diff options
author | Eric Biggers <ebiggers@google.com> | 2024-03-29 11:03:54 +0300 |
---|---|---|
committer | Herbert Xu <herbert@gondor.apana.org.au> | 2024-04-05 10:46:33 +0300 |
commit | aa2197f566479a204fcadb3205160837c3b82f66 (patch) | |
tree | 64a378b6280cb015ca90b7e751d12d88b0d4d764 /arch/x86/crypto | |
parent | ee63fea005be4a84a50603269ac9ca2c9bf9c6ca (diff) | |
download | linux-aa2197f566479a204fcadb3205160837c3b82f66.tar.xz |
crypto: x86/aes-xts - wire up VAES + AVX10/512 implementation
Add an AES-XTS implementation "xts-aes-vaes-avx10_512" for x86_64 CPUs
with the VAES, VPCLMULQDQ, and either AVX10/512 or AVX512BW + AVX512VL
extensions. This implementation uses zmm registers to operate on four
AES blocks at a time. The assembly code is instantiated using a macro
so that most of the source code is shared with other implementations.
To avoid downclocking on older Intel CPU models, an exclusion list is
used to prevent this 512-bit implementation from being used by default
on some CPU models. They will use xts-aes-vaes-avx10_256 instead. For
now, this exclusion list is simply coded into aesni-intel_glue.c. It
may make sense to eventually move it into a more central location.
xts-aes-vaes-avx10_512 is slightly faster than xts-aes-vaes-avx10_256 on
some current CPUs. E.g., on AMD Zen 4, AES-256-XTS decryption
throughput increases by 13% with 4096-byte inputs, or 14% with 512-byte
inputs. On Intel Sapphire Rapids, AES-256-XTS decryption throughput
increases by 2% with 4096-byte inputs, or 3% with 512-byte inputs.
Future CPUs may provide stronger 512-bit support, in which case a larger
benefit should be seen.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Diffstat (limited to 'arch/x86/crypto')
-rw-r--r-- | arch/x86/crypto/aes-xts-avx-x86_64.S | 9 | ||||
-rw-r--r-- | arch/x86/crypto/aesni-intel_glue.c | 32 |
2 files changed, 41 insertions, 0 deletions
diff --git a/arch/x86/crypto/aes-xts-avx-x86_64.S b/arch/x86/crypto/aes-xts-avx-x86_64.S index 71be474b22da..b8005d0205f8 100644 --- a/arch/x86/crypto/aes-xts-avx-x86_64.S +++ b/arch/x86/crypto/aes-xts-avx-x86_64.S @@ -826,4 +826,13 @@ SYM_FUNC_END(aes_xts_encrypt_vaes_avx10_256) SYM_TYPED_FUNC_START(aes_xts_decrypt_vaes_avx10_256) _aes_xts_crypt 0 SYM_FUNC_END(aes_xts_decrypt_vaes_avx10_256) + +.set VL, 64 +.set USE_AVX10, 1 +SYM_TYPED_FUNC_START(aes_xts_encrypt_vaes_avx10_512) + _aes_xts_crypt 1 +SYM_FUNC_END(aes_xts_encrypt_vaes_avx10_512) +SYM_TYPED_FUNC_START(aes_xts_decrypt_vaes_avx10_512) + _aes_xts_crypt 0 +SYM_FUNC_END(aes_xts_decrypt_vaes_avx10_512) #endif /* CONFIG_AS_VAES && CONFIG_AS_VPCLMULQDQ */ diff --git a/arch/x86/crypto/aesni-intel_glue.c b/arch/x86/crypto/aesni-intel_glue.c index fce794758937..0b37a470325b 100644 --- a/arch/x86/crypto/aesni-intel_glue.c +++ b/arch/x86/crypto/aesni-intel_glue.c @@ -1298,8 +1298,29 @@ DEFINE_XTS_ALG(aesni_avx, "xts-aes-aesni-avx", 500); #if defined(CONFIG_AS_VAES) && defined(CONFIG_AS_VPCLMULQDQ) DEFINE_XTS_ALG(vaes_avx2, "xts-aes-vaes-avx2", 600); DEFINE_XTS_ALG(vaes_avx10_256, "xts-aes-vaes-avx10_256", 700); +DEFINE_XTS_ALG(vaes_avx10_512, "xts-aes-vaes-avx10_512", 800); #endif +/* + * This is a list of CPU models that are known to suffer from downclocking when + * zmm registers (512-bit vectors) are used. On these CPUs, the AES-XTS + * implementation with zmm registers won't be used by default. An + * implementation with ymm registers (256-bit vectors) will be used instead. + */ +static const struct x86_cpu_id zmm_exclusion_list[] = { + { .vendor = X86_VENDOR_INTEL, .family = 6, .model = INTEL_FAM6_SKYLAKE_X }, + { .vendor = X86_VENDOR_INTEL, .family = 6, .model = INTEL_FAM6_ICELAKE_X }, + { .vendor = X86_VENDOR_INTEL, .family = 6, .model = INTEL_FAM6_ICELAKE_D }, + { .vendor = X86_VENDOR_INTEL, .family = 6, .model = INTEL_FAM6_ICELAKE }, + { .vendor = X86_VENDOR_INTEL, .family = 6, .model = INTEL_FAM6_ICELAKE_L }, + { .vendor = X86_VENDOR_INTEL, .family = 6, .model = INTEL_FAM6_ICELAKE_NNPI }, + { .vendor = X86_VENDOR_INTEL, .family = 6, .model = INTEL_FAM6_TIGERLAKE_L }, + { .vendor = X86_VENDOR_INTEL, .family = 6, .model = INTEL_FAM6_TIGERLAKE }, + /* Allow Rocket Lake and later, and Sapphire Rapids and later. */ + /* Also allow AMD CPUs (starting with Zen 4, the first with AVX-512). */ + {}, +}; + static int __init register_xts_algs(void) { int err; @@ -1333,6 +1354,14 @@ static int __init register_xts_algs(void) &aes_xts_simdalg_vaes_avx10_256); if (err) return err; + + if (x86_match_cpu(zmm_exclusion_list)) + aes_xts_alg_vaes_avx10_512.base.cra_priority = 1; + + err = simd_register_skciphers_compat(&aes_xts_alg_vaes_avx10_512, 1, + &aes_xts_simdalg_vaes_avx10_512); + if (err) + return err; #endif /* CONFIG_AS_VAES && CONFIG_AS_VPCLMULQDQ */ return 0; } @@ -1349,6 +1378,9 @@ static void unregister_xts_algs(void) if (aes_xts_simdalg_vaes_avx10_256) simd_unregister_skciphers(&aes_xts_alg_vaes_avx10_256, 1, &aes_xts_simdalg_vaes_avx10_256); + if (aes_xts_simdalg_vaes_avx10_512) + simd_unregister_skciphers(&aes_xts_alg_vaes_avx10_512, 1, + &aes_xts_simdalg_vaes_avx10_512); #endif } #else /* CONFIG_X86_64 */ |