global across the entire process. But, signals are basically the only way that userspace can “gracefully” handle and recover from exceptions. The kernel generally does not like exceptions to occur during execution. But, exceptions are a fact of life and must be handled in some circumstances. The kernel handles them by keeping a list of individual instructions which may cause exceptions. Instead of truly handling the exception and returning to the instruction that caused it, the kernel instead restarts execution at a *different* instruction. This makes it obvious to that thread of execution that the exception occurred and lets *that* code handle the exception instead of the handler. This is not dissimilar to the try/catch exceptions mechanisms that some programming languages have, but applied *very* surgically to single instructions. It effectively changes the visible architecture of the instruction. Problem ======= SGX generates a lot of signals, and the code to enter and exit enclaves and muck with signal handling is truly horrid. At the same time, an approach like kernel exception fixup can not be easily applied to userspace instructions because it changes the visible instruction architecture. Solution ======== The vDSO is a special page of kernel-provided instructions that run in userspace. Any userspace calling into the vDSO knows that it is special. This allows the kernel a place to legitimately rewrite the user/kernel contract and change instruction behavior. Add support for fixing up exceptions that occur while executing in the vDSO. This replaces what could traditionally only be done with signal handling. This new mechanism will be used to replace previously direct use of SGX instructions by userspace. Just introduce the vDSO infrastructure. Later patches will actually replace signal generation with vDSO exception fixup. Suggested-by: Andy Lutomirski <luto@amacapital.net> Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org> Signed-off-by: Borislav Petkov <bp@suse.de> Acked-by: Jethro Beekman <jethro@fortanix.com> Link: https://lkml.kernel.org/r/20201112220135.165028-17-jarkko@kernel.org
Diffstat (limited to 'arch/x86/entry/vdso/vdso2c.h')
-rw-r--r--arch/x86/entry/vdso/vdso2c.h50
1 files changed, 49 insertions, 1 deletions
diff --git a/arch/x86/entry/vdso/vdso2c.h b/arch/x86/entry/vdso/vdso2c.h
index 6f46e11ce539..1c7cfac7e64a 100644
--- a/arch/x86/entry/vdso/vdso2c.h
+++ b/arch/x86/entry/vdso/vdso2c.h
@@ -5,6 +5,41 @@
* are built for 32-bit userspace.
*/
+static void BITSFUNC(copy)(FILE *outfile, const unsigned char *data, size_t len)
+{
+ size_t i;
+
+ for (i = 0; i < len; i++) {
+ if (i % 10 == 0)
+ fprintf(outfile, "\n\t");
+ fprintf(outfile, "0x%02X, ", (int)(data)[i]);
+ }
+}
+
+
+/*
+ * Extract a section from the input data into a standalone blob. Used to
+ * capture kernel-only data that needs to persist indefinitely, e.g. the
+ * exception fixup tables, but only in the kernel, i.e. the section can
+ * be stripped from the final vDSO image.
+ */
+static void BITSFUNC(extract)(const unsigned char *data, size_t data_len,
+ FILE *outfile, ELF(Shdr) *sec, const char *name)
+{
+ unsigned long offset;
+ size_t len;
+
+ offset = (unsigned long)GET_LE(&sec->sh_offset);
+ len = (size_t)GET_LE(&sec->sh_size);
+
+ if (offset + len > data_len)
+ fail("section to extract overruns input data");
+
+ fprintf(outfile, "static const unsigned char %s[%lu] = {", name, len);
+ BITSFUNC(copy)(outfile, data + offset, len);
+ fprintf(outfile, "\n};\n\n");
+}
+
static void BITSFUNC(go)(void *raw_addr, size_t raw_len,
void *stripped_addr, size_t stripped_len,
FILE *outfile, const char *image_name)
@@ -15,7 +50,7 @@ static void BITSFUNC(go)(void *raw_addr, size_t raw_len,
ELF(Ehdr) *hdr = (ELF(Ehdr) *)raw_addr;
unsigned long i, syms_nr;
ELF(Shdr) *symtab_hdr = NULL, *strtab_hdr, *secstrings_hdr,
- *alt_sec = NULL;
+ *alt_sec = NULL, *extable_sec = NULL;
ELF(Dyn) *dyn = 0, *dyn_end = 0;
const char *secstrings;
INT_BITS syms[NSYMS] = {};
@@ -77,6 +112,8 @@ static void BITSFUNC(go)(void *raw_addr, size_t raw_len,
if (!strcmp(secstrings + GET_LE(&sh->sh_name),
".altinstructions"))
alt_sec = sh;
+ if (!strcmp(secstrings + GET_LE(&sh->sh_name), "__ex_table"))
+ extable_sec = sh;
}
if (!symtab_hdr)
@@ -155,6 +192,9 @@ static void BITSFUNC(go)(void *raw_addr, size_t raw_len,
(int)((unsigned char *)stripped_addr)[i]);
}
fprintf(outfile, "\n};\n\n");
+ if (extable_sec)
+ BITSFUNC(extract)(raw_addr, raw_len, outfile,
+ extable_sec, "extable");
fprintf(outfile, "const struct vdso_image %s = {\n", image_name);
fprintf(outfile, "\t.data = raw_data,\n");
@@ -165,6 +205,14 @@ static void BITSFUNC(go)(void *raw_addr, size_t raw_len,
fprintf(outfile, "\t.alt_len = %lu,\n",
(unsigned long)GET_LE(&alt_sec->sh_size));
}
+ if (extable_sec) {
+ fprintf(outfile, "\t.extable_base = %lu,\n",
+ (unsigned long)GET_LE(&extable_sec->sh_offset));
+ fprintf(outfile, "\t.extable_len = %lu,\n",
+ (unsigned long)GET_LE(&extable_sec->sh_size));
+ fprintf(outfile, "\t.extable = extable,\n");
+ }
+
for (i = 0; i < NSYMS; i++) {
if (required_syms[i].export && syms[i])
fprintf(outfile, "\t.sym_%s = %" PRIi64 ",\n",