summaryrefslogtreecommitdiff
path: root/arch/sparc/mm/hugetlbpage.c
diff options
context:
space:
mode:
authorDavid Miller <davem@davemloft.net>2012-10-09 03:34:29 +0400
committerLinus Torvalds <torvalds@linux-foundation.org>2012-10-09 11:23:06 +0400
commit9e695d2ecc8451cc2c1603d60b5c8e7f5581923a (patch)
tree77528ae73fe70d1bae3ced18a50e59fd81d2372c /arch/sparc/mm/hugetlbpage.c
parentf5c8ad47284ca01dafc37da5a72bb9644174d387 (diff)
downloadlinux-9e695d2ecc8451cc2c1603d60b5c8e7f5581923a.tar.xz
sparc64: Support transparent huge pages.
This is relatively easy since PMD's now cover exactly 4MB of memory. Our PMD entries are 32-bits each, so we use a special encoding. The lowest bit, PMD_ISHUGE, determines the interpretation. This is possible because sparc64's page tables are purely software entities so we can use whatever encoding scheme we want. We just have to make the TLB miss assembler page table walkers aware of the layout. set_pmd_at() works much like set_pte_at() but it has to operate in two page from a table of non-huge PTEs, so we have to queue up TLB flushes based upon what mappings are valid in the PTE table. In the second regime we are going from huge-page to non-huge-page, and in that case we need only queue up a single TLB flush to push out the huge page mapping. We still have 5 bits remaining in the huge PMD encoding so we can very likely support any new pieces of THP state tracking that might get added in the future. With lots of help from Johannes Weiner. Signed-off-by: David S. Miller <davem@davemloft.net> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Gerald Schaefer <gerald.schaefer@de.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Diffstat (limited to 'arch/sparc/mm/hugetlbpage.c')
-rw-r--r--arch/sparc/mm/hugetlbpage.c50
1 files changed, 0 insertions, 50 deletions
diff --git a/arch/sparc/mm/hugetlbpage.c b/arch/sparc/mm/hugetlbpage.c
index 07e14535375c..f76f83d5ac63 100644
--- a/arch/sparc/mm/hugetlbpage.c
+++ b/arch/sparc/mm/hugetlbpage.c
@@ -303,53 +303,3 @@ struct page *follow_huge_pmd(struct mm_struct *mm, unsigned long address,
{
return NULL;
}
-
-static void context_reload(void *__data)
-{
- struct mm_struct *mm = __data;
-
- if (mm == current->mm)
- load_secondary_context(mm);
-}
-
-void hugetlb_prefault_arch_hook(struct mm_struct *mm)
-{
- struct tsb_config *tp = &mm->context.tsb_block[MM_TSB_HUGE];
-
- if (likely(tp->tsb != NULL))
- return;
-
- tsb_grow(mm, MM_TSB_HUGE, 0);
- tsb_context_switch(mm);
- smp_tsb_sync(mm);
-
- /* On UltraSPARC-III+ and later, configure the second half of
- * the Data-TLB for huge pages.
- */
- if (tlb_type == cheetah_plus) {
- unsigned long ctx;
-
- spin_lock(&ctx_alloc_lock);
- ctx = mm->context.sparc64_ctx_val;
- ctx &= ~CTX_PGSZ_MASK;
- ctx |= CTX_PGSZ_BASE << CTX_PGSZ0_SHIFT;
- ctx |= CTX_PGSZ_HUGE << CTX_PGSZ1_SHIFT;
-
- if (ctx != mm->context.sparc64_ctx_val) {
- /* When changing the page size fields, we
- * must perform a context flush so that no
- * stale entries match. This flush must
- * occur with the original context register
- * settings.
- */
- do_flush_tlb_mm(mm);
-
- /* Reload the context register of all processors
- * also executing in this address space.
- */
- mm->context.sparc64_ctx_val = ctx;
- on_each_cpu(context_reload, mm, 0);
- }
- spin_unlock(&ctx_alloc_lock);
- }
-}