summaryrefslogtreecommitdiff
path: root/Documentation
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@linux-foundation.org>2017-07-15 20:18:16 +0300
committerLinus Torvalds <torvalds@linux-foundation.org>2017-07-15 20:18:16 +0300
commite37a07e0c29cd2cef4633b1e6db5579cc99ba4cd (patch)
treed968ca38ebb196c1cf55aa83554623b326592cf1 /Documentation
parenta80099a152d0719e2d8d750e07f4ffa991553d30 (diff)
parentd3457c877b14aaee8c52923eedf05a3b78af0476 (diff)
downloadlinux-e37a07e0c29cd2cef4633b1e6db5579cc99ba4cd.tar.xz
Merge tag 'kvm-4.13-2' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull more KVM updates from Radim Krčmář: "Second batch of KVM updates for v4.13 Common: - add uevents for VM creation/destruction - annotate and properly access RCU-protected objects s390: - rename IOCTL added in the first v4.13 merge x86: - emulate VMLOAD VMSAVE feature in SVM - support paravirtual asynchronous page fault while nested - add Hyper-V userspace interfaces for better migration - improve master clock corner cases - extend internal error reporting after EPT misconfig - correct single-stepping of emulated instructions in SVM - handle MCE during VM entry - fix nVMX VM entry checks and nVMX VMCS shadowing" * tag 'kvm-4.13-2' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (28 commits) kvm: x86: hyperv: make VP_INDEX managed by userspace KVM: async_pf: Let guest support delivery of async_pf from guest mode KVM: async_pf: Force a nested vmexit if the injected #PF is async_pf KVM: async_pf: Add L1 guest async_pf #PF vmexit handler KVM: x86: Simplify kvm_x86_ops->queue_exception parameter list kvm: x86: hyperv: add KVM_CAP_HYPERV_SYNIC2 KVM: x86: make backwards_tsc_observed a per-VM variable KVM: trigger uevents when creating or destroying a VM KVM: SVM: Enable Virtual VMLOAD VMSAVE feature KVM: SVM: Add Virtual VMLOAD VMSAVE feature definition KVM: SVM: Rename lbr_ctl field in the vmcb control area KVM: SVM: Prepare for new bit definition in lbr_ctl KVM: SVM: handle singlestep exception when skipping emulated instructions KVM: x86: take slots_lock in kvm_free_pit KVM: s390: Fix KVM_S390_GET_CMMA_BITS ioctl definition kvm: vmx: Properly handle machine check during VM-entry KVM: x86: update master clock before computing kvmclock_offset kvm: nVMX: Shadow "high" parts of shadowed 64-bit VMCS fields kvm: nVMX: Fix nested_vmx_check_msr_bitmap_controls kvm: nVMX: Validate the I/O bitmaps on nested VM-entry ...
Diffstat (limited to 'Documentation')
-rw-r--r--Documentation/virtual/kvm/api.txt18
-rw-r--r--Documentation/virtual/kvm/msr.txt5
2 files changed, 21 insertions, 2 deletions
diff --git a/Documentation/virtual/kvm/api.txt b/Documentation/virtual/kvm/api.txt
index 3a9831b72945..e63a35fafef0 100644
--- a/Documentation/virtual/kvm/api.txt
+++ b/Documentation/virtual/kvm/api.txt
@@ -4329,3 +4329,21 @@ Querying this capability returns a bitmap indicating the possible
virtual SMT modes that can be set using KVM_CAP_PPC_SMT. If bit N
(counting from the right) is set, then a virtual SMT mode of 2^N is
available.
+
+8.11 KVM_CAP_HYPERV_SYNIC2
+
+Architectures: x86
+
+This capability enables a newer version of Hyper-V Synthetic interrupt
+controller (SynIC). The only difference with KVM_CAP_HYPERV_SYNIC is that KVM
+doesn't clear SynIC message and event flags pages when they are enabled by
+writing to the respective MSRs.
+
+8.12 KVM_CAP_HYPERV_VP_INDEX
+
+Architectures: x86
+
+This capability indicates that userspace can load HV_X64_MSR_VP_INDEX msr. Its
+value is used to denote the target vcpu for a SynIC interrupt. For
+compatibilty, KVM initializes this msr to KVM's internal vcpu index. When this
+capability is absent, userspace can still query this msr's value.
diff --git a/Documentation/virtual/kvm/msr.txt b/Documentation/virtual/kvm/msr.txt
index 0a9ea515512a..1ebecc115dc6 100644
--- a/Documentation/virtual/kvm/msr.txt
+++ b/Documentation/virtual/kvm/msr.txt
@@ -166,10 +166,11 @@ MSR_KVM_SYSTEM_TIME: 0x12
MSR_KVM_ASYNC_PF_EN: 0x4b564d02
data: Bits 63-6 hold 64-byte aligned physical address of a
64 byte memory area which must be in guest RAM and must be
- zeroed. Bits 5-2 are reserved and should be zero. Bit 0 is 1
+ zeroed. Bits 5-3 are reserved and should be zero. Bit 0 is 1
when asynchronous page faults are enabled on the vcpu 0 when
disabled. Bit 1 is 1 if asynchronous page faults can be injected
- when vcpu is in cpl == 0.
+ when vcpu is in cpl == 0. Bit 2 is 1 if asynchronous page faults
+ are delivered to L1 as #PF vmexits.
First 4 byte of 64 byte memory location will be written to by
the hypervisor at the time of asynchronous page fault (APF)