summaryrefslogtreecommitdiff
path: root/Documentation
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@linux-foundation.org>2015-04-16 01:41:41 +0300
committerLinus Torvalds <torvalds@linux-foundation.org>2015-04-16 01:41:41 +0300
commitd0a3997c0c3f9351e24029349dee65dd1d9e8d84 (patch)
tree7a04fe282b0c7b329cd87cdb891f0f3879dc71a6 /Documentation
parent6d50ff91d9780263160262daeb6adfdda8ddbc6c (diff)
parentd6eb9e3ec78c98324097bab8eea266c3bb0d0ac7 (diff)
downloadlinux-d0a3997c0c3f9351e24029349dee65dd1d9e8d84.tar.xz
Merge tag 'sound-4.1-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai/sound
Pull sound updates from Takashi Iwai: "There have been major modernization with the standard bus: in ALSA sequencer core and HD-audio. Also, HD-audio receives the regmap support replacing the in-house cache register cache code. These changes shouldn't impact the existing behavior, but rather refactoring. In addition, HD-audio got the code split to a core library part and the "legacy" driver parts. This is a preliminary work for adapting the upcoming ASoC HD-audio driver, and the whole transition is still work in progress, likely finished in 4.1. Along with them, there are many updates in ASoC area as usual, too: lots of cleanups, Intel code shuffling, etc. Here are some highlights: ALSA core: - PCM: the audio timestamp / wallclock enhancement - PCM: fixes in DPCM management - Fixes / cleanups of user-space control element management - Sequencer: modernization using the standard bus HD-audio: - Modernization using the standard bus - Regmap support - Use standard runtime PM for codec power saving - Widget-path based power-saving for IDT, VIA and Realtek codecs - Reorganized sysfs entries for each codec object - More Dell headset support ASoC: - Move of jack registration to the card level - Lots of ASoC cleanups, mainly moving things from the CODEC level to the card level - Support for DAPM routes specified by both the machine driver and DT - Continuing improvements to rcar - pcm512x enhacements - Intel platforms updates - rt5670 updates / fixes - New platforms / devices: some non-DSP Qualcomm platforms, Google's Storm platform, Maxmim MAX98925 CODECs and the Ingenic JZ4780 SoC Misc: - ice1724: Improved ESI W192M support - emu10k1: Emu 1010 fixes/enhancement" * tag 'sound-4.1-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai/sound: (411 commits) ALSA: hda - set GET bit when adding a vendor verb to the codec regmap ALSA: hda/realtek - Enable the ALC292 dock fixup on the Thinkpad T450 ALSA: hda - Fix another race in runtime PM refcounting ALSA: hda - Expose codec type sysfs ALSA: ctl: fix to handle several elements added by one operation for userspace element ASoC: Intel: fix array_size.cocci warnings ASoC: n810: Automatically disconnect non-connected pins ASoC: n810: Consistently pass the card DAPM context to n810_ext_control() ASoC: davinci-evm: Use card DAPM context to access widgets ASoC: mop500_ab8500: Use card DAPM context to access widgets ASoC: wm1133-ev1: Use card DAPM context to access widgets ASoC: atmel: Improve machine driver compile test coverage ASoC: atmel: Add dependency to SND_SOC_I2C_AND_SPI where necessary ALSA: control: Fix a typo of SNDRV_CTL_ELEM_ACCESS_TLV_* with SNDRV_CTL_TLV_OP_* ALSA: usb-audio: Don't attempt to get Microsoft Lifecam Cinema sample rate ASoC: rnsd: fix build regression without CONFIG_OF ALSA: emu10k1: add toggles for E-mu 1010 optical ports ALSA: ctl: fill identical information to return value when adding userspace elements ALSA: ctl: fix a bug to return no identical information in info operation for userspace controls ALSA: ctl: confirm to return all identical information in 'activate' event ...
Diffstat (limited to 'Documentation')
-rw-r--r--Documentation/devicetree/bindings/sound/ingenic,jz4740-i2s.txt2
-rw-r--r--Documentation/devicetree/bindings/sound/max98925.txt22
-rw-r--r--Documentation/devicetree/bindings/sound/nvidia,tegra-audio-max98090.txt1
-rw-r--r--Documentation/devicetree/bindings/sound/qcom,lpass-cpu.txt43
-rw-r--r--Documentation/devicetree/bindings/sound/renesas,rsnd.txt125
-rw-r--r--Documentation/devicetree/bindings/sound/renesas,rsrc-card.txt67
-rw-r--r--Documentation/devicetree/bindings/sound/storm.txt23
-rw-r--r--Documentation/devicetree/bindings/sound/wm8804.txt7
-rw-r--r--Documentation/sound/alsa/ControlNames.txt10
-rw-r--r--Documentation/sound/alsa/HD-Audio.txt6
-rw-r--r--Documentation/sound/alsa/timestamping.txt200
11 files changed, 485 insertions, 21 deletions
diff --git a/Documentation/devicetree/bindings/sound/ingenic,jz4740-i2s.txt b/Documentation/devicetree/bindings/sound/ingenic,jz4740-i2s.txt
index b41433386e2f..b623d50004fb 100644
--- a/Documentation/devicetree/bindings/sound/ingenic,jz4740-i2s.txt
+++ b/Documentation/devicetree/bindings/sound/ingenic,jz4740-i2s.txt
@@ -1,7 +1,7 @@
Ingenic JZ4740 I2S controller
Required properties:
-- compatible : "ingenic,jz4740-i2s"
+- compatible : "ingenic,jz4740-i2s" or "ingenic,jz4780-i2s"
- reg : I2S registers location and length
- clocks : AIC and I2S PLL clock specifiers.
- clock-names: "aic" and "i2s"
diff --git a/Documentation/devicetree/bindings/sound/max98925.txt b/Documentation/devicetree/bindings/sound/max98925.txt
new file mode 100644
index 000000000000..27be63e2aa0d
--- /dev/null
+++ b/Documentation/devicetree/bindings/sound/max98925.txt
@@ -0,0 +1,22 @@
+max98925 audio CODEC
+
+This device supports I2C.
+
+Required properties:
+
+ - compatible : "maxim,max98925"
+
+ - vmon-slot-no : slot number used to send voltage information
+
+ - imon-slot-no : slot number used to send current information
+
+ - reg : the I2C address of the device for I2C
+
+Example:
+
+codec: max98925@1a {
+ compatible = "maxim,max98925";
+ vmon-slot-no = <0>;
+ imon-slot-no = <2>;
+ reg = <0x1a>;
+};
diff --git a/Documentation/devicetree/bindings/sound/nvidia,tegra-audio-max98090.txt b/Documentation/devicetree/bindings/sound/nvidia,tegra-audio-max98090.txt
index c949abc2992f..c3495beba358 100644
--- a/Documentation/devicetree/bindings/sound/nvidia,tegra-audio-max98090.txt
+++ b/Documentation/devicetree/bindings/sound/nvidia,tegra-audio-max98090.txt
@@ -18,6 +18,7 @@ Required properties:
* Headphones
* Speakers
* Mic Jack
+ * Int Mic
- nvidia,i2s-controller : The phandle of the Tegra I2S controller that's
connected to the CODEC.
diff --git a/Documentation/devicetree/bindings/sound/qcom,lpass-cpu.txt b/Documentation/devicetree/bindings/sound/qcom,lpass-cpu.txt
new file mode 100644
index 000000000000..e00732dac939
--- /dev/null
+++ b/Documentation/devicetree/bindings/sound/qcom,lpass-cpu.txt
@@ -0,0 +1,43 @@
+* Qualcomm Technologies LPASS CPU DAI
+
+This node models the Qualcomm Technologies Low-Power Audio SubSystem (LPASS).
+
+Required properties:
+
+- compatible : "qcom,lpass-cpu"
+- clocks : Must contain an entry for each entry in clock-names.
+- clock-names : A list which must include the following entries:
+ * "ahbix-clk"
+ * "mi2s-osr-clk"
+ * "mi2s-bit-clk"
+- interrupts : Must contain an entry for each entry in
+ interrupt-names.
+- interrupt-names : A list which must include the following entries:
+ * "lpass-irq-lpaif"
+- pinctrl-N : One property must exist for each entry in
+ pinctrl-names. See ../pinctrl/pinctrl-bindings.txt
+ for details of the property values.
+- pinctrl-names : Must contain a "default" entry.
+- reg : Must contain an address for each entry in reg-names.
+- reg-names : A list which must include the following entries:
+ * "lpass-lpaif"
+
+Optional properties:
+
+- qcom,adsp : Phandle for the audio DSP node
+
+Example:
+
+lpass@28100000 {
+ compatible = "qcom,lpass-cpu";
+ clocks = <&lcc AHBIX_CLK>, <&lcc MI2S_OSR_CLK>, <&lcc MI2S_BIT_CLK>;
+ clock-names = "ahbix-clk", "mi2s-osr-clk", "mi2s-bit-clk";
+ interrupts = <0 85 1>;
+ interrupt-names = "lpass-irq-lpaif";
+ pinctrl-names = "default", "idle";
+ pinctrl-0 = <&mi2s_default>;
+ pinctrl-1 = <&mi2s_idle>;
+ reg = <0x28100000 0x10000>;
+ reg-names = "lpass-lpaif";
+ qcom,adsp = <&adsp>;
+};
diff --git a/Documentation/devicetree/bindings/sound/renesas,rsnd.txt b/Documentation/devicetree/bindings/sound/renesas,rsnd.txt
index 2dd690bc19cc..f316ce1f214a 100644
--- a/Documentation/devicetree/bindings/sound/renesas,rsnd.txt
+++ b/Documentation/devicetree/bindings/sound/renesas,rsnd.txt
@@ -29,9 +29,17 @@ SSI subnode properties:
- shared-pin : if shared clock pin
- pio-transfer : use PIO transfer mode
- no-busif : BUSIF is not ussed when [mem -> SSI] via DMA case
+- dma : Should contain Audio DMAC entry
+- dma-names : SSI case "rx" (=playback), "tx" (=capture)
+ SSIU case "rxu" (=playback), "txu" (=capture)
SRC subnode properties:
-no properties at this point
+- dma : Should contain Audio DMAC entry
+- dma-names : "rx" (=playback), "tx" (=capture)
+
+DVC subnode properties:
+- dma : Should contain Audio DMAC entry
+- dma-names : "tx" (=playback/capture)
DAI subnode properties:
- playback : list of playback modules
@@ -45,56 +53,145 @@ rcar_sound: rcar_sound@ec500000 {
reg = <0 0xec500000 0 0x1000>, /* SCU */
<0 0xec5a0000 0 0x100>, /* ADG */
<0 0xec540000 0 0x1000>, /* SSIU */
- <0 0xec541000 0 0x1280>; /* SSI */
+ <0 0xec541000 0 0x1280>, /* SSI */
+ <0 0xec740000 0 0x200>; /* Audio DMAC peri peri*/
+ reg-names = "scu", "adg", "ssiu", "ssi", "audmapp";
+
+ clocks = <&mstp10_clks R8A7790_CLK_SSI_ALL>,
+ <&mstp10_clks R8A7790_CLK_SSI9>, <&mstp10_clks R8A7790_CLK_SSI8>,
+ <&mstp10_clks R8A7790_CLK_SSI7>, <&mstp10_clks R8A7790_CLK_SSI6>,
+ <&mstp10_clks R8A7790_CLK_SSI5>, <&mstp10_clks R8A7790_CLK_SSI4>,
+ <&mstp10_clks R8A7790_CLK_SSI3>, <&mstp10_clks R8A7790_CLK_SSI2>,
+ <&mstp10_clks R8A7790_CLK_SSI1>, <&mstp10_clks R8A7790_CLK_SSI0>,
+ <&mstp10_clks R8A7790_CLK_SCU_SRC9>, <&mstp10_clks R8A7790_CLK_SCU_SRC8>,
+ <&mstp10_clks R8A7790_CLK_SCU_SRC7>, <&mstp10_clks R8A7790_CLK_SCU_SRC6>,
+ <&mstp10_clks R8A7790_CLK_SCU_SRC5>, <&mstp10_clks R8A7790_CLK_SCU_SRC4>,
+ <&mstp10_clks R8A7790_CLK_SCU_SRC3>, <&mstp10_clks R8A7790_CLK_SCU_SRC2>,
+ <&mstp10_clks R8A7790_CLK_SCU_SRC1>, <&mstp10_clks R8A7790_CLK_SCU_SRC0>,
+ <&mstp10_clks R8A7790_CLK_SCU_DVC0>, <&mstp10_clks R8A7790_CLK_SCU_DVC1>,
+ <&audio_clk_a>, <&audio_clk_b>, <&audio_clk_c>, <&m2_clk>;
+ clock-names = "ssi-all",
+ "ssi.9", "ssi.8", "ssi.7", "ssi.6", "ssi.5",
+ "ssi.4", "ssi.3", "ssi.2", "ssi.1", "ssi.0",
+ "src.9", "src.8", "src.7", "src.6", "src.5",
+ "src.4", "src.3", "src.2", "src.1", "src.0",
+ "dvc.0", "dvc.1",
+ "clk_a", "clk_b", "clk_c", "clk_i";
rcar_sound,dvc {
- dvc0: dvc@0 { };
- dvc1: dvc@1 { };
+ dvc0: dvc@0 {
+ dmas = <&audma0 0xbc>;
+ dma-names = "tx";
+ };
+ dvc1: dvc@1 {
+ dmas = <&audma0 0xbe>;
+ dma-names = "tx";
+ };
};
rcar_sound,src {
- src0: src@0 { };
- src1: src@1 { };
- src2: src@2 { };
- src3: src@3 { };
- src4: src@4 { };
- src5: src@5 { };
- src6: src@6 { };
- src7: src@7 { };
- src8: src@8 { };
- src9: src@9 { };
+ src0: src@0 {
+ interrupts = <0 352 IRQ_TYPE_LEVEL_HIGH>;
+ dmas = <&audma0 0x85>, <&audma1 0x9a>;
+ dma-names = "rx", "tx";
+ };
+ src1: src@1 {
+ interrupts = <0 353 IRQ_TYPE_LEVEL_HIGH>;
+ dmas = <&audma0 0x87>, <&audma1 0x9c>;
+ dma-names = "rx", "tx";
+ };
+ src2: src@2 {
+ interrupts = <0 354 IRQ_TYPE_LEVEL_HIGH>;
+ dmas = <&audma0 0x89>, <&audma1 0x9e>;
+ dma-names = "rx", "tx";
+ };
+ src3: src@3 {
+ interrupts = <0 355 IRQ_TYPE_LEVEL_HIGH>;
+ dmas = <&audma0 0x8b>, <&audma1 0xa0>;
+ dma-names = "rx", "tx";
+ };
+ src4: src@4 {
+ interrupts = <0 356 IRQ_TYPE_LEVEL_HIGH>;
+ dmas = <&audma0 0x8d>, <&audma1 0xb0>;
+ dma-names = "rx", "tx";
+ };
+ src5: src@5 {
+ interrupts = <0 357 IRQ_TYPE_LEVEL_HIGH>;
+ dmas = <&audma0 0x8f>, <&audma1 0xb2>;
+ dma-names = "rx", "tx";
+ };
+ src6: src@6 {
+ interrupts = <0 358 IRQ_TYPE_LEVEL_HIGH>;
+ dmas = <&audma0 0x91>, <&audma1 0xb4>;
+ dma-names = "rx", "tx";
+ };
+ src7: src@7 {
+ interrupts = <0 359 IRQ_TYPE_LEVEL_HIGH>;
+ dmas = <&audma0 0x93>, <&audma1 0xb6>;
+ dma-names = "rx", "tx";
+ };
+ src8: src@8 {
+ interrupts = <0 360 IRQ_TYPE_LEVEL_HIGH>;
+ dmas = <&audma0 0x95>, <&audma1 0xb8>;
+ dma-names = "rx", "tx";
+ };
+ src9: src@9 {
+ interrupts = <0 361 IRQ_TYPE_LEVEL_HIGH>;
+ dmas = <&audma0 0x97>, <&audma1 0xba>;
+ dma-names = "rx", "tx";
+ };
};
rcar_sound,ssi {
ssi0: ssi@0 {
interrupts = <0 370 IRQ_TYPE_LEVEL_HIGH>;
+ dmas = <&audma0 0x01>, <&audma1 0x02>, <&audma0 0x15>, <&audma1 0x16>;
+ dma-names = "rx", "tx", "rxu", "txu";
};
ssi1: ssi@1 {
interrupts = <0 371 IRQ_TYPE_LEVEL_HIGH>;
+ dmas = <&audma0 0x03>, <&audma1 0x04>, <&audma0 0x49>, <&audma1 0x4a>;
+ dma-names = "rx", "tx", "rxu", "txu";
};
ssi2: ssi@2 {
interrupts = <0 372 IRQ_TYPE_LEVEL_HIGH>;
+ dmas = <&audma0 0x05>, <&audma1 0x06>, <&audma0 0x63>, <&audma1 0x64>;
+ dma-names = "rx", "tx", "rxu", "txu";
};
ssi3: ssi@3 {
interrupts = <0 373 IRQ_TYPE_LEVEL_HIGH>;
+ dmas = <&audma0 0x07>, <&audma1 0x08>, <&audma0 0x6f>, <&audma1 0x70>;
+ dma-names = "rx", "tx", "rxu", "txu";
};
ssi4: ssi@4 {
interrupts = <0 374 IRQ_TYPE_LEVEL_HIGH>;
+ dmas = <&audma0 0x09>, <&audma1 0x0a>, <&audma0 0x71>, <&audma1 0x72>;
+ dma-names = "rx", "tx", "rxu", "txu";
};
ssi5: ssi@5 {
interrupts = <0 375 IRQ_TYPE_LEVEL_HIGH>;
+ dmas = <&audma0 0x0b>, <&audma1 0x0c>, <&audma0 0x73>, <&audma1 0x74>;
+ dma-names = "rx", "tx", "rxu", "txu";
};
ssi6: ssi@6 {
interrupts = <0 376 IRQ_TYPE_LEVEL_HIGH>;
+ dmas = <&audma0 0x0d>, <&audma1 0x0e>, <&audma0 0x75>, <&audma1 0x76>;
+ dma-names = "rx", "tx", "rxu", "txu";
};
ssi7: ssi@7 {
interrupts = <0 377 IRQ_TYPE_LEVEL_HIGH>;
+ dmas = <&audma0 0x0f>, <&audma1 0x10>, <&audma0 0x79>, <&audma1 0x7a>;
+ dma-names = "rx", "tx", "rxu", "txu";
};
ssi8: ssi@8 {
interrupts = <0 378 IRQ_TYPE_LEVEL_HIGH>;
+ dmas = <&audma0 0x11>, <&audma1 0x12>, <&audma0 0x7b>, <&audma1 0x7c>;
+ dma-names = "rx", "tx", "rxu", "txu";
};
ssi9: ssi@9 {
interrupts = <0 379 IRQ_TYPE_LEVEL_HIGH>;
+ dmas = <&audma0 0x13>, <&audma1 0x14>, <&audma0 0x7d>, <&audma1 0x7e>;
+ dma-names = "rx", "tx", "rxu", "txu";
};
};
diff --git a/Documentation/devicetree/bindings/sound/renesas,rsrc-card.txt b/Documentation/devicetree/bindings/sound/renesas,rsrc-card.txt
new file mode 100644
index 000000000000..c64155027288
--- /dev/null
+++ b/Documentation/devicetree/bindings/sound/renesas,rsrc-card.txt
@@ -0,0 +1,67 @@
+Renesas Sampling Rate Convert Sound Card:
+
+Renesas Sampling Rate Convert Sound Card specifies audio DAI connections of SoC <-> codec.
+
+Required properties:
+
+- compatible : "renesas,rsrc-card,<board>"
+ Examples with soctypes are:
+ - "renesas,rsrc-card,lager"
+ - "renesas,rsrc-card,koelsch"
+Optional properties:
+
+- card_name : User specified audio sound card name, one string
+ property.
+- cpu : CPU sub-node
+- codec : CODEC sub-node
+
+Optional subnode properties:
+
+- format : CPU/CODEC common audio format.
+ "i2s", "right_j", "left_j" , "dsp_a"
+ "dsp_b", "ac97", "pdm", "msb", "lsb"
+- frame-master : Indicates dai-link frame master.
+ phandle to a cpu or codec subnode.
+- bitclock-master : Indicates dai-link bit clock master.
+ phandle to a cpu or codec subnode.
+- bitclock-inversion : bool property. Add this if the
+ dai-link uses bit clock inversion.
+- frame-inversion : bool property. Add this if the
+ dai-link uses frame clock inversion.
+- convert-rate : platform specified sampling rate convert
+
+Required CPU/CODEC subnodes properties:
+
+- sound-dai : phandle and port of CPU/CODEC
+
+Optional CPU/CODEC subnodes properties:
+
+- clocks / system-clock-frequency : specify subnode's clock if needed.
+ it can be specified via "clocks" if system has
+ clock node (= common clock), or "system-clock-frequency"
+ (if system doens't support common clock)
+ If a clock is specified, it is
+ enabled with clk_prepare_enable()
+ in dai startup() and disabled with
+ clk_disable_unprepare() in dai
+ shutdown().
+
+Example
+
+sound {
+ compatible = "renesas,rsrc-card,lager";
+
+ card-name = "rsnd-ak4643";
+ format = "left_j";
+ bitclock-master = <&sndcodec>;
+ frame-master = <&sndcodec>;
+
+ sndcpu: cpu {
+ sound-dai = <&rcar_sound>;
+ };
+
+ sndcodec: codec {
+ sound-dai = <&ak4643>;
+ system-clock-frequency = <11289600>;
+ };
+};
diff --git a/Documentation/devicetree/bindings/sound/storm.txt b/Documentation/devicetree/bindings/sound/storm.txt
new file mode 100644
index 000000000000..062a4c185fa9
--- /dev/null
+++ b/Documentation/devicetree/bindings/sound/storm.txt
@@ -0,0 +1,23 @@
+* Sound complex for Storm boards
+
+Models a soundcard for Storm boards with the Qualcomm Technologies IPQ806x SOC
+connected to a MAX98357A DAC via I2S.
+
+Required properties:
+
+- compatible : "google,storm-audio"
+- cpu : Phandle of the CPU DAI
+- codec : Phandle of the codec DAI
+
+Optional properties:
+
+- qcom,model : The user-visible name of this sound card.
+
+Example:
+
+sound {
+ compatible = "google,storm-audio";
+ qcom,model = "ipq806x-storm";
+ cpu = <&lpass_cpu>;
+ codec = <&max98357a>;
+};
diff --git a/Documentation/devicetree/bindings/sound/wm8804.txt b/Documentation/devicetree/bindings/sound/wm8804.txt
index 4d3a56f38adc..6fd124b16496 100644
--- a/Documentation/devicetree/bindings/sound/wm8804.txt
+++ b/Documentation/devicetree/bindings/sound/wm8804.txt
@@ -10,6 +10,13 @@ Required properties:
- reg : the I2C address of the device for I2C, the chip select
number for SPI.
+ - PVDD-supply, DVDD-supply : Power supplies for the device, as covered
+ in Documentation/devicetree/bindings/regulator/regulator.txt
+
+Optional properties:
+
+ - wlf,reset-gpio: A GPIO specifier for the GPIO controlling the reset pin
+
Example:
codec: wm8804@1a {
diff --git a/Documentation/sound/alsa/ControlNames.txt b/Documentation/sound/alsa/ControlNames.txt
index 79a6127863ca..3fc1cf50d28e 100644
--- a/Documentation/sound/alsa/ControlNames.txt
+++ b/Documentation/sound/alsa/ControlNames.txt
@@ -71,11 +71,11 @@ SOURCE:
HDMI/DP (either HDMI or DisplayPort)
Exceptions (deprecated):
- [Digital] Capture Source
- [Digital] Capture Switch (aka input gain switch)
- [Digital] Capture Volume (aka input gain volume)
- [Digital] Playback Switch (aka output gain switch)
- [Digital] Playback Volume (aka output gain volume)
+ [Analogue|Digital] Capture Source
+ [Analogue|Digital] Capture Switch (aka input gain switch)
+ [Analogue|Digital] Capture Volume (aka input gain volume)
+ [Analogue|Digital] Playback Switch (aka output gain switch)
+ [Analogue|Digital] Playback Volume (aka output gain volume)
Tone Control - Switch
Tone Control - Bass
Tone Control - Treble
diff --git a/Documentation/sound/alsa/HD-Audio.txt b/Documentation/sound/alsa/HD-Audio.txt
index 42a0a39b77e6..e7193aac669c 100644
--- a/Documentation/sound/alsa/HD-Audio.txt
+++ b/Documentation/sound/alsa/HD-Audio.txt
@@ -466,7 +466,11 @@ The generic parser supports the following hints:
- add_jack_modes (bool): add "xxx Jack Mode" enum controls to each
I/O jack for allowing to change the headphone amp and mic bias VREF
capabilities
-- power_down_unused (bool): power down the unused widgets
+- power_save_node (bool): advanced power management for each widget,
+ controlling the power sate (D0/D3) of each widget node depending on
+ the actual pin and stream states
+- power_down_unused (bool): power down the unused widgets, a subset of
+ power_save_node, and will be dropped in future
- add_hp_mic (bool): add the headphone to capture source if possible
- hp_mic_detect (bool): enable/disable the hp/mic shared input for a
single built-in mic case; default true
diff --git a/Documentation/sound/alsa/timestamping.txt b/Documentation/sound/alsa/timestamping.txt
new file mode 100644
index 000000000000..0b191a23f534
--- /dev/null
+++ b/Documentation/sound/alsa/timestamping.txt
@@ -0,0 +1,200 @@
+The ALSA API can provide two different system timestamps:
+
+- Trigger_tstamp is the system time snapshot taken when the .trigger
+callback is invoked. This snapshot is taken by the ALSA core in the
+general case, but specific hardware may have synchronization
+capabilities or conversely may only be able to provide a correct
+estimate with a delay. In the latter two cases, the low-level driver
+is responsible for updating the trigger_tstamp at the most appropriate
+and precise moment. Applications should not rely solely on the first
+trigger_tstamp but update their internal calculations if the driver
+provides a refined estimate with a delay.
+
+- tstamp is the current system timestamp updated during the last
+event or application query.
+The difference (tstamp - trigger_tstamp) defines the elapsed time.
+
+The ALSA API provides reports two basic pieces of information, avail
+and delay, which combined with the trigger and current system
+timestamps allow for applications to keep track of the 'fullness' of
+the ring buffer and the amount of queued samples.
+
+The use of these different pointers and time information depends on
+the application needs:
+
+- 'avail' reports how much can be written in the ring buffer
+- 'delay' reports the time it will take to hear a new sample after all
+queued samples have been played out.
+
+When timestamps are enabled, the avail/delay information is reported
+along with a snapshot of system time. Applications can select from
+CLOCK_REALTIME (NTP corrections including going backwards),
+CLOCK_MONOTONIC (NTP corrections but never going backwards),
+CLOCK_MONOTIC_RAW (without NTP corrections) and change the mode
+dynamically with sw_params
+
+
+The ALSA API also provide an audio_tstamp which reflects the passage
+of time as measured by different components of audio hardware. In
+ascii-art, this could be represented as follows (for the playback
+case):
+
+
+--------------------------------------------------------------> time
+ ^ ^ ^ ^ ^
+ | | | | |
+ analog link dma app FullBuffer
+ time time time time time
+ | | | | |
+ |< codec delay >|<--hw delay-->|<queued samples>|<---avail->|
+ |<----------------- delay---------------------->| |
+ |<----ring buffer length---->|
+
+The analog time is taken at the last stage of the playback, as close
+as possible to the actual transducer
+
+The link time is taken at the output of the SOC/chipset as the samples
+are pushed on a link. The link time can be directly measured if
+supported in hardware by sample counters or wallclocks (e.g. with
+HDAudio 24MHz or PTP clock for networked solutions) or indirectly
+estimated (e.g. with the frame counter in USB).
+
+The DMA time is measured using counters - typically the least reliable
+of all measurements due to the bursty natured of DMA transfers.
+
+The app time corresponds to the time tracked by an application after
+writing in the ring buffer.
+
+The application can query what the hardware supports, define which
+audio time it wants reported by selecting the relevant settings in
+audio_tstamp_config fields, get an estimate of the timestamp
+accuracy. It can also request the delay-to-analog be included in the
+measurement. Direct access to the link time is very interesting on
+platforms that provide an embedded DSP; measuring directly the link
+time with dedicated hardware, possibly synchronized with system time,
+removes the need to keep track of internal DSP processing times and
+latency.
+
+In case the application requests an audio tstamp that is not supported
+in hardware/low-level driver, the type is overridden as DEFAULT and the
+timestamp will report the DMA time based on the hw_pointer value.
+
+For backwards compatibility with previous implementations that did not
+provide timestamp selection, with a zero-valued COMPAT timestamp type
+the results will default to the HDAudio wall clock for playback
+streams and to the DMA time (hw_ptr) in all other cases.
+
+The audio timestamp accuracy can be returned to user-space, so that
+appropriate decisions are made:
+
+- for dma time (default), the granularity of the transfers can be
+ inferred from the steps between updates and in turn provide
+ information on how much the application pointer can be rewound
+ safely.
+
+- the link time can be used to track long-term drifts between audio
+ and system time using the (tstamp-trigger_tstamp)/audio_tstamp
+ ratio, the precision helps define how much smoothing/low-pass
+ filtering is required. The link time can be either reset on startup
+ or reported as is (the latter being useful to compare progress of
+ different streams - but may require the wallclock to be always
+ running and not wrap-around during idle periods). If supported in
+ hardware, the absolute link time could also be used to define a
+ precise start time (patches WIP)
+
+- including the delay in the audio timestamp may
+ counter-intuitively not increase the precision of timestamps, e.g. if a
+ codec includes variable-latency DSP processing or a chain of
+ hardware components the delay is typically not known with precision.
+
+The accuracy is reported in nanosecond units (using an unsigned 32-bit
+word), which gives a max precision of 4.29s, more than enough for
+audio applications...
+
+Due to the varied nature of timestamping needs, even for a single
+application, the audio_tstamp_config can be changed dynamically. In
+the STATUS ioctl, the parameters are read-only and do not allow for
+any application selection. To work around this limitation without
+impacting legacy applications, a new STATUS_EXT ioctl is introduced
+with read/write parameters. ALSA-lib will be modified to make use of
+STATUS_EXT and effectively deprecate STATUS.
+
+The ALSA API only allows for a single audio timestamp to be reported
+at a time. This is a conscious design decision, reading the audio
+timestamps from hardware registers or from IPC takes time, the more
+timestamps are read the more imprecise the combined measurements
+are. To avoid any interpretation issues, a single (system, audio)
+timestamp is reported. Applications that need different timestamps
+will be required to issue multiple queries and perform an
+interpolation of the results
+
+In some hardware-specific configuration, the system timestamp is
+latched by a low-level audio subsytem, and the information provided
+back to the driver. Due to potential delays in the communication with
+the hardware, there is a risk of misalignment with the avail and delay
+information. To make sure applications are not confused, a
+driver_timestamp field is added in the snd_pcm_status structure; this
+timestamp shows when the information is put together by the driver
+before returning from the STATUS and STATUS_EXT ioctl. in most cases
+this driver_timestamp will be identical to the regular system tstamp.
+
+Examples of typestamping with HDaudio:
+
+1. DMA timestamp, no compensation for DMA+analog delay
+$ ./audio_time -p --ts_type=1
+playback: systime: 341121338 nsec, audio time 342000000 nsec, systime delta -878662
+playback: systime: 426236663 nsec, audio time 427187500 nsec, systime delta -950837
+playback: systime: 597080580 nsec, audio time 598000000 nsec, systime delta -919420
+playback: systime: 682059782 nsec, audio time 683020833 nsec, systime delta -961051
+playback: systime: 852896415 nsec, audio time 853854166 nsec, systime delta -957751
+playback: systime: 937903344 nsec, audio time 938854166 nsec, systime delta -950822
+
+2. DMA timestamp, compensation for DMA+analog delay
+$ ./audio_time -p --ts_type=1 -d
+playback: systime: 341053347 nsec, audio time 341062500 nsec, systime delta -9153
+playback: systime: 426072447 nsec, audio time 426062500 nsec, systime delta 9947
+playback: systime: 596899518 nsec, audio time 596895833 nsec, systime delta 3685
+playback: systime: 681915317 nsec, audio time 681916666 nsec, systime delta -1349
+playback: systime: 852741306 nsec, audio time 852750000 nsec, systime delta -8694
+
+3. link timestamp, compensation for DMA+analog delay
+$ ./audio_time -p --ts_type=2 -d
+playback: systime: 341060004 nsec, audio time 341062791 nsec, systime delta -2787
+playback: systime: 426242074 nsec, audio time 426244875 nsec, systime delta -2801
+playback: systime: 597080992 nsec, audio time 597084583 nsec, systime delta -3591
+playback: systime: 682084512 nsec, audio time 682088291 nsec, systime delta -3779
+playback: systime: 852936229 nsec, audio time 852940916 nsec, systime delta -4687
+playback: systime: 938107562 nsec, audio time 938112708 nsec, systime delta -5146
+
+Example 1 shows that the timestamp at the DMA level is close to 1ms
+ahead of the actual playback time (as a side time this sort of
+measurement can help define rewind safeguards). Compensating for the
+DMA-link delay in example 2 helps remove the hardware buffering abut
+the information is still very jittery, with up to one sample of
+error. In example 3 where the timestamps are measured with the link
+wallclock, the timestamps show a monotonic behavior and a lower
+dispersion.
+
+Example 3 and 4 are with USB audio class. Example 3 shows a high
+offset between audio time and system time due to buffering. Example 4
+shows how compensating for the delay exposes a 1ms accuracy (due to
+the use of the frame counter by the driver)
+
+Example 3: DMA timestamp, no compensation for delay, delta of ~5ms
+$ ./audio_time -p -Dhw:1 -t1
+playback: systime: 120174019 nsec, audio time 125000000 nsec, systime delta -4825981
+playback: systime: 245041136 nsec, audio time 250000000 nsec, systime delta -4958864
+playback: systime: 370106088 nsec, audio time 375000000 nsec, systime delta -4893912
+playback: systime: 495040065 nsec, audio time 500000000 nsec, systime delta -4959935
+playback: systime: 620038179 nsec, audio time 625000000 nsec, systime delta -4961821
+playback: systime: 745087741 nsec, audio time 750000000 nsec, systime delta -4912259
+playback: systime: 870037336 nsec, audio time 875000000 nsec, systime delta -4962664
+
+Example 4: DMA timestamp, compensation for delay, delay of ~1ms
+$ ./audio_time -p -Dhw:1 -t1 -d
+playback: systime: 120190520 nsec, audio time 120000000 nsec, systime delta 190520
+playback: systime: 245036740 nsec, audio time 244000000 nsec, systime delta 1036740
+playback: systime: 370034081 nsec, audio time 369000000 nsec, systime delta 1034081
+playback: systime: 495159907 nsec, audio time 494000000 nsec, systime delta 1159907
+playback: systime: 620098824 nsec, audio time 619000000 nsec, systime delta 1098824
+playback: systime: 745031847 nsec, audio time 744000000 nsec, systime delta 1031847