summaryrefslogtreecommitdiff
path: root/arch/powerpc/mm
diff options
context:
space:
mode:
authorAneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>2015-06-25 02:57:39 +0300
committerLinus Torvalds <torvalds@linux-foundation.org>2015-06-25 03:49:44 +0300
commit15a25b2ead5f97c5a63c169186e294b41ce03f9a (patch)
tree0c320617ac70baca1dd96c8d2b13f6ac2460cc25 /arch/powerpc/mm
parent97f0b13452198290799fd6780f05fbaa74f927d3 (diff)
downloadlinux-15a25b2ead5f97c5a63c169186e294b41ce03f9a.tar.xz
mm/thp: split out pmd collapse flush into separate functions
Architectures like ppc64 [1] need to do special things while clearing pmd before a collapse. For them this operation is largely different from a normal hugepage pte clear. Hence add a separate function to clear pmd before collapse. After this patch pmdp_* functions operate only on hugepage pte, and not on regular pmd_t values pointing to page table. [1] ppc64 needs to invalidate all the normal page pte mappings we already have inserted in the hardware hash page table. But before doing that we need to make sure there are no parallel hash page table insert going on. So we need to do a kick_all_cpus_sync() before flushing the older hash table entries. By moving this to a separate function we capture these details and mention how it is different from a hugepage pte clear. This patch is a cleanup and only does code movement for clarity. There should not be any change in functionality. Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Diffstat (limited to 'arch/powerpc/mm')
-rw-r--r--arch/powerpc/mm/pgtable_64.c76
1 files changed, 41 insertions, 35 deletions
diff --git a/arch/powerpc/mm/pgtable_64.c b/arch/powerpc/mm/pgtable_64.c
index 6bfadf1aa5cb..049d961802aa 100644
--- a/arch/powerpc/mm/pgtable_64.c
+++ b/arch/powerpc/mm/pgtable_64.c
@@ -560,41 +560,47 @@ pmd_t pmdp_clear_flush(struct vm_area_struct *vma, unsigned long address,
pmd_t pmd;
VM_BUG_ON(address & ~HPAGE_PMD_MASK);
- if (pmd_trans_huge(*pmdp)) {
- pmd = pmdp_get_and_clear(vma->vm_mm, address, pmdp);
- } else {
- /*
- * khugepaged calls this for normal pmd
- */
- pmd = *pmdp;
- pmd_clear(pmdp);
- /*
- * Wait for all pending hash_page to finish. This is needed
- * in case of subpage collapse. When we collapse normal pages
- * to hugepage, we first clear the pmd, then invalidate all
- * the PTE entries. The assumption here is that any low level
- * page fault will see a none pmd and take the slow path that
- * will wait on mmap_sem. But we could very well be in a
- * hash_page with local ptep pointer value. Such a hash page
- * can result in adding new HPTE entries for normal subpages.
- * That means we could be modifying the page content as we
- * copy them to a huge page. So wait for parallel hash_page
- * to finish before invalidating HPTE entries. We can do this
- * by sending an IPI to all the cpus and executing a dummy
- * function there.
- */
- kick_all_cpus_sync();
- /*
- * Now invalidate the hpte entries in the range
- * covered by pmd. This make sure we take a
- * fault and will find the pmd as none, which will
- * result in a major fault which takes mmap_sem and
- * hence wait for collapse to complete. Without this
- * the __collapse_huge_page_copy can result in copying
- * the old content.
- */
- flush_tlb_pmd_range(vma->vm_mm, &pmd, address);
- }
+ VM_BUG_ON(!pmd_trans_huge(*pmdp));
+ pmd = pmdp_get_and_clear(vma->vm_mm, address, pmdp);
+ return pmd;
+}
+
+pmd_t pmdp_collapse_flush(struct vm_area_struct *vma, unsigned long address,
+ pmd_t *pmdp)
+{
+ pmd_t pmd;
+
+ VM_BUG_ON(address & ~HPAGE_PMD_MASK);
+ VM_BUG_ON(pmd_trans_huge(*pmdp));
+
+ pmd = *pmdp;
+ pmd_clear(pmdp);
+ /*
+ * Wait for all pending hash_page to finish. This is needed
+ * in case of subpage collapse. When we collapse normal pages
+ * to hugepage, we first clear the pmd, then invalidate all
+ * the PTE entries. The assumption here is that any low level
+ * page fault will see a none pmd and take the slow path that
+ * will wait on mmap_sem. But we could very well be in a
+ * hash_page with local ptep pointer value. Such a hash page
+ * can result in adding new HPTE entries for normal subpages.
+ * That means we could be modifying the page content as we
+ * copy them to a huge page. So wait for parallel hash_page
+ * to finish before invalidating HPTE entries. We can do this
+ * by sending an IPI to all the cpus and executing a dummy
+ * function there.
+ */
+ kick_all_cpus_sync();
+ /*
+ * Now invalidate the hpte entries in the range
+ * covered by pmd. This make sure we take a
+ * fault and will find the pmd as none, which will
+ * result in a major fault which takes mmap_sem and
+ * hence wait for collapse to complete. Without this
+ * the __collapse_huge_page_copy can result in copying
+ * the old content.
+ */
+ flush_tlb_pmd_range(vma->vm_mm, &pmd, address);
return pmd;
}