diff options
author | Alexander Duyck <alexander.h.duyck@redhat.com> | 2014-12-12 02:01:55 +0300 |
---|---|---|
committer | David S. Miller <davem@davemloft.net> | 2014-12-12 05:15:05 +0300 |
commit | 8a449718414ff10b9d5559ed3e8e09c7178774f2 (patch) | |
tree | 81097c0d6949fb90e40176ddff1f4be30467b576 /arch/alpha/include | |
parent | c11a9009ae6a8c42a8cd69d885601e1aa6fbea04 (diff) | |
download | linux-8a449718414ff10b9d5559ed3e8e09c7178774f2.tar.xz |
arch: Cleanup read_barrier_depends() and comments
This patch is meant to cleanup the handling of read_barrier_depends and
smp_read_barrier_depends. In multiple spots in the kernel headers
read_barrier_depends is defined as "do {} while (0)", however we then go
into the SMP vs non-SMP sections and have the SMP version reference
read_barrier_depends, and the non-SMP define it as yet another empty
do/while.
With this commit I went through and cleaned out the duplicate definitions
and reduced the number of definitions down to 2 per header. In addition I
moved the 50 line comments for the macro from the x86 and mips headers that
defined it as an empty do/while to those that were actually defining the
macro, alpha and blackfin.
Signed-off-by: Alexander Duyck <alexander.h.duyck@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Diffstat (limited to 'arch/alpha/include')
-rw-r--r-- | arch/alpha/include/asm/barrier.h | 51 |
1 files changed, 51 insertions, 0 deletions
diff --git a/arch/alpha/include/asm/barrier.h b/arch/alpha/include/asm/barrier.h index 3832bdb794fe..77516c87255d 100644 --- a/arch/alpha/include/asm/barrier.h +++ b/arch/alpha/include/asm/barrier.h @@ -7,6 +7,57 @@ #define rmb() __asm__ __volatile__("mb": : :"memory") #define wmb() __asm__ __volatile__("wmb": : :"memory") +/** + * read_barrier_depends - Flush all pending reads that subsequents reads + * depend on. + * + * No data-dependent reads from memory-like regions are ever reordered + * over this barrier. All reads preceding this primitive are guaranteed + * to access memory (but not necessarily other CPUs' caches) before any + * reads following this primitive that depend on the data return by + * any of the preceding reads. This primitive is much lighter weight than + * rmb() on most CPUs, and is never heavier weight than is + * rmb(). + * + * These ordering constraints are respected by both the local CPU + * and the compiler. + * + * Ordering is not guaranteed by anything other than these primitives, + * not even by data dependencies. See the documentation for + * memory_barrier() for examples and URLs to more information. + * + * For example, the following code would force ordering (the initial + * value of "a" is zero, "b" is one, and "p" is "&a"): + * + * <programlisting> + * CPU 0 CPU 1 + * + * b = 2; + * memory_barrier(); + * p = &b; q = p; + * read_barrier_depends(); + * d = *q; + * </programlisting> + * + * because the read of "*q" depends on the read of "p" and these + * two reads are separated by a read_barrier_depends(). However, + * the following code, with the same initial values for "a" and "b": + * + * <programlisting> + * CPU 0 CPU 1 + * + * a = 2; + * memory_barrier(); + * b = 3; y = b; + * read_barrier_depends(); + * x = a; + * </programlisting> + * + * does not enforce ordering, since there is no data dependency between + * the read of "a" and the read of "b". Therefore, on some CPUs, such + * as Alpha, "y" could be set to 3 and "x" to 0. Use rmb() + * in cases like this where there are no data dependencies. + */ #define read_barrier_depends() __asm__ __volatile__("mb": : :"memory") #ifdef CONFIG_SMP |